CS 24000 - Programming In C

Week Five: More expressions, statements, arrays of
arrays, memory allocation,

Zhiyuan Li
Department of Computer Science
Purdue University, USA

Survey

e SIG OPS and SIGCSE are currently planning to
have a C workshop sometime this semester

 They ask to conduct a survey at the end of the
class

— Would you be interested in attending a C
workshop?

 Would you be interested in attending a C
workshop?

e (a) Yes
e (b) No

Reminder on lab/project sharing policy

 Copying from other sources than one’s own
work is a case of cheating

e Letting others use one’s code is also a case of
cheating

* First offense gets a “-100” for the particular
lab/project. Second offense gets an “F” for the
course and a record in Dean of Students Office

e Dispute of penalty will be handled with the
participation of Deans of Students Office

Reminder of the integrity policy

e Any case of cheating will be handled by the Dean of
students

* You are encouraged to discuss problems and approaches
but:

— Sharing solution is not allowed.
— Buying solutions is not allowed.
— Copying code from the internet is not allowed.
— Copying code from other students is not allowed.
— Copying partial code from other students is not allowe
e http://homes.cerias.purdue.edu/~spa
olicy.html
e First offense get a “~-100” for the work. Second offens|

gets an “F” for the course and-arecordinDean-of
Students Office

Revision of the integrity policy
1

* Any case of cheating will be handled by the Dean of
students

* You are encouraged to discuss problems and
approaches but:
— Sharing solution is not allowed.
— Buying solutions is not allowed.
— Copying code from the internet is not allowed.
— Copying code from other students is not allowed.
— Copying partial code from other students is not allowed.
e http://homes.cerias.purdue.edu/~spaf
/cpolicy.html

* First offense get a “-100” for the work. Second offense
gets an “F” for the course

More suggestions on how to
understand C better

* For questions “can | write this way?”, do
programming experiments yourself

* To better understand compiler error message
— Search on-line

e When not sure why the result is not accepted
by autograder

— Check your internal data and result

— Examine (printout) and compare character by
character if necessary

Postfix expressions: Structure
References

e The “” operator

e E1 must be a reference to a structure or a union (which is a
special case of structures)

e E2 must be the name of a member of the structure/union

e The “->” operator

e E1 must be a pointer to a structure/union
e E2 must be the name of a member of the structure/union

e Can be an lvalue unless the member is of an array
type

Structures
e

e A Cstructis a collection of one or more variables, possibly of different

types

e struct {

. int x; /* a member of the
struct*/

o char c; /* another member of
the struct */

[] } y‘;

A struct may have a name (tag), e.g. slot in the example below.
struct slot {

. int x;

. char c;

e } /* then you do not need to declare y yet */

. ?lass Slot { struct slot { typedef struct
J int x; int x; int x;
. char c; char c; char c;

" ot } }

. Java C C

e Difference between the two:
— Noinheritance in C
— No associated methods in C

— Meanings of the declaration of a variable of the type are different

10

e Sloty;
— In Java, declares y being a reference, i.e. a pointer, to

an instance of Slot.
* No memory is allocated until y = new(Slot);

e Structsloty; /* suppose slot is a tag */

— In C, memory is allocated to an instance of the struct
slot referenced by y. (You can access a member of slot
by writing v.c as in Java)

e Structslot *y; /* suppose slotis a tag */

— In C, declares x to be a pointer to an instance of struct
Slot
* No instance is created, no memory is allocated

 If there is (eventually) an instance of Slot that y points to, you
can access a member by writing y->c

12

Type name can also be used after a struct has been
declared in a typedef statement

After typedef struct {int x; char c;} slot; /* slotis a
type */

we can declare two instances of slot
slot sl, s2;

Pointers to structures can be defined
slot* p = &sl;

Two equivalent syntactic ways to access members by
reference

p->X
(*p) .x

An Example: struct.c

#include <stdio.h>
main() {

struct {int a; int b;} x, *p;

p = &X;

X.a=0;

printf("x.a = \t %d\n", x.a);
printf("p->a =\t %d\n", p->a);
printf("(*p).a =\t %d\n", (*p).a);

Postfix increment/decrement

or
— E must be a postfix expression that has an lvalue

— Both E++ and E-- have the value of E at the time of
the evaluation

— After the evaluation point, E gets
incremented/decremented by 1

— The result is not an lvalue.

Combinations of postfix expressions

e Evaluated from left to right
e f(argl, arg2)->ali]

— Calls f(), which returns a pointer to a structure
that has a member that is an array a[]

— Use integer i to address the ith element of a[]

In what follows, we shall go quickly through a long
list of different operators

Unary Operators

One lower level of precedence than postfix
expressions

First, we have prefix increment/decrement
++E or --E

E must have an lvalue

e i++ has a higher precedence and its result is no longer an
lvalue

° —i++ is equivalent to —(i++) and will get a compiler error
message

The value of E is the value after the pre-
increment/pre-decrement

Address operator

Next, we have Address Operators
e &E
E must be
— an lvalue referring neither to a bit-field nor to an object declared
as register,
e Cannot write &(p++) or &arr forarray arr||

e But can write &arr[3]
e If pisa pointer, then &p[3] is the address of p[3]

— Because the postfix operator [] has a higher precedence than &
— or must be of function type.

The result is a pointer to the object or function referred to
by the Ivalue.

If the type of the operand is T, the type of the result is
“pointerto T."

It is easy to use a pointer to overwrite a large
- area of memory -- hence the potential hazard
#include <stdio.h> /* badsweep.c */

static int sx;
static int sa[100];
static int sy;

int main() {
int *p;
for(p= &sx;
p <= &sx+200;
p++) *p=42;

printf("sx = \t%i\n",sx);
printf("sa[0] = \t%i\n",sa[0]);
printf("sa[109] = \t%i\n",sa[109]);
printf("sy = \t%i\n",sy);

18

A New Example to see effect of E++
(better than the one discussed in class)

Purpose of showing increment.c
* Compiler error if misuse non-lvalue
* Difference between *p++ and (*p)++

#include <stdio.h>

main() {
inti=0, j[2], *p, *q;
p = &i;
q=Jj
printf("i++ =\t %d\n", i++);
printf("i is now \t %d\n", i);
printf("*p is now \t %d\n", *p);

[* 0 (i+4)++; ¥/
j[0]=2;
j[1]=3;
*q++ = 0;

printf("j is now \t %p\n", j);
printf("j[0] is now \t %d\n", j[0]);
printf("j[1] is now \t %d\n", j[1]);
printf("q is now \t %p\n", q);

q=1J;

printf("q is now \t %p\n", q);
printf("(*q)++ is now \t %d\n", (*q)++);
printf("q is now \t %p\n", q);
printf("(*q)++ is now \t %d\n", (*q)++);
printf("q is now \t %p\n", q);
printf("j[0] is now \t %d\n", j[0]);
printf("j[1] is now \t %d\n", j[1]);

Reminder of midterm 1

 Next Thursday, Feb. 14, in class

e Look at Piazza announcement for rules and
preparations

