
CS 24000 - Programming In C

Zhiyuan Li
Department of Computer Science

Purdue University, USA

Week Four: Expressions, statements, function calls, arrays
of arrays, ,

How to do labs/projects well?
• Start early

– So you have time to fully understand the requirement, prepare your
test cases accordingly

• This is an important skill in software engineering
• The first task assigned to a new CS graduate is often to write test cases and

testing procedures to test whether a piece of software functions as specified
• I encourage the students to form study groups so they can provide test cases

to each other
• Use techniques discussed in lectures/labs

– Avoid using techniques seen on the web but not discussed in the
lectures/labs yet

• There are complexities not discussed yet
• May misunderstand the techniques and get unexpected results
• What you see on screen output may hide some “white spaces” and cause the

result to differ from the correct ones
• Subscribe to Piazza email notice and read piazza regularly

• Two things about expressions to be
emphasized in this lecture
– Knowing the distinction between “lvalue” and

“rvalue”
• The compiler error messages often refer to such

terminologies

– Knowing the importance of precedence among
different operations

Objects and Lvalues

• An Object in C is a named region of storage;
• An lvalue is an expression referring to an

object such that we are allowed to directly
assign a content to it:
lvalue = rvalue;

– So, “l” means the left-hand side of the
assignment, and “r” the right-hand side

• For example, array name buf alone cannot be an lvalue,
we are not allowed to write buf = 1; or buf++

• We will go through a number of examples of
operators and expressions
– Point out if an expression can be an lvalue
– These examples are grouped by their levels of

precedence
• Higher precedence first

• Note: parentheses override precedence

Array base address

• An array name alone provides the base address
of that array
– It can be viewed as a pointer expression, but
– It cannot be used as an lvalue

• We do not want to change the base address of an array!

• For an array of array a[][], a[i] also provides the
base address of an array
– It cannot be used as an lvalue either

• Cannot write a[i] = 0;
• Cannot write a[i]++

Postfix Expressions
• There are a number of expressions whose operations are grouped

by appending one to another
• These are called postfix expressions in C.

– The operators are at the same level of precedence, evaluated from left
to right

• The simplest postfix expression is the identifier of a variable.

• Next, Array references: E1[E2]
– E1 is any expression of a pointer type or equivalent to a pointer type,

like an array name
– E2 is any expression of an int type
– This reference is equivalent to the pointer dereference

* ((E1) + (E2))

• We cannot write buf = ‘a’;
• But we can write *buf = ‘a’;
• And write *(buf + 1) = ‘b’;
• For array x[][], we can write *(x[0] + 1) = ‘c’;
• For pointer p, we can write p++[1] = ‘x’;

An example
/* PointerAsArray.c */
#include <stdio.h>

main() {

int c = 0, in = 0;
char buf[2048]; char *p = buf;
char x[10][10];

while((c = getchar()) != EOF)
*p++=c;

*p++ = '\0';
p = buf;
*(buf + 1) = 'c';
* (x[0] + 1) = 'd';
p[0] = 'a';
*buf = 'b';
printf("*buf is \t %c\n", *buf);

