
Several New Things

• 2’s complement representation of negative integers
• The data size flag in the conversion specification of printf
• Recast of &n to unsigned long to get the address

2
3

Casts

•(T) x
• A cast converts the value held in variable x to type T

• With pointers, casts do not affect the content of the variable
pointed (merely an indication to the compiler):

• char* c; int* i;

• i = (int *) c;

Flags (in any order), which modify the
specification:

• -, which specifies left adjustment of the converted argument
in its field.

• +, which specifies that the number will always be printed
with a sign.

• 0: for numeric conversions, specifies padding to the field
width with leading zeros.

• #, which specifies an alternate output form. For o, the first
digit will become zero. For x or X, 0x or 0X will be
prefixed to a non-zero result.

2’s complement

• We won’t get into lots of examples of computer arithmetics
• But suffices to say that, under 2’s complement

– The binary representation of negation of an integer n is obtained by
• First negate n bit-wise
• Add 1 to the least significant bit

• Example (8-bit data representation)
– 1’s bit pattern is 0000 0001
– Negation result: 11111110
– Add binary 1, we get: 11111111

• Example
– What is -1’s negation under 2’s complement?
– What is 0’s negation under 2’s complement?

2
6

Arrays & pointers

#include <stdio.h>

main() {

int c = 0, in = 0;
char buf[2048]; char *p = buf;

while((c = getchar()) != EOF)
*p++=c;

*p++ = '\0';
printf("buffer is \t %s\n", buf);

}

Main9.c

• You can increment a pointer
• But you cannot increment an array name

Pointer increment

• Earlier we used p++ to step through an array
• In C, a pointer is simply a memory address

– How much does p++ increment the address?
– We now use printf to investigate

Stepping through an integer array
#include <stdio.h>

main() {

int i, ndigit[10], *p, *end;
for (i = 0; i < 10; ++i)

ndigit[i] = i;
end = &ndigit[10];
p = ndigit;
while (p != end) {

printf("ndigit is at \t %lX\n", (unsigned long) p);
printf("ndigit is at \t %p\n", p);
p++;

}
}
/* %p display is “implementation-dependent” */

Stepping through an array of char
#include <stdio.h>

main() {
int i;
char ndigit[10], *p, *end;
for (i = 0; i < 10; ++i)

ndigit[i] = i;
end = &ndigit[10];
p = ndigit;
while (p != end) {

printf("ndigit is at \t %lX\n", (unsigned long) p);
p++;

}
}

3
1

Pointer to Pointer

• char c; declares a variable of type character
• char* pc; declares a variable of type pointer to character
• char** ppc; declares a variable of type pointer to pointer to

character

• c = ‘a’; initialize a character variable
• pc = &c; get the address of a variable
• ppc = &pc; get the address of a variable

•c == *pc == **ppc

‘a’ c

pc

ppc

Pointer to pointer
#include <stdio.h>
main() {

int i, ndigit[10], **q, *p, *end;
for (i = 0; i < 10; ++i)

ndigit[i] = i;
end = &ndigit[10];
p = ndigit;
q = &p;
while (*q != end) {

printf("ndigit is at \t %lX\n", (unsigned long) * p);
(*q)++;

}
}

Aliases

• In the previous example, *q and p are stored at the identical
address

• Modifying *q will therefore also modify the value of p
• Two memory references that access the same memory

location are called aliases
– We can also say the two memory reference expressions are aliases
– The simplest case is when two variable names are aliases

• For example function parameter p and q may be pointers to the same
location

• More examples of aliases
– int ndigit[10], *p; *p and ndigit[0] are aliases, *(p++) and

ndigit[1] are aliases

• Aliases make it difficult to keep track of variable values
• Aliases make it difficult for the compiler to generate

efficient machine code
• In the old days, it is more efficient to use pointers to step

through an array than using array indices
– This is not necessarily the case anymore
– It is better to use array indexing if possible

• Compilers are better at analyzing array indexing if there are no potential
aliases

3
5

Quiz #1 (will be graded)

• Warm up your clickers...

3
6

Quiz #1 - 1

• Consider the scope of variable i. What will this program
print?

int main(){ int i = 42;
if (1) {
int i = 0; }
printf (“%d”, i);

}
• (a) 42
• (b) 0
• (c) architecture dependent

• (a) 42

Quiz #1 - 2

• If there are no syntax errors, the command gcc –c *.c will
produce

• (a) One executable program, a.out
• (b) One or more *.o files
• (c) Beautified *.c files

(b) One or more *.o files

Quiz #1 - 3

• In the C macro #include “abc.h”, abc.h is

• (a) A C standard library function
• (b) An ordinary header file
• (c) A string to be inserted in the program source code

(b) An ordinary header file

