Several New Things

e 2’s complement representation of negative integers
* The data size flag in the conversion specification of printf

* Recast of &n to unsigned long to get the address

PURDUE

UNIVERSITY

S
3

o (T) x

* A cast converts the value held in variable x to type T

« With pointers, casts do not affect the content of the variable
pointed (merely an indication to the compiler):

. char* c¢c; int* 1i;

o i = (int *) c;

PURDUE

UNIVERSITY

Flags (in any order), which modify the
specification:

-, which specifies left adjustment of the converted argument
in 1ts field.

+, which specifies that the number will always be printed
with a sign.

0: for numeric conversions, specifies padding to the field
width with leading zeros.

#, which specifies an alternate output form. For o, the first
digit will become zero. For x or X, 0x or 0X will be
prefixed to a non-zero result.

PURDUE

UNIVERSITY

2’s complement

« We won’t get into lots of examples of computer arithmetics

« But suffices to say that, under 2’s complement
— The binary representation of negation of an integer n 1s obtained by
 First negate n bit-wise
* Add 1 to the least significant bit
« Example (8-bit data representation)
— 1’s bit pattern is 0000 0001
— Negation result: 11111110
— Add binary 1, we get: 11111111

« Example
— What is -1’s negation under 2’s complement?
— What 1s 0’s negation under 2’s complement?

PURDUE

UNIVERSITY

Arrays & pointers
-glllllllllllllli‘lliillllllllllllllllll

6
#include <stdio.h>
main() { Main9.c
intc=0,in=0;

char buf[2048]; char *p = buf;

while((c = getchar()) '= EOF)
*p++=c;

*p++ =104

printf("buffer is \t %s\n", buf);

PURDUE

UNIVERSITY

* You can increment a pointer

« But you cannot increment an array name

PURDUE

UNIVERSITY

Pointer increment

» Earlier we used p++ to step through an array

e In C, a pointer 1s simply a memory address
— How much does p++ increment the address?
— We now use printf to investigate

PURDUE

UNIVERSITY

Stepping through an integer array

#include <stdio.h>
main() {

int 1, ndigit[10], *p, *end;

for (1=0;1<10; ++1)
ndigit[1] = 1;

end = &ndigit[10];

p = ndigit;

while (p !=end) {
printf("ndigit is at \t %I1X\n", (unsigned long) p);
printf("ndigit is at \t %ep\n", p);

/70D display is “implementation-dependent” */

PURDUE

1 SITY

Stepping through an array of char
#include <stdio.h>

main() {
Int 1;
char ndigit[10], *p, *end;
for (1=0;1<10; ++1)
ndigit[1] = 1;
end = &ndigit[10];
p = ndigit;
while (p !=end) {
printf("ndigit is at \t %I1X\n", (unsigned long) p);
pt+;

9

PURDUE

Pointer to Pointer

e char c; declares a variable of type character
e char* pc; declares avariable of type pointer to character

e char** ppc; declares avariable of type pointer to pointer to
character

e ¢ = ‘a’; initialize a character variable
® pc = &C; get the address of a variable

® ppc = &pc; getthe address of a variable

‘a’ C

oC == *pc == **ppc pcC
ppcC

URIDUE

Pointer to pointer

#include <stdio.h>
main() {

int 1, ndigit[10], **q, *p, *end;
for 1=0;1<10; ++1)
ndigit[i] = 1;
end = &ndigit[10];
p = ndigit;
q = &p;
while (*q !=end) {
printf("'ndigit is at \t %1X\n", (unsigned long) * p);

Pt

PURDUE

Aliases

 In the previous example, *g and p are stored at the 1dentical
address

* Modifying *q will therefore also modify the value of p

* Two memory references that access the same memory
location are called aliases
— We can also say the two memory reference expressions are aliases

— The simplest case 1s when two variable names are aliases

» For example function parameter p and q may be pointers to the same
location

* More examples of aliases

— 1nt ndigit[10], *p; *p and ndigit[0] are aliases, *(p++) and
ndigit[1] are aliases

PURDUE

UNIVERSITY

« Aliases make 1t difficult to keep track of variable values

« Aliases make 1t difficult for the compiler to generate
efficient machine code

 In the old days, it i1s more efficient to use pointers to step
through an array than using array indices
— This is not necessarily the case anymore
— It 1s better to use array indexing if possible

« Compilers are better at analyzing array indexing if there are no potential
aliases

PURDUE

UNIVERSITY

guiz #1 ‘will be ﬂradedl
]

5
 Warm up your clickers...

PURDUE

UNIVERSITY

guiz #1 -1 :-
-;

6 < Consider the scope of variable i. What will this program
print?

int main(){ int 1 =42;
if (1) 4
int1=0; }
printf (“%d”, 1);
j
* (a)42
* 00
e (c) architecture dependent

PURDUE

UNIVERSITY

Quiz #1 -2

If there are no syntax errors, the command gcc —c *.c will
produce

(a) One executable program, a.out

(b) One or more *.0 files
(c) Beautified *.c files

PURDUE

UNIVERS

Quiz#1 -3

In the C macro #include “abc.h”, abc.hi1s

(a) A C standard library function
(b) An ordinary header file

(c) A string to be inserted in the program source code

PURDUE

UNIVERS

