
CS 24000 - Programming In C

Zhiyuan Li
Department of Computer Science

Purdue University, USA

Week Two: Basic C Program Organization and Data Types

2
The Simplest C Program

int main() {

return 0;

}
– C programs must have a main() function
– main() is called first when the program is started by the

OS
– main() returns an integer
– without a return statement, undefined value is returned

Compiling C Programs
• The source code, i.e. the program listing, has a file extension

“.c”
• The source code is often split into multiple “.c” files to make

the program better organized logically
• We can use a C compiler, e.g. gcc, to

– translate all *.c files into machine code before combining them into a
single executable file (ready to be loaded for execution)

gcc *.c (generate executable a.out)
or gcc –o filename *.c (generate executable filename

• Or we can first store the machine code in multiple object
files (*.o) by doing “gcc –c *.c”

• Next, we can “link” the object files into the executable, by
• gcc *.o or gcc –o filename *.o

Separate Compilation

• One of the benefits of keeping *.o files is that
after we modify a single .c file, we need to recompile only that file
into a new .o file

gcc –c file1.c

• Next we re-link all *.o together
• A .c file is also known as a module by some people.
• A .c file may contain

– One or more functions (but exactly one .c file contains the main
function)

-- zero or more external declarations

• A .c file may also contain #include macros to import
“header files”, i.e. the .h files (“abc.h” or <stdio.h>)
– Standard header files are quoted by < >

Definitions and Declarations
• For a function or a global variable, C makes a tricky

distinction between its “definition” and their “declaration”
– If not understood well, this can cause a lot of troubles for organizing

the program files

• A function is defined by having both its header and its body
written
– The definition is private to the file in which it is written if the

definition is labeled by a static keyword, e.g. static int f(){}
– A private definition applies to the defining file only, and it does not

conflict with functions with the same name defined in other files
– Without the static keyword, the function definition applies to all files

that have no private definition of a function of the same name
• However, those files must declare the function, with the keyword

extern before they can make a reference to it.

Global Variables

• A global variable can be referenced by more than one
function.
– It is not defined inside any function
– Where it is defined, all information required for the compiler to

allocate memory for it must be present
– E.g. int A[1000];

• The definition of a global variable is private to its defining
file if it is labeled by the static keyword,

• e.g. static int A [8];
– A private definition applies to the defining file only, and it does not

conflict with global variables with the same name defined in other
files

– Without the static keyword, the definition applies to all files that
have no private definition of a global variable of the same name

• However, those files must declare the global variable, with the keyword
extern before they can make a reference to it.

– Within the defining file, the definition of a global variable cannot be
referenced by program statements prior to the definition, unless

• There is a declaration of the variable with the extern key word.
– The extern declaration of a global variable only needs to have the

type information that is necessary for compiler’s type checking
• E.g. extern int A[];

• In extern function declaration, both return type and the
argument types must be present

• We now try to compile a few programs as examples

Local Variables

• Variables defined within a function are local to that function
– A local variable is defined and declared at the same time.
– If a local definition is labeled by the static keyword, then its memory

location is unchanged throughout the program execution, and it
keeps its updated value from one invocation of the function to the
next

– If a local definition is not static, then it is “automatic”
• its memory location may change in different invocations of the defining

function
• its memory location is usually in the implicit calling stack of the

program
– Sometimes it is found in a register only, as a compiler’s

“optimization” result

Nested Blocks

• A function body may contain nested blocks
– A local variable definition applies to the innermost block that

contains it

• A block may contain zero or more local variable definitions,
followed by zero or more executable statements.

main(){
int a;
float b=1.0;
a=2; {

float a;
a = 1.0;
b = 2*a;
}

printf(“%f”, b/a);
}

Kind of Statements

• As in Java, C executable statements have different kinds:
– Assignment statements
– IF statements
– Loops

• while
• for
• do … while

– Compound statements (i.e. an inner block)
– Return statements

• Function calls
• ……

Expressions

• The distinction between an executable statement and an
expression is somewhat fuzzy, you can write

int f(){
int v;
v;
return;

}
and the program will still compile

We’ll explain various expressions as we encounter them in
examples

1
2

Quiz 0

• Warm up your clickers...

1
3

Quiz #0 - 1
• Have you read any sections of the textbook?

• (a) Yes

• (b) No

• (c) What textbook?

1
4

Quiz #0 - 2
• Have you tried any program examples in the textbook?

• (a) Yes

• (b) No

• (c) There are program examples?

A note: Which C is for us?

• In this semester, to be consistent with the textbook
– All exams assume ANSI C as explained in the textbook, i.e. C89

• This is equivalent to ISO’s C90
– All labs and projects assume c89/c90

Basic Data Types and Representation

• Why is it important to study how data (of various types) are
represented on computers?
– Data size may be different on different computers

• To transfer data between different computers (e.g. with mobile
computing), data may not be ready for use on the recipient without
conversion (i.e. extension, truncation, and reordering)

– Many computer applications must directly manipulate data at very
low level

• Images
• Sound (music, …)
• Data to be compressed/decompressed
• Data to be encrypted/decrypted
• Data to be camouflaged
• … …

Primitive Data Types

• Integer
• Float
• Pointer (i.e. address)

Internal (machine) representation of data

• Data is stored in some memory components in computer
hardware
– Registers (explicit/implicit)
– Caches
– Main memory
– Secondary storage

• The basic memory unit is a single bit that has two states:
on/off or 1/0
– A vector of n bits can represent 2௡states, or 2௡ different values

– If we assign the weight of 2௜ to the i’th element of the vector,
0≤i≤n-1, then the n-bit vector can represent all integers in the range
of [0, 2௡ – 1]

Signed and Unsigned Integers

• We often need signed integers in our program
– So, by default, an integer has a sign

• If we take the leading bit of the n-bit vector as the sign (1 for
negative and 0 for non-negative)
– this will half the magnitude of the absolute values of the

representable integers

• If we just deal with nonnegative integers, then we can
declare the integer variable to be unsigned, which doubles
the representable magnitude.

Bytes

• As mentioned previously, the Unix system views a file to be
a stream of bytes

• On most computers, the internal memory (i.e. the main
memory) is also addressable in bytes
– We access the next byte by incrementing, or decrementing, the

address by 1.

• A byte contains 8 bits

2
1

http://en.wikipedia.org/wiki/Hexadecimal

Byte

• A byte = 8 bits
– Decimal 0 to 255
– Hexadecimal 00 to FF
– Binary 00000000 to 11111111

• In C:
– Decimal constant: 12
– Octal constant: 014
– Hexadecimal constant: 0xC

2
2

Words

• Most internal computer operations, such as additions,
multiplications, comparisons, are performed on registers,
which are the fastest memory devices
– The number of bits (of an operand) to be operated upon by a single

arithmetic operation usually matches the number of bits in a register

• For convenience, we can think of the number of bits in a
register as the `word size`

• The size of a memory address is typically the same as the
word size
– The word size therefore also defines the maximum amount of

memory that can be manipulated by a program

Today’s general-purpose computers have either:
– 32-bit words => can address 4GB of data
– 64-bit words => 4G X 4GB

• If a number’s magnitude is a multiple of the word size, then
multiple hardware operations are needed to perform a single
operation on the number

• If a number’s magnitude is a fraction of the word size, then
it is first stretched, or extended, to the word size before
operated upon.
– After the operation, the number of bits are reduced to restore the size

of the number presentation, with the value remaining correct.

2
4

Addresses

• Addresses specify byte location
in computer memory

– address of first byte in word
– address of following words differ

by 4 (32-bit) and 8 (64-bit)

©

Endians

• For an integer of the size of a single byte, conceptually we
can think it to take the format:

d7d6d5d4d3d2d1d0

with d0 being the least significant bit

• For an integer that takes the word size, e.g. four bytes, the
issue becomes more complicated
– To store the number on a register, it is simple:

d31…d25d24 d23,,, d17d16 d15…d9d8 d7…d1d0

– However, to it on the main memory, the question of byte ordering
arises

Big Endian

Least
Significant
byte

Most
Significant
byte

Little Endian

64-bit word

Big Endian

Least
Significant
byte

Most
Significant
byte

Little Endian

32-bit word

2
8

Data Types

• The base data type in C
– int - used for integer numbers
– float - used for floating point numbers
– double - used for large floating point numbers
– char - used for characters
– void - used for functions without parameters or return value
– enum - used for enumerations

• The composite types are
– pointers to other types
– functions with arguments types and a return type
– arrays of other types
– structs with fields of other types
– unions of several types

2
9

Qualifiers, Modifiers & Storage

• Type qualifiers
– short - decrease storage size
– long - increase storage size
– signed - request signed representation
– unsigned - request unsigned representation

• Type modifiers
– volatile - value may change without being written to by the

program
– const - value not expected to change

3
0

Sizes

Type Range (32-bits) Size in
bytes

signed char −128 to +127 1

unsigned char 0 to +255 1

signed short int −32768 to +32767 2

unsigned short int 0 to +65535 2

signed int −2147483648 to +2147483647 4

unsigned int 0 to +4294967295 4

signed long int −2147483648 to +2147483647 4 or 8

unsigned long int 0 to +4294967295 4 or 8

signed long long int −9223372036854775808 to +9223372036854775807 8

unsigned long long int 0 to +18446744073709551615 8

float 1×10−37 to 1×1037 4

double 1×10−308 to 1×10308 8

long double 1×10−308 to 1×10308 8, 12, or 16

3
1

Character representation

• ASCII code (American Standard Code for Information
Interchange): defines 128 character codes (from 0 to 127),

• In addition to the 128 standard ASCII codes there are other
128 that are known as extended ASCII, and that are
platform- dependent.

• Examples:
– The code for ‘A’ is 65
– The code for ‘a’ is 97
– The code for ‘b’ is 98
– The code for ‘0’ is 48
– The code for ‘1’ is 49

3
2

Understanding types matter…

• Some data types are not interpreted the same on different platforms, they
are machine-dependent

– sizeof(x) returns the size in bytes of the object x (either a variable or a
type) on the current architecture

3
3

Declarations

• The declaration of a variable allocates storage for that variable and can initialize it

int lower = 3, upper = 5;
char c = ‘\\’, line[10], he[3] = “he”;
float eps = 1.0e-5;
char arrdarr[10][10];
unsigned int x = 42U;
char* ardar[10];
char* a;
void* v;
void foo(const char[]);

• Without an explicit initializer local variables may contain random values (static & extern
are zero initialized)

• We can call printf or use a debugger to see the exact bit patterns of a piece of data

3
4

Conversions

• What is the meaning of an operation with operands of
different types?

• char c; int i; … i + c …
• The compiler will attempt to convert data types without

losing information; if not possible emit a warning and
convert anyway

• Conversions happen for operands, function arguments,
return values and right-hand side of assignments.

• Reading assignments
– K&R Chapters 1 to 4

