
CS 24000 - Programming In C

Zhiyuan Li
Department of Computer Science

Purdue University, USA

Week 16: Review
(cont’d)

• We have covered issues related to the address
space and the relationship between memory
addresses and pointers (including function
pointers)

• The next issue in C language that is not
present in Java-like languages is the direct
manipulation of data bits

Scope of the Final Exam

The Concept of Data Representation

• The address space is addressable in bytes
• C, unlike many other languages, allows the program to

directly manipulate the individual bytes of a piece of data
(e.g. integer, float)

• This makes C well suited for implementing low-level system
operations
– Data conversion between different systems (different endianess)
– Control status (interrupt registers)
– Extracting specific bits, e.g. part of a data packet in the network

• This also make C suitable for applications that must
manipulate data at bit level, e.g. data compression,
encryption

Number representation

• In order to extract bit-level information, we
need to know how a number (int, float) is
represented by bits

• Decimal to binary (or its compact
representation by hexadecimal)

• Binary to decimal
• Unsigned int
• Signed int under 2’s complement

representation

The Endianess
• It has two aspects

– Byte organization of a number in the address space (how
do we extract a certain byte)

– How we “linearize” the data, i.e. when we print a number,
which byte comes first

• In computer organization and networking courses, we
will see endianess is an issue at the bit level also
– When transmit a byte through the network, which bit goes

first?
– But in the address space or at the modern processor

hardware level, bit-level endianess has no practical
meaning

• Because bits are accessed in parallel, unlike in some networks

• We often need to either truncate or to expand
a piece of data (e.g. from byte to int and vice
versa)

• Understanding data representation will enable
us to do such conversion correctly

• Sign extension of signed numbers
– Char to int, int to long long, e.g.

• Floating point number representation
– 32-bit to 64-bit

Review of Quiz 12 #2
• What does the following program print? (assume 32

bit machine)
• #include <stdio.h>
• int main() {
• int x;
• char a = 0xaa, b = 0x11;
• a = b+a;
• x = a;
• printf ("%x", x);
• }

• The answer is ffffffbb , why? We go through the
intermediate steps.

Declarations and Definitions

• This is related to the issue of memory
allocation

• Definition binds a variable to a memory
location and defines how it will be accessed

• Static, local, heap-allocated
• Function declarations versus definitions
• Global variables, external variables

Data representation versus
interpretation

• There is a conceptual difference between how a piece of data is
represented internally on computer hardware versus the data is
interpreted

• Data interpretation is application dependent
• Do we view a word of four bytes as

– Four ASCII characters?
– Four char-sized integers?
– A pointer
– An integer

• Signed?
• Unsigned

– A float number?
• The printing function (e.g. printf) simply displays it the way we want

the data to be interpreted

Floating point number representation

• The IEEE standard
• Sign, exponent, mantissa
• Normalized form of the mantissa
• Bias of the exponent
• We don’t require to remember the special

(non-normalized) forms

Parameter passing and function return
value

• C function calls pass parameters by value
– In order for a called function to modify variables that are in

the scope of the calling function, the addresses of those
variables must be passed as parameters

– Passing a big structure by value is expensive, because the
entire structure will be copied to the callee’s stack frame

– Returning a big structure is also expensive, for the same
reason

– Passing the base address of the structure is more efficient
– In Java, the reference to the structure (object) is passed as

the parameter

Strings
• In C, strings are perhaps one of most error prone

data structure
• The type of a string is an array of chars.
• Since the length of the string is often

undetermined at compile time, the proper
composition of a string must be null-terminated

• A quoted string is always automatically null
terminated

• But if we explicitly pack a string to an array, we
must remember to terminate it.

Syntax Rules
• We assume students are familiar with the basic

syntax rules
• We will not pose questions involving obscure

syntax rules, e.g. obscure expressions and
obscure library function interfaces

• We assume students are familiar with the basic
precedence ordering among operations and
associativities
– E.g. left associative arithmetic operations
– E.g. postfix expressions having higher precedence

than prefix expressions

Basic I/O functions

• We assume students are familiar with the
basic concepts associated with file I/O

• Read, write, fread, fwrite, getchar, putchar,
printf, scanf

• And their impact on seek positions
• Open, fopen, close, fclose, seek, fseek

Processes and IPC

• The impact of fork() calls on the semantics of the
calling program
– Impact on file I/O
– Impact on variable values
– etc

• Pipe calls and the proper use of pipes
• Shared memory and proper operations to allocate,

attach, and remove shared memory blocks
• Semaphores and proper use of semaphore operations

(sem_init, sem_wait, sem_post) and destroy
operations

Summary

• The scope of final exam will basically be
midterm 1 + midterm 2 + scope of the four
projects

