CS 24000 - Programming In C

Week 16: Review
(cont’d)

Zhiyuan Li
Department of Computer Science
Purdue University, USA



Scope of the Final Exam

e We have covered issues related to the address
space and the relationship between memory
addresses and pointers (including function
pointers)

e The nextissue in C language that is not
present in Java-like languages is the direct
manipulation of data bits



The Concept of Data Representation

The address space is addressable in bytes

C, unlike many other languages, allows the program to
directly manipulate the individual bytes of a piece of data
(e.g. integer, float)
This makes C well suited for implementing low-level system
operations

— Data conversion between different systems (different endianess)

— Control status (interrupt registers)

— Extracting specific bits, e.g. part of a data packet in the network
This also make C suitable for applications that must

manipulate data at bit level, e.g. data compression,
encryption



Number representation

In order to extract bit-level information, we
need to know how a number (int, float) is
represented by bits

Decimal to binary (or its compact
representation by hexadecimal )

Binary to decimal
Unsigned int

Signed int under 2’s complement
representation



The Endianess

e |t has two aspects

— Byte organization of a number in the address space (how
do we extract a certain byte)

— How we “linearize” the data, i.e. when we print a number,
which byte comes first

e |n computer organization and networking courses, we
will see endianess is an issue at the bit level also
— When transmit a byte through the network, which bit goes
first?

— But in the address space or at the modern processor
hardware level, bit-level endianess has no practical
meaning

* Because bits are accessed in parallel, unlike in some networks



We often need to either truncate or to expand

a piece of data (e.g. from byte to int and vice
versa)

Understanding data representation will enable
us to do such conversion correctly

Sign extension of sighed numbers
— Char to int, int to long long, e.g.

Floating point number representation
— 32-bit to 64-bit



Review of Quiz 12 #2

 What does the following program print? (assume 32

bit machine)

e #include <stdio.h>
e int main() {
° intx;
e chara=0xaa, b=0x11;
e a=Db+a;
* X= a;
e printf ("%x", x);
°}
 The answer is ffffffbb , why? We go through the
intermediate steps.



Declarations and Definitions

This is related to the issue of memory
allocation

Definition binds a variable to a memory
location and defines how it will be accessed

Static, local, heap-allocated
Function declarations versus definitions
Global variables, external variables



Data representation versus
Interpretation

There is a conceptual difference between how a piece of data is
represented internally on computer hardware versus the data is
interpreted

Data interpretation is application dependent

Do we view a word of four bytes as
— Four ASCII characters?
— Four char-sized integers?
— A pointer
— Aninteger
e Signed?
e Unsigned
— A float number?
The printing function (e.g. printf) simply displays it the way we want
the data to be interpreted



Floating point number representation

The IEEE standard

Sign, exponent, mantissa
Normalized form of the mantissa
Bias of the exponent

We don’t require to remember the special
(non-normalized) forms



Parameter passing and function return
value

e Cfunction calls pass parameters by value

— In order for a called function to modify variables that are in
the scope of the calling function, the addresses of those
variables must be passed as parameters

— Passing a big structure by value is expensive, because the
entire structure will be copied to the callee’s stack frame

— Returning a big structure is also expensive, for the same
reason

— Passing the base address of the structure is more efficient

— In Java, the reference to the structure (object) is passed as
the parameter



Strings

In C, strings are perhaps one of most error prone
data structure

The type of a string is an array of chars.

Since the length of the string is often
undetermined at compile time, the proper
composition of a string must be null-terminated

A quoted string is always automatically null
terminated

But if we explicitly pack a string to an array, we
must remember to terminate it.



Syntax Rules

e \We assume students are familiar with the basic
syntax rules

 We will not pose questions involving obscure
syntax rules, e.g. obscure expressions and
obscure library function interfaces

e We assume students are familiar with the basic
precedence ordering among operations and
associativities
— E.g. left associative arithmetic operations

— E.g. postfix expressions having higher precedence
than prefix expressions



Basic I/O functions

We assume students are familiar with the
basic concepts associated with file I/O

Read, write, fread, fwrite, getchar, putchar,
printf, scanf

And their impact on seek positions
Open, fopen, close, fclose, seek, fseek



Processes and IPC

The impact of fork() calls on the semantics of the
calling program

— Impact on file I/0
— Impact on variable values
— etc

Pipe calls and the proper use of pipes

Shared memory and proper operations to allocate,
attach, and remove shared memory blocks

Semaphores and proper use of semaphore operations
(sem_init, sem_wait, sem_post) and destroy
operations



Summary

 The scope of final exam will basically be
midterm 1 + midterm 2 + scope of the four
projects



