
CS 24000 - Programming In C

Zhiyuan Li
Department of Computer Science

Purdue University, USA

Week 16: Review

This has been quite a journey

• Congratulation to all students who have
worked hard in honest ways!

• After this course, continue to read and write
many programs
– Participate in projects with professors
– Participate in projects that benefit community
– Participate in innovations and commercializations

What have we learned in this course?
• We not only studied the syntax and C

programming language, but more importantly,
• We studied the semantics of the C language,

through which
• We learned several fundamental concepts in

the program execution model for imperative
programming languages

The Concept of Address Space

• Processes are execution instances of programs
• Each process has its own (virtual) address

space
• The range of the address space is determined

by the length of memory address supported
by the machine model
– E.g. 32 bit vs. 64 bit

Physical Memory
• Not every virtual address is mapped to a physical

memory location
• The operating system allocates physical memory

to each process
– From part of the secondary storage (called swap

device)
• It is prohibitively expensive, and therefore

impractical to map the entire virtual address
space to physical memory
– We learned how to use some commands to examine

the memory allocated to the process

• Both virtual address space and physical
address space are partitioned into sections by
functionality
– Some are read only
– Some are executable
– Trying to access sections that violate the

protection status will cause run time exceptions
• Each section is partitioned into pages to allow

efficient memory management

• Efficient memory operations are made
possible by the memory hierarchy
– Faster memory devices are used as “caches” for

the slower memory devices
– E.g. The DRAM main memory is used as a “cache”

for the swap device
– There are faster memories, e.g. SRAM, that are

used as “caches” for the main memory

• Processes have separate address spaces
• The contents in the parent’s address space are

physically shared by the child until a page is
written by either process (copy-on-write)
– This has a significant impact on evaluating the cost of

forking a process
• If we want different processes to write to the

same physical page, or some write to and some
read from the same physical page
– We need to allocate shared memory (in the unit of

pages)

• The same shared physical memory page may
be attached to different virtual addresses in
different processes.

• The addresses can be assigned by the
operating system

• Concurrent writes (or mixed writes and reads)
by different processes require synchronization

• We have learned the concept of semaphores
for synchronization

• The physical implementation of semaphores
require placing them in the shared memory

• Hence, each semaphore (as a structure) has its
address

The Concept of Pointers and Addresses

• In C and C++, the concept of pointers and
addresses are tightly related.

• Pointer arithmetic allows C programs to step
through the address space in a highly flexible way

• This makes C language a convenient one for low
level system implementation

• However, for large software engineering projects
that do not involve so much machine level
details, pointer arithmetic is full of potential
danger of misuse and prone to errors

• We have learned the relationship between
different ways to address memory locations
– Pointer increment/decrement

• In strides that depend on the type of the data (primitive
or structured) that are pointed to

– Base of arrays
• Dimensions of arrays

– Indexing arrays
– The & operation to take the address of anything

that has an “l-value”

L-value
• An expression is said to have an l-value if it is

allocated a memory address
– We have learned a large variety of expressions that

have l-values, e.g.
• Array elements
• Fields of struct
• Simple scalars (of various arithmetic types or pointers)

– Pointer variables can have their own addresses to
• Let p be a scalar variable, &p is its address
• &p itself will not have an l-value, because we do not know

(or have) a unique memory address that stores &p
• Hence & (&p) will generate a compiler error

• Let p be a pointer variable
• Does the expression p++ have l-value?

– No. p++ has a r-value that is the current value of
p.

– It also has a side effect that is to increment p by a
stride dependent on the type of the data structure
p points to

– But p++ has no l-value, just like p+1 has no l-value

The pointer dereference operation

• The * operation (as pointer dereference) can
be applied to any pointer expression

• The result of pointer arithmetic (p + offset) is a
pointer expression

• Many pointer expressions do not have l-values
• But * (e), for valid e, always has an l-value

– Because it refers to a memory location!
• Therefore & (* (e)) is perfectly legal.

– E.g. q = & (* (p + 1))

Segmentation fault
• Just because we have a pointer that is declared to point

to a certain type of data does not mean the memory
has been allocated to the (potential) data that it can
point to

• Forgetting this, we will likely have segmentation fault
• A simple example

int *a;
*a = 0;

• Segmentation fault
• Also, int * a =0; initialize a to null instead of initializing

*a to 0.

Organization of the virtual address
space

• We have learned the common partitioning of the
virtual address space
– Text (i.e. the code region)
– Static (to store constants, including strings, and static

variables)
– Stack (to store function locals, including formal

parameters and compiler-generated locals, and to
save registers)

– The stack frames can be viewed as a linked list
• When debugging, we can follow such a linked list to examine

the value changes through a call chain
– Heap (malloc(), free())

Address of a function
• The instructions generated for a function are stored in the text

region of the address space
– They have addresses
– When a function is called, the control flow transits to the beginning

address of the called function
• Which function to call by function invocation can be decided as late

as run time
– This is done by passing the address of one function A (i.e. the function

pointer) to another function B
• Unlike in OO languages, C does not have a way to check data types

at run time,
– which restricts the formal parameters in the use of function pointers
– The types and number of the parameters must be uniform among all

functions that might be A passed to B

• Program statements involving function pointers
are often difficult to understand
– The execution flow must be analyzed carefully

1. int cmp(int val, int* limit) { return val >
*limit; }
2.
3. int bar(int (*f) (int, int*), int* base, int c) {
4. if (f(c, base)) {
5. return bar(f, base, c-1) +
6. bar(f, base, c-2);
6. }
7. return 1;
8. }

9.
10. int main(){
11. int std = 2;
12. int x = bar(cmp, &std, 5);
13. printf("%d", x);
14. return 0;
15. }

• In computer organization and compiler courses, we will
learn that referencing consecutive addresses is much
more efficient than referencing addresses in long
strides

• Because referencing consecutive addresses exploits
spatial data locality
– Processor hardware fetch data from slower memory to

faster memory in a unit that contains a multiple of
consecutive “words”

• From memory to register in the unit of a single word
• From main memory to caches in the unit of multiple words

– The memory is “byte-addressable”, but memory allocation
is word-aligned

Data padding

• That is why, by default, structures are padded
so that they are word aligned.

• Aggressive, but not yet commonly adopted,
compiler techniques would reorganize the
data structure to better exploit spatial locality
– A sequence of memory operations may be applied

to the same field of different structures
– Hence, we are visiting nonconsecutive memory

addresses, spoiling spatial locality

• In the next (and final) lecture, we continue to
review important concepts and their
relationships

• To address some students’ concern that
multiple choice questions may be prone to
typos, the final exam will take the format of
“short answers”

• See next example.

Example of a “final exam” question

• What is the 2’s complement representation of
decimal number -14?

So, in the final exam, we will not use the format
shown next:

Quiz 12 #1
• What is 2’s complement representation (with

16 bits) for decimal number
• (a) 1000 0000 0000 1110
• (b) 0000 0000 0000 1110
• (c) 0000 0000 0001 0100
• (d) 1111 1111 1111 0010

• Answer (d)

Quiz 12 #2
• What does the following program print? (assume 32

bit machine)
• #include <stdio.h>
• int main() {
• int x;
• char a = 0xaa, b = 0x11;
• a = b+a;
• x = a;
• printf ("%x", x);
• }

• (a) 00000067 (b) 000000bb (c) ffffffbb (d)
100000bb

• Answer (c)

Quiz 12 #3
• What is the result of the following operation?

1 & 3 || 2
(a) It will have compiler error, because &3 is illegal

operation
(b) 1
(c) 11, because 1 & 3 is “01 & 11” which equals 01

in binary, and “01 || 10” is 11 in binary, decimal
2 is binary 10

(d) The value is undefined

• Answer (b) Boolean expression will evaluate
to 0 or 1. The || result is 1 (true) if either
operand is nonzero

