CS 24000 - Programming In C

Week 16: Review

Zhiyuan Li
Department of Computer Science
Purdue University, USA

This has been quite a journey

e Congratulation to all students who have
worked hard in honest ways!

e After this course, continue to read and write
many programs
— Participate in projects with professors
— Participate in projects that benefit community
— Participate in innovations and commercializations

What have we learned in this course?

 We not only studied the syntax and C
programming language, but more importantly,

 We studied the semantics of the C language,
through which

 We learned several fundamental concepts in
the program execution model for imperative
programming languages

The Concept of Address Space

e Processes are execution instances of programs

e Each process has its own (virtual) address
space
 The range of the address space is determined

by the length of memory address supported
by the machine model

— E.g. 32 bit vs. 64 bit

Physical Memory

 Not every virtual address is mapped to a physical
memory location
e The operating system allocates physical memory

to each process
— From part of the secondary storage (called swap
device)
e |tis prohibitively expensive, and therefore
impractical to map the entire virtual address
space to physical memory

— We learned how to use some commands to examine
the memory allocated to the process

e Both virtual address space and physical
address space are partitioned into sections by

functionality
— Some are read only
— Some are executable

— Trying to access sections that violate the
protection status will cause run time exceptions

e Each section is partitioned into pages to allow
efficient memory management

e Efficient memory operations are made
possible by the memory hierarchy

— Faster memory devices are used as “caches” for
the slower memory devices

— E.g. The DRAM main memory is used as a “cache”
for the swap device

— There are faster memories, e.g. SRAM, that are
used as “caches” for the main memory

 Processes have separate address spaces

 The contents in the parent’s address space are
physically shared by the child until a page is
written by either process (copy-on-write)

— This has a significant impact on evaluating the cost of
forking a process
e |f we want different processes to write to the
same physical page, or some write to and some
read from the same physical page

— We need to allocate shared memory (in the unit of
pages)

e The same shared physical memory page may
be attached to different virtual addresses in
different processes.

 The addresses can be assigned by the
operating system

Concurrent writes (or mixed writes and reads)
by different processes require synchronization

We have learned the concept of semaphores
for synchronization

The physical implementation of semaphores
require placing them in the shared memory

Hence, each semaphore (as a structure) has its
address

Th

e Concept of Pointers and Addresses

 |[n Cand C++, the concept of pointers and

d
¢ P

ddresses are tightly related.
ointer arithmetic allows C programs to step

through the address space in a highly flexible way

 This makes C language a convenient one for low
level system implementation

. |
t
C

owever, for large software engineering projects
nat do not involve so much machine level
etails, pointer arithmetic is full of potential

C

anger of misuse and prone to errors

 We have learned the relationship between
different ways to address memory locations

— Pointer increment/decrement

 |n strides that depend on the type of the data (primitive
or structured) that are pointed to

— Base of arrays
 Dimensions of arrays

— Indexing arrays

— The & operation to take the address of anything
that has an “l-value”

L-value

An expression is said to have an |-value if it is
allocated a memory address

— We have learned a large variety of expressions that
have l-values, e.g.
e Array elements
Fields of struct

Simple scalars (of various arithmetic types or pointers)
— Pointer variables can have their own addresses to

Let p be a scalar variable, &p is its address

&p itself will not have an |-value, because we do not know
(or have) a unique memory address that stores &p

e Hence & (&p) will generate a compiler error

e Let p be a pointer variable

 Does the expression p++ have |-value?
— No. p++ has a r-value that is the current value of
p.
— |t also has a side effect that is to increment p by a

stride dependent on the type of the data structure
p points to

— But p++ has no |-value, just like p+1 has no I-value

The pointer dereference operation

The * operation (as pointer dereference) can
be applied to any pointer expression

The result of pointer arithmetic (p + offset) is a
pointer expression

Many pointer expressions do not have |-values

But * (e), for valid e, always has an |-value
— Because it refers to a memory location!

Therefore & (* (e)) is perfectly legal.
—Eg =& (*(p+1))

Segmentation fault

Just because we have a pointer that is declared to point
to a certain type of data does not mean the memory

has been allocated to the (potential) data that it can
point to

Forgetting this, we will likely have segmentation fault
A simple example

- Segmentation fault

Also, initialize 2 to null instead of initializing
to 0.

Organization of the virtual address
space

e We have learned the common partitioning of the
virtual address space

— Text (i.e. the code region)

— Static (to store constants, including strings, and static
variables)

— Stack (to store function locals, including formal
parameters and compiler-generated locals, and to
save registers)

— The stack frames can be viewed as a linked list

 When debugging, we can follow such a linked list to examine
the value changes through a call chain

— Heap (malloc(), free())

Address of a function

The instructions generated for a function are stored in the text
region of the address space

— They have addresses

— When a function is called, the control flow transits to the beginning
address of the called function

Which function to call by function invocation can be decided as late
as run time

— This is done by passing the address of one function A (i.e. the function
pointer) to another function B

Unlike in OO languages, C does not have a way to check data types
at run time,

— which restricts the formal parameters in the use of function pointers

— The types and number of the parameters must be uniform among all
functions that might be A passed to B

 Program statements involving function pointers
are often difficult to understand

— The execution flow must be analyzed carefully

=
©

10.
11.
12.
13.
14.
15. }

O NOOU A WN

e |n computer organization and compiler courses, we will
learn that referencing consecutive addresses is much
more efficient than referencing addresses in long
strides

e Because referencing consecutive addresses exploits
spatial data locality
— Processor hardware fetch data from slower memory to
faster memory in a unit that contains a multiple of
consecutive “words”
 From memory to register in the unit of a single word
 From main memory to caches in the unit of multiple words
— The memory is “byte-addressable”, but memory allocation
is word-aligned

Data padding

 That is why, by default, structures are padded
so that they are word aligned.

e Aggressive, but not yet commonly adopted,
compiler techniques would reorganize the
data structure to better exploit spatial locality

— A sequence of memory operations may be applied
to the same field of different structures

— Hence, we are visiting nonconsecutive memory
addresses, spoiling spatial locality

e In the next (and final) lecture, we continue to
review important concepts and their
relationships

 To address some students’ concern that
multiple choice questions may be prone to
typos, the final exam will take the format of

“short answers”

e See next example.

Example of a “final exam” question

e What is the 2’s complement representation of
decimal number -147

So, in the final exam, we will not use the format
shown next:

Quiz 12 #1
e What is 2’s complement representation (with
16 bits) for decimal number —147?
e (a) 1000 0000 0000 1110
e (b) 0000 0000 0000 1110
e (c) 0000 0000 0001 0100
e (d) 111111111111 0010

e Answer (d)

Quiz 12 #2

 What does the following program print? (assume 32

bit machine)

e f#include <stdio.h>
e int main() {
° intx;
e chara=0xaa, b=0x11;
* a=Db+a;
. pr_intlé("%x", X);
°}
« (a) 00000067 (b) 000000bb (c) ffffffbb (d)
100000bb

 Answer (c)

Quiz 12 #3

e What is the result of the following operation?
1&3|]2

(a) It will have compiler error, because &3 is illegal
operation

(b) 1

(c) 11, because 1 & 3is “01 & 11” which equals 01
in binary, and “01 || 10” is 11 in binary, decimal
2 is binary 10

(d) The value is undefined

e Answer (b) Boolean expression will evaluate
toOor 1. The || resultis 1 (true) if either
operand is honzero

