CS 24000 - Programming In C

Week 15: Semaphores;

Zhiyuan Li
Department of Computer Science
Purdue University, USA

Shared memory synchronization

 There are two essential needs for synchronization

between multiple processes executing on shared
memory

— Establishing an order between two events

 E.g.in the server and client case, we want to make sure the
server finishes writing before the client reads

— Mutually exclusive access to a certain resource
e Such as a data structure, a file, etc

e E.g. Two people deposit to the same account “deposit +=
100”. We want to make sure that the increment happens
one at a time. Why? (Let us look draw a time line showing
possible interleaving of events)

e A semaphore can be used for both purposes

 An ordinary while loop (busy wait loop) is not
safe for ensuring mutual exclusion

— Two processes may both think they have successfully
set the lock and, so, have the exclusive access

e Again, we can draw a time line showing possible interleaving
of events that may lead to failed mutual exclusion

— A semaphore is guaranteed to be able to have the
correct view of the locking status

The concept of semaphores

 Semaphores may be binary (0/1), or counting

* Every semaphore variable, s, It is initialized to
some positive value

e 1 for a binary semaphore
* N > 1 for a counting semaphore

Binary semaphores

A binary semaphore, s, is used for mutual exclusion and
wake up sync

1 == unlocked
== locked
s, is is associated with two operations:
P(s)

— Tests s; if positive, resets s to 0 and proceed; otherwise, put the
executing process to the back of a waiting queue for s

V(s)
— Set s to 1 and wake up a process in the waiting queue for s

The awaken process needs to try P(s) again ???? Check
System V book

Counting semaphores

A counting semaphore, s, is used for producer/consumer sync
n == the count of available resources
0 == no resource (locking consumers out)

s, is is associated with two operations:
P(s)
— Tests s, if positive, decrements s and proceed

— otherwise, put the executing process to the back of a waiting
gueue for s

V(s)

— Increments s; wakes up a process, if any, in the waiting queue
fors

The awaken process needs to try P(s) again ??? Check
system v book

Critical Sections

 We like to think of locking a concurrent data
structure

* |n current practice, however, locks (incl. binary
semaphores) are typically used to lock a segment
of program statements (or instructions)

e Such a program segment is called a critical
section

— A critical section is a program segment that may
modify shared data structures

— It should be executed by one process at any given time

e With a binary semaphore

— If multiple processes are locked out of a critical
section

e As soon as the critical section is unlocked, only one
process is allowed in

e The other processes remain locked out

 Implementation of semaphores is fair to
processes

e A first-come-first-serve queue

Unix Semaphores

e There are actually at least two implementations

e UNIX System V has an old implementation
— Analogous to shared memory system calls
— Calls to semget(), semat(), semctl(), etc
— Not as easy to use as Posix implementation

 We will use Posix implementation in this
course

Posix semaphore system calls

e #finclude <semaphore.h>

e POSIX semaphores come in two forms: named
semaphores and unnamed semaphores.

* For project 4, unnamed semaphores are used,
because the processes are all related.

Using unnamed semaphores

* Unnamed semaphores are also called memory-
based semaphores

— Named semaphores are “file-based”

 An unnamed semaphore does not have a name.

— It is placed in a region of memory that is shared
between multiple threads (a thread-shared
semaphore) or processes (a process-shared
semaphore).

e A process-shared semaphore must be placed in a
shared memory region

System calls

e Before being used, an unnamed semaphore
must be initialized using sem _init(3). It can
then be operated on using sem_post(3) and
sem wait(3).

* When the semaphore is no longer required,
and before the memory in which it is located
is deallocated, the semaphore should be
destroyed using sem destroy(3).

e Compile using -Irt

Recall that shared memory segments
must be removed before program exits

e “An unnamed semaphore should be
destroyed with sem_destroy() before the
memory in which it is located is
deallocated.”

e “Failure to do this can result in resource leaks
on some implementations.”

int sem_init(sem_t *sem, int pshared, unsigned int
value);

e Hinclude <semaphore.h>

e sem_init() initializes the unnamed semaphore at
the address pointed to by sem. The value
argument specifies the initial value for the
semaphore.

e |f pshared has the value O, then the semaphore is
shared between the threads of a process

e |f pshared is nonzero, then the semaphore is
shared between processes, and should be located
in a region of shared memory

int sem_wait(sem_t *sem);

e sem_wait() decrements (locks) the semaphore
pointed to by sem.

e |fthe semaphore’'s value is greater than zero,
then the decrement proceeds, and the function
returns, immediately.

e |f the semaphore currently has the value zero,
then the call blocks until either it becomes
possible to perform the decrement (i.e., the
semaphore value rises above zero), or a signal
handler interrupts the call.

int sem_post(sem t *sem);

e sem_post() increments (unlocks) the
semaphore pointed to by sem.

e If the semaphore's value consequently
becomes greater than zero, then another

process or thread blocked in a sem wait(3)
call will be woken up

int sem_destroy(sem_t *sem);

 Destroys the unnamed semaphore at the address
pointed to by sem. Only a semaphore that has
been initialized by sem init(3) should be
destroyed using sem_destroy().

e Destroying a semaphore that other processes or
threads are currently blocked on (in sem_wait(3))
produces undefined behavior.

e Using a semaphore that has been destroyed
produces undefined results, until the semaphore
has been reinitialized using sem init(3).

Examples

e We first look at a bad example in which the
unnamed semaphore is not placed in the
shared memory (testl.c)

// compile with -Irt
#include <semaphore.h>
#include <stdio.h>
#include <errno.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/shm.h>
#finclude <sys/wait.h>
#define SHMSIZE 1024
int main(int argc, char **argv)

{

int shmidl;
int *shm1, *s;
if ((shmidl = shmget(IPC_PRIVATE,
SHMSIZE, 0666)) < 0) {
perror("shmget");
exit(1);
}
if ((shm1 = shmat(shmidl, NULL, 0)) == (int
*)-1){
perror("shmat");
exit(1);
}
*shm1l = 0;
ptr = shmi;

int i, nloop=10, *ptr: * |n this example, the semaphore is not
sem_t mutex; placed in the shared memory.
e Therefore, itis ineffective for mutual
exclusion synchronization

/* create, initialize semaphore */
if(sem_init(&mutex,1,1) < 0)
{
perror("semaphore
initilization");
exit(0);
}
if (fork() == 0) { /* child process*/
sem_wait(&mutex);
for (i=0; i < nloop; i++) {
printf("child: %d\n", (*ptr)++);
sleep(5); //to dramatize
}
sem_post(&mutex);
exit(0);
}

/* back to parent process */
sem_wait(&mutex);
for (i=0; i < nloop; i++) {
printf("parent: %d\n",
(*ptr)++);
sleep(5); // to dramatize
}

sem_post(&mutex);wait(int *)
0);
shmctl(shmidl, IPC_RMID,
(struct shmid_ds *) 0);
exit(0);

}
The mutex is supposed
to ensure that each
process prints its entire
data w/o mixing with
the other process’ data
But it fails to do so

Next, we look at an even worse example:
— We want to let parent process prints its entire data first

— So we let child process wait for the process to give it a go-
ahead

— Initialize the mutex variable to 0 and wait for the parent
process to change it to 1.

But we didn’t put the mutex variable in the shared
memory

The child process never wakes up!

We need to manually kill the child process and free the
shared memory

#tinclude // stuck.c
int main(int argc, char **argv)

{ /* back to parent process
int i,nloop=10,*ptr; */
sem_t mutex; for (i=0; i < nloop; i++)

------ printf("parent: %d\n",
if(sem_init(&mutex,1,1) < 0) (*ptr)++);

if(sem_init(&mutex,1,0) < 0) sgm_post(&mutex),
(o exit(0);
} }

if (fork() == 0) { /* child process*/
sem_wait(&mutex);
for (i =0; i < nloop; i++)
printf("child: %d\n", (*ptr)++);
exit(0)
}

* Finally, we will correct the errors by placing
the semaphore in the shared memory

e We also need to remember to destroy the
unnamed semaphore before removing the
shared memory segment.

e Be careful with the timing for destroying the
semaphore
— Make sure there should not be waiting processes

// nonstuck.c
sem_t *p_mutex;
if ((shmid2 = shmget(IPC_PRIVATE, SHMSIZE, 0666)) < 0) {
perror("shmget");
exit(1);
}
p_mutex = (sem_t *) shmat(shmid2, NULL, 0);
if (p_mutex == (sem_t *) -1) {
perror("mutex shmat fails ");

exit(1);
}
if(sem_init(p_mutex,1,0) < 0)
{
perror("semaphore initilization");
exit(1);
}

if (fork() == 0) { /* child process*/
sem_wait(p_mutex); // cont’d on next page

// nonstuck.c cont’d
if (fork() == 0) { /* child process*/
sem_wait(p_mutex);
for (i=0; i < nloop; i++)
printf("child: %d\n", (*ptr)++);
sem_destroy(p_mutex);
shmctl(shmid2, IPC_RMID, (struct shmid_ds *) 0);
shmctl(shmidl, IPC_RMID, (struct shmid_ds *) 0);
exit(0);
}
/* back to parent process */
for (i=0; i < nloop; i++)
printf("parent: %d\n", (*ptr)++);
sem_post(p_mutex);
exit(0);

 \We can make a similar change to testl.c

 We will see that now each process will print its
entire data without interleaving with other
processes

 Which process writes first will be unknown in
advance

Quiz 11 #1

 Which of the following statements is the most
accurate?

e (a) To share memory by both the parent
process and the child process, they must use
IPC_PRIVATE as the key

e (b) Two unrelated processes can share
memory by specifying IPC_PRIVATE as the key

e (c) Both (a) and (b) are true
e (d) Neither (a) nor (b) is true

e Answer (d)

Quiz 11 #2

Which of the following statement is the most accurate?

(a) If a shared memory segment is allocated by using
IPC_PRIVATE as the key, then when all processes exit,
the shared memory segment will automatically be
removed.

(b) To use a UNIX command “ipcrm” command to
remove a shared memory segment, you can identify
the shared memory segment either by “-M <key>" or
by “-m <shmid>"

(c) both (a) and (b) are true
(d) neither (a) nor (b) is true

 Answer (b)

Quiz 11 #3

Which of the following statement is the most
accurate?

(a) If you specify a new shared memory segment
to have a size of 7, the OS will actually round it up
to a full page

(b) If you use the “shmat” system call to attach a
shared memory segment to the address space of
a process, you must specify which address it is
attached to.

(c) both (a) and (b) are true

(d) neither (a) nor (b) is true

e Answer (a)

