CS 24000 - Programming In C

Week 14: Use GDB to debug
multiple processes;

Shared memory for interprocess
communication (IPC)

Zhiyuan Li
Department of Computer Science
Purdue University, USA

Unfortunately, gdb does have a special support
for debugging child processes.

After fork(), gdb continues executing the parent
process and cannot monitor the child process

In order to debug a child process, we need to
start another gdb run and “attach” the child
process ID

Suppose the child process is running

— gdb <program_name>

— attach child_pid // find out by command ps

e However, we need to insert a statement for the
child process to wait
— Otherwise before gdb could attach child_pid, the child

process may have run past the code segment of
interest, or may even have exited.

— So we need to suspend the execution in the child
process when in debugging mode
e Use a sleep() call, or
e Use an infinite loop

— When we compile using the “-g” switch, we also
define some debugging environment variable

The gdb environment might not respond to
gdb commands well (e.g. step, well)

It may also not respond to interrupt key
strokes well, e.g. ctl C, ctl Z

In such a situation, we will need to issue the
“kill -<SIGNAL> <PID>" command from
another login window

We can find <PID> by running “ps —U
<username>"

A very simple example
(orphanGDB.c)

if(child_PID == 0) { // child process
printf("In Child Process, infinite loop\n");

int main(void) #ifdef DEBUG
{ i=1;
pid_t child_PID; while (i) {i=1;}
int i=0; #endif
child_PID = fork(); \\ assume fork 4|se { //Parent process
succeeds printf("In Parent Process after
We can fork%d\n", child_PID);
(i) Start gdb to run parent process exit(0);
(i) #break main \\set a break point in main()
(ii) #Hstep J

(ii) Start gdb to run child process, which will stop inside the infinite loop
(iii) #set variable i=0 \\to get out of the infinite loop

* SIGINT

— This is the signal that has the effect of entering the key of
CTRL-C.

— Try issue a command “sleep 30 &”

— Find the process id
— Kill the background job by “kill =INT <pid>"

e SIGSTOP
— Has the effect of entering the key of CTRL-Z.
— Try issue a command “sleep 30 &”
— Find the process id

— Stop (without terminating) the background job by “kill —
STOP <pid>"

e Next we’ll run some debugging sessions.

— First, we run a program (forkflush.c) in which we
forgot to flush the file buffer in the writer process and
therefore the (child) reader process fails to read the
content

— Next, we run another program (forksharefile.c) in
which the parent process tries to write to a file that is
to be read by the child process (simultaneously) as a
way to communicate data, but it does not work well.

 Which motivates the use of pipe.

Shared memory for data
communication between processes

The use of pipe() for data communication is quite
constrained.

Therefore are two main ways to communicate
data between processes that are more general
— Message passing (using message queues)

— Shared memory

Each has pros and cons and the debate has
continued for decades

We will discuss shared memory this semester
— This follows the standard syllabus for CS240

Creating Shared Memory

int shmget(key_t key, size t size, int shmflg);

e Among the processes that shared the same
shared memory segment, At least one of them
must “create” that segment

— Specifying shmflg to be “IPC_CREAT | 0666”

 “mode_flags (least significant 9 bits) specifying the
permissions granted to the owner, group, and world.

» Specify “0666” to ensure access permission

— All these processes must use the same key to call the
shmget function

— The creator sets the size (in bytes)
e The system will round it up to a multiple of the page size

— The other callers can specify the size no greater than
the one used during creation

What should be the key?

 The system is quite permissive with the key values

— You can use any integer as the key
— Obviously this creates a security concern

* For related processes, e.g. parent/child processes, one
can use the constant IPC_PRIVATE

e For unrelated processes, it is up to the programmer(s)
to set up the key in some discreet fashion

— E.g. use the ftok() system call to generate a key based on
some unpublicized file path name

— For simplicity, we will just use arbitrary integers in our
examples

The shmget() call (cont’d)

 The call returns an integer, to id the segment
e shmflg is a rights mask (0666) OR’d with one of the

following:
— IPC_CREAT will create or attach
— IPC_EXCL creates new or it will report error

if it exists

Some predefined constants

SHMALL

— System wide maximum of shared memory pages

SHMMAX

— Maximum size in bytes for a shared memory segment

SHMMIN

— Minimum size in bytes for a shared memory segment

SHMMNI

— System wide maximum number of shared memory
segments

Attach shared memory segment to a
pointer

e Just like when we use malloc()
— So we can step through the shared memory via the pointer

e void *shmat(int shmid, const void *shmaddr, int shmflg);

— On success shmat() returns the address of the attached shared
memory segment;

— on error (void *) -1 is returned, and errno is set to indicate the
cause of the error.

— If shmaddr is NULL, the system chooses a suitable (unused)
address at which to attach the segment.

e Example:
e if ((shm =shmat(shmid, NULL, 0)) == (char *) -1) {
. perror("error when call shmat");
. exit(1);
°}

An example with two unrelated
processes

* For simplicity, we begin with an example of
using shared memory for data communication

between two unrelated processes

— Two separately issued command

e A server
e Aclient

e (This example is adapted from an example
from the internet)

#include <unistd.h> // server.c if ((shmid = shmget(key, SHMSIZE, IPC_CREAT

#include <sys/types.h> | 0666)) < 0) {
#include <sys/syscall.h> perror("error when call shmget");
#tinclude <sys/ipc.h> exit(1);
#finclude <sys/shm.h> }
#include <stdio.h> if ((shm = shmat(shmid, NULL, 0)) == (int *) -
#include <stdlib.h> 1) {
#finclude <sys/mman.h> perror("error when call shmat");
exit(1);
#define SHMSIZE 1024 }
s = shm;

int main() for (i=1;i<=50; i++)
{ *s++ = |

inti; *s=0;

int shmid; exit(0);

key_t key; }

int *shm, *s;

key = 12345678;

#include // client.c
#define SHMSIZE 1024

main()
{

int shmid;

key t key;

int *shm, *s;

key = 12345678;
/** Find the segment. What if client
runs first?

*/

if ((shmid = shmget(key, SHMSIZE,
IPC_CREAT | 0666)) < 0) {

perror("call shmget");
exit(1);
}

if ((shm = shmat(shmid, NULL, 0)) ==

(int *) -1) {
perror("call shmat");
exit(1);

for (s = shm; *s I=0; s++)
printf("%d\n", *s);
putchar('\n');

exit(0);
}

From the example, we see that shmget() and shmat() together allocates a
(shared) memory block to store an array of something (int, char, struct, etc)

— Compare with (void *) -1, with void replaced by int, char, etc

— Itis up to the programmer to allocate sufficient memory size
We run server first (in the background)
Then we run client
We see client prints out the list of integers before terminates

By issuing a command “ipcs”, we can see that the shared memory block still
exists after both programs terminate

— If you run the client program again, it will still be able to read and print the data
(the data also exist)

This is not good, we must remove the block
— We can do this by a Unix command “

— Using system call ipcrm (by specifying the key or id of the block)

— Better yet, we remove the block within the program either by server or
by client. If there are multiple clients, better by the server.

— For simplicity, we add to client “shmctl(shmid, IPC_RMID, (struct
shmid_ds *) 0);”

e Then the server terminates

e The remaining issue:
— The shared memory stays in the system
— To remove it now, we need to issue a command “ipcrm”.

— To identify the shared memory to remove by ipcrm, there
are several options (read the man page), e.g. “—M key”

e |tis a better practice for remove the shared memory
before program terminates

— Uncomment the “shmctl(shmid, IPC_RMID, (struct
shmid_ds *) 0); “ call and rerun the programs

Shared Memory Control

struct shmid_ds {

int shm_segsz; /* size of segment in bytes */
__time_t shm_atime; /* time of last shmat command */
__time_t shm_dtime; /* time of last shmdt command */
unsigned short int __shm_npages; /* size of segment in pages */
msgqnum_t shm_nattach; /* number of current attaches */

/* pids of creator and last shmop */

'
e int shmctl(int shmid, int cmd, struct shmid_ds * buf);
e cmd can be one of:

— |IPC_RMID destroy the memory specified by shmid

— |IPC_SET set the uid, gid, and mode of the shared
mem

— |IPC_STAT get the current shmid_ds struct for the queue

Flags in shmat() call

e Usually O

e Other possibilities
— SHM_RDONLY sets the segment as read-only
— SHM_RND sets page boundary access

— SHM_SHARE_MMU set first available aligned
address

Related processes sharing memory

e This is more complex in some sense

— Because we need more synchronization effort

e Recall that in the client/server example, we artificially let server run first

— If the parent process plays the server role

* The main process, after writing to shared memory, must give go ahead to the child
process to read

— We can create another shared memory block to do such “hand-
shaking”

e The simpler parts with related process are
— We can use IPC_PRIVATE to get a unigue anonymous key
— Let parent process create and attach the shared memory blocks
— Child processes will inherit

 We draw the time line and explain the parallel
events in both processes

 The following program runs a parent process
(server) and a child process (client)

e Two shared memory segments are created

— One used for synchronization
* Not the most efficient way, but simple and intuitive
e We will discuss semaphores for synchronization later

#include ... if ((shm1 = shmat(shmid1, NULL, 0)) ==

#define ... (int *) -1) {
int main() perror("shmat");
{ exit(1);
int i; }
int shmidl, shmid2;
key_t key; *shm1l = 0;
int *shm1, *shm2, *s;
pid_t child_PID; if ((shm2 = shmat(shmid2, NULL, 0)) ==
(int *) -1){
if ((shmidl = shmget(IPC_PRIVATE, perror("shmat");
SHMSIZE, 0666)) < 0) { exit(1);
perror("shmget"); }
exit(1);
} child_PID = fork();
if ((shmid2 = shmget(IPC_PRIVATE,
SHMSIZE, 0666)) < 0) { if(child_PID < 0) { // error
perror("shmget");
exit(1);

printf("\n Fork failed\n");
exit (1);
}

if(child_PID == 0) { // child process
/* wait for parent to give a go ahead

*/

while (*shm1 1= 1)
sleep(1);

for (s = shm2; *s 1= 0; s++)
printf("%d\n", *s);
putchar('\n');

*shm1l = 0;
exit(0);
}// end child process

else { //parent process
s =shm2;

for (i=1;i<=50; i++)
*s++ =i
*s=0;

*shm1 = 1; // Give child process go-ahead to
read

/*
* We wait for the child process give a go
ahead terminate

*/
while (*shm1 1= 0)
sleep(1);
exit(0);
}// end of parent process

}

 Run this program
 We see parent process successfully passes data to
the child process

e Remaining issues
— Again, there will be shared memory blocks staying in

the system
e With 0000000 key because of the anonymity

 We can remove them by ipcrm —m id
— Again, it is better practice to remove them before

terminating

Quiz 10 #1

Which statement is true after a program
successfully executes “pipe (mypipe)”?

(1) a pipe named “mypipe” is created

(2) an unnamed pipe is created
(3) a pointer variable “mypipe” will point to a
pipe that has been created

(4) the status of this call is written to the
variable mypipe

 Answer (b)

Which statement is the most accurate after a program
successfully executes “pipe (mypipe)”? (If more than one
statement is true then you should choose the answer that
states so)

(1) an array, mypipe[2], will store an integer file ID in each
of its two elements

(2) myplpe:1' is the read end of the pipe created and
mypipe[0] is the write end

(3) mypipe| 1] is the write end of the pipe created and
mypipe[0] is the read end

(4) both (1) and (2) are correct

(5) both (1) and (3) are correct
(6) none of the above is correct

 Answer (5)

Which statement is correct after a program
executes “pipe (mypipe)”’?

(a) A returned value of 0 means the call failed
(b) A return value of -1 means the call failed
(c) This is implementation dependent

 Answer (b)

