CS 24000 - Programming In C

Week 11: Processes

Zhiyuan Li
Department of Computer Science
Purdue University, USA

Review of Endianess

e What does “od —t X|[size]” command do?

e When anintegera =1 is dumped to a file
— What is the sequence of the bytes?

* On a little endian machine
* On a big endian machine

Type conversion

From unsigned char to int
From signed char to int
The result of byte addition and subtraction

— Unsigned versus sighed
— Assigning to a char versus writing to an int

We review these next Tuesday

Lectures for the rest of the semester

 Programming with Unix processes in C
— Process creation (fork)

— Process state inheritance
e Copy on write mechanism
— Process termination (kill)
— Process synchronization (wait)
— Process communication
* Pipe
* Mutex
e Shared memory

Project 3: Using multiple processes to
search a file simultaneously

Today’s microprocessor has multiple “cores” (that
are identical) on the same processor chip

Different cores can perform operations
simultaneously and independently

They can also communicate through memory or
through files

There is a great incentive to coordinate multiple
cores for solving a single computation problem

— In Project 3, we coordinate multiple cores to search
the same file in different places

Simultaneously search a file

A NS

Core 1search Core 2 search Core 3 search Core 4 search

e How do we activate multiple cores in the search?
— Spawn multiple processes in the program
— Spawn multiple “threads” in the program

— The OS can “schedule” different processes (or threads)
to different cores (depending on how busy the cores
are)

Conceptually, threads share the same address space
Processes have separate address spaces

Depending on the nature of the computation

— There are pros and cons for processes and for threads
e Easiness to program
e Performance

We will study the use of processes

— Because the follow-up courses depend on processes more
e System programming
e Operating systems

What is a process?

An execution instance of a program

How a process is launched (i.e. spawned)?
Often, it is launched when the operating system
executes the command that we enter

— The corresponding program is loaded

— Ready to be executed as long as
e Resource is available
* No blocking conditions

The operating system also launch “daemons” or service
programs when the system is booted

— We can use “ps” command to see how many processes are
running in the background

A new process is spawned by the system call
fork()
 The fork() can be called in a user program also

— That is how we are going to start multiple
processes to perform task simultaneously

Process state

 Roughly speaking, the process may be in one of
the following states

— Running
— Ready (to be scheduled to run)

— Sleep (blocked by some conditions to be resolved)
e Sleep at a lock
e Sleep and waiting for a timer wakeup
e Sleep while waiting for a page fault to be served

— Zombie
e Terminated but the resources are not released yet

Process context

program code

machine registers
Program data

System data

User/system stack

open files (file descriptors)
environment variables

— Process ID (pi1d) unigue integer
— Parent process ID (ppid)

— Real User ID ID of user/process which
started this process
— Effective User ID ID of user who wrote

the process’ program
— Current directory
— File descriptor table
— Seek position for each open file

continued

The fork() call

e Creates a child process by making a copy of
the parent process --- an exact duplicate.

— Inherit the program context (incl. the current
instruction address, registers, stack, data, files, etc)

e Both the child and the parent continue
running.

The copy on write (COW) mechanism

 Obviously to physically copy the entire context
can be very time consuming

e Therefore the modern OS does “copy on write”

e At the time of fork(), the child gets a pointer to
the entire context of the parent process
— No physical copying
— Read only (but marked as COW)

— As soon as any “page” is modified (by child or parent)
after the fork(),
e adistinct copy of the written page is created
e given to the writing process

Separate address space

* From this point of view, we say different processes
have separate address spaces

— Except for the regions that are explicitly designated as
“shared” (we will use this for Project 4)

— Some system level data structures are shared
e E.g. the global file table (with the seek position for each entry)
e How do processes communicate data then?
— Use the shared memory mentioned above

— Use files (files are persistent objects and are shared)

* A special kind of file called pipe is uniquely useful for data
communication

* We use pipe to communicate data in Project 3

e First, let us examine how the fork() call
impacts the execution of the program

#include <unistd.h>
#include <sys/types.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>

int global_v=0;
int main()

{
pid_t child_PID;
int local_v=0;

child_PID = fork();

if(child_PID <0) {// error
printf("\n Fork failed\n");
return 1;

}

// forkp.c
if(child_PID == 0) // child process

printf("In Child Process, global_v is

\t%d local_v is \t%d\n", global v, local_v);

else { //Parent process
global v=1,;
local_v =1,
printf("In Parent Process, global v is

\t%d local_v is \t%d\n", global v, local_v);

}

}

return O;

In Parent Process, global v is 1local_vis

In Child Process, global vis 0local vis 0

{

//forkfile.c

nt global_v=0; if(child_PID == 0) { // child process
for (i=0; i<1000; i++) {
nt main(void) fprintf(fp, "child re-write \n");
usleep(1000);
pid_t child_PID; }
int local_v = 0; }
int i=0; else { //Parent process
for (i=0; i<1000; i++) {
FILE * fp; fprintf(fp, “parent re-write \n”);
usleep(1000);
fp = fopen("./output”, "a"); }
if (fp == NULL) { }
printf("failed to open ./output \n"); return O;
return(1); Notice how the printout
} parent re-write are interleaved in an
child_PID = fork(); child re-write unpredictable way
parent re-write
if(child_PID < 0) { // error parent re-write Because we didn’t
printf("\n Fork failed\n"); parent re-write synchronize them
return 1;

} child re-write

The wait and waitpid calls

e These are one way to synchronize between
parent process and child processes
— Only useful for the parent process to wait on the

termination of (or certain conditions happening
to) child processes

— In the previous example, we can use such calls to
let the parent process print after the child process

#include <sys/types.h>
#include <sys/wait.h>

pid t wart(int *statloc);

Suspends the calling process until any of its child
processes has finished.

If successful, the return value is the process ID of
the terminated child process, -1 on error.

*statloc Will have the status information about the
child.

We can make statloc a null pointer if we don’t need
to status info.

//forkwait.c

int global_v=0; if(child_PID == 0) { // child process
for (i=0; i<1000; i++) {
int main(void) fprintf(fp, "child re-write \n");
{ usleep(1000);
pid_t child_PID; }
int local_v =0; }
int i=0; else { //Parent process
wait((int *) 0);
FILE * fp; for (i=0; i<1000; i++) {
fprintf(fp, “parent re-write \n”);
fp = fopen("./output"”, "a"); usleep(1000);
if (fp == NULL) { }
printf("failed to open ./output \n"); }
return(1); return O;
} }

child_PID = fork();

if(child_PID < 0) {// error
printf("\n Fork failed\n");
return 1;

}

Zombies and child processes

The wait() call returns immediately (with error) if no child processes
exist

If a child process, ¢, terminates *before* the parent process does, c
goes to the zombie state

— until the parent (or a foster parent) does a wait() on c or explicitly kills
C.

If the parent process exits before a child process does, a
grandparent process (e.g. init) becomes the foster parent

Init will issue wait() for all those foster child processes

For our project, we really do not want the system to be inundated
by zombies (No new processes can be spawned then.)

Also, if any child process has an infinite loop or blocked indefinitely,
they will continue to exist even after the main program terminates

— We must be careful in our project not to accidentally inundate the
system with orphan processes

#include <unistd.h>
#include <sys/types.h>
#include <errno.h>
#include <stdio.h>
#include <sys/wait.h>
#include <stdlib.h>

if(child_PID == 0) { // child process
printf("In Child Process, infinite loop\n");
while (1) {} // infinite loop
}
else { //Parent process
printf("In Parent Process after
fork%d\n", child_PID);

int main(void) exit(0);

{ }
pid_t child_PID;
int i=0;)

After the main program
returns, do “ps” to see
if(child_PID < 0) {// error the existing processes in

printf("\n Fork failed\n"); the current login session
return 1;

}

child_PID = fork();

wait() is a special case of waitpid()

pid _t wartpid(pid_t pid, Int *status, Int
opts)

e pid<-1
— Wait for any child process whose process group ID is

equal to the absolute value of pid. (We won’t worry
about this in this course)

o p|d == -1
— Wait for any child process.
— wait() can be viewed as this case
. p|d ==
— Wait for any child process whose process group ID is

equal to that of the calling process. (we won’t worry
about this in this course)

e piId>0
— Wait for the child whose process ID is equal to
the value of pid.
— options
« Zero or more of the following constants can be ORed.
— WNOHANG
» Return immediately if no child has exited.

— WUNTRACED

» Also return for children which are stopped, and whose
status has not been reported (because of signal).

— Return value

* The process ID of the child which exited.

e -1 on error; 0 If WNOHANG was used and no child
was available.

Effect of fork() on file I/O

 The file descriptors and file pointers are all
part of the process context

e When fork() is executed, the child process
inherits these

— Afterwards, these can be changed independently
e Note that the files are not duplicated by fork()

e Neither is the global file table (which is OS kernel’s data
structure)

 Hence the seek position is shared between parent and
child processes

int main(void)

{
pid_t child_PID;
int i=0;

FILE * fp;

fp = fopen("./sharedfile", "w+");
if (fp == NULL) {
printf("failed to open ./sharedfile
\n");
return(1);

}

for (i=0; i<100; i++)
fprintf(fp, "%d\n", i);

child_PID = fork();

if(child_PID < 0) {// error
printf("\n Fork failed\n");
return 1;

}

if(child_PID ==0) { // child
process
rewind(fp);

fprintf(fp, "%d\n", -1);
return (0);
}
else { //Parent process
fprintf(fp, "%d\n",
1000); 1
} 2
return O; 3
} 4
5
96
97
98
99
1000

Using pipe for synchronization and
communication
 We have seen that the regular file I/O is not a

reliable way to communicate between

processes (writing and reading order is
unpredictable)

* Pipe is a more reliable way

pipe System Call (unnamed)

Creates a half-duplex pipe.
e Return: Success: 0; Failure: -1; Will set errno when fail.
e |f successful, the pipe system call will return two integer file
descriptors, pipefd[0] and pipefd[1].
— pipefd[1] is the write end to the pipe.
— pipefd[0] is the read end from the pipe.
e Parent/child processes communicating via unnamed pipe.

— One writes to the write end
— One reads from the read end
* A pipe exists until both file descriptors are closed in all
processes

read fd,
write fd,

pipe

e However, when we fork a process after a pipe
IS open

— Both the parent and the child will have the same
write and read ends

— |t is a good idea to let each process close one of
the ends

* To avoid confusion and errors

If we want two way communication

* We create two pipes

— One for each direction

Full Duplex Communication via Two Pipes

Two separate pipes, say p0 and p1

Process A

write p0,
read p1,

Process B

write p1,

read p0,

/

/

S

pl

-

Unnamed Pipes

e only used between related process, such as
parent/child, or child/child process.

e exist only as long as the processes using
them.

 Next, we examine an example of unnamed
pipes

Named Pipes

We will let the system programming course
and the OS course to tell you.

int main (void)

{ else if (pid < (pid_t) 0)
pid_t pid; {
int mypipe[2]; /* The fork failed. */
fprintf (stderr, "Fork failed.\n");
/* Create the pipe. */ return EXIT_FAILURE;
if (pipe (mypipe)) { i
fprintf (stderr, "Pipe failed.\n");
exit(1); } else {/* This is the parent process.
/* Create the child process. */ Close oth.er end first. */
pid = fork (); close (mypipe[0]);
if (pid == (pid_t) 0) write_to_pipe (mypipe[1]);
{ - return EXIT_SUCCESS;
/* This is the child process. }
Close other end first. */ }

close (mypipe[1]);
read_from_pipe (mypipe[0]);
return EXIT_SUCCESS;

}

* Write some random text to the pipe. *
/* Read characters from the pipe / pipe. */

%k
and echo them to stdout. */ void write_to_pipe (int file)

void read_from_pipe (int file) {FILE *stream:
{FILE Yot . stream = fdopen (file, "w");
e Streéam, fprintf (stream, "hello, world!\n");
’ o wm fprintf (stream, "goodbye, world!\n");
stream = fdopen (file, "r"); flose (stream):
while ((c = fgetc (stream)) != } ’
EOF)

putchar (c);
fclose (stream);
} NOTE: fdopen() simply map a file
descriptor (from unix file open call) to a
file pointer (which is a C concept)

The mode must match

How does this read/write even work?

A pipe behaves like a queue (first-in, first-out).
— The first thing written to the pipe is the first thing read from the pipe.

— For efficiency, the pipe has a limited size (we won’t go into system
details).

* Writes to the pipe will block when the pipe is full.
— They block until another process reads some data from the pipe

— The write call returns when all the data given to write have been
written to the pipe.

e Reads from the pipe will block if the pipe is empty
— until at least a byte is written at the other end.

— The read call (when successfully read some data) then returns
without waiting for the number of bytes requested to be all available.

— Hence the most reliable way to read from a pipe is to continue reading
a byte until the pipe is closed (reading will return with zero byte read)

e When all the descriptors on a pipe’s write end are closed,

— acall to read from its read end returns zero (for UNIX read call)
or EOF (for C lib call) .
From Posix and Linux man pages:
“If all file descriptors referring to the write end of a pipe have been
closed, then an attempt to read(2) from the pipe will see end-
of-file
(read(2) will return 0).”

NOTE: This statement is highly ambiguous. It implies that even if
the buffer is nonempty, the read attempt would simply see end-of-
file and read(2) will return 0. This is not true at least for the
current implementation of Linux. (See next page)

What happens when trying to read from a pipe
whose write end has been closed by all

processes

e The Posix and Linux documents have been ambiguous on this
issue, but according to a description of the Linux kernel
description, the reading process will read all bytes left in the pipe
by previous writing processes before they closed the write end.

e Thisis summarized by the following table from Understanding the
Linux Kernel, Third Edition. By: Daniel P. Bovet; Marco Cesati,
Publisher: O'Reilly Media, 2005

Table 19-3. Reading n bytes from a pipe

At least one writing process No writing process
Bloddng read Nonblocking read

PipeSizep | Sleeping writer No sleeping writer

p=0 Copy n bytes and return n, Wait for some data, copyit, Return Return 0.
waiting for data when the and return its size. -EAGAIN.

0<p<n | Pipebufferisempty. Copy p bytes and return p: 0 bytes are left in the pipe buffer.

p=n Copy n bytes and return n: p—n bytes are left in the pipe buffer.

A Scheme for our project

e So we can have a cascading sequence of
— Processes
— A cascading sequence of pipes to accumulate the count
— Wait()
e Each process
— Remembers its only search range
— Determines the range for the child process
— Fork() a child process
— Open the file again
— Search through its own range
— Wait for its child process to exit
— Read from a pipe (upstream) the accumulated number or matches from child
— Update the count
— Send the count upstream
— exit

Overhead

 Obviously, the data communication and
synchronization incurs overhead

 Weighing the parallelism against the overhead
is one of the dominating issues in parallel
processing

* Pipe() has many other uses in operating
systems

— For standard file redirection
— For pipelining two commands

Quiz 7 #1

 The following C library routine call
FILE *fp = fopen("./text.txt", "r+");

(a) will return a null pointer if file ./text.txt does not
exist

(b) If ./text.txt exists, then this fopen call will allow
the file to be read or over-written from the first
byte position

(c) Both (a) and (b)

(d) Neither (a) nor (b)

Quiz 7 #1

 The following C library routine call
FILE *fp = fopen("./text.txt", "r+");

(a) will return a null pointer if file ./text.txt does not
exist

(b) If ./text.txt exists, then this fopen call will allow
the file to be read or over-written from the first
byte position

(c) Both (a) and (b)

(d) Neither (a) nor (b)

 Answer (c): both (a) and (b)

Quiz 7 #2

 The following C library routine call
FILE *fp = fopen("./text.txt", “w+");

(a) will return a null pointer if file ./text.txt does not
exist

(b) If ./text.txt exists, then this fopen call will allow
the file to be read or over-written from the first
byte position

(c) Both (a) and (b)

(d) Neither (a) nor (b)

 Answer (b)

Quiz 7 #3

e Decimal number 2.25 is binary number

e (a) 10.11001

e (b) 10.1

e (c) 10.11

e (d) 10.01

* (e) none of the above

e Answer (d) 10.01

