Synthesis: a day in the life of a web request

- our journey down the protocol stack is now complete!
 - application, transport, network, link
- putting-it-all-together: synthesis!
 - goal: identify, review, understand protocols (at all layers) involved in seemingly simple scenario: requesting www page
 - scenario: student attaches laptop to campus network, requests/receives www.google.com

A day in the life: scenario

scenario:

- arriving mobile client attaches to network ...
- requests web page: www.google.com

A day in the life: connecting to the Internet

- connecting laptop needs to get its own IP address, addr of first-hop router, addr of DNS server: use DHCP
- DHCP request encapsulated in UDP, encapsulated in IP, encapsulated in 802.3 Ethernet
- Ethernet frame broadcast (dest: FFFFFFFFFFFF) on LAN, received at router running DHCP server
- Ethernet demuxed to IP demuxed, UDP demuxed to DHCP

A day in the life: connecting to the Internet

- DHCP server formulates DHCP ACK containing client's IP address, IP address of first-hop router for client, name & IP address of DNS server
- encapsulation at DHCP server, frame forwarded (switch learning) through LAN, demultiplexing at client
- DHCP client receives DHCP ACK reply

Client now has IP address, knows name & addr of DNS server, IP address of its first-hop router

A day in the life... ARP (before DNS, before HTTP)

- before sending HTTP request, need IP address of www.google.com: DNS
- DNS query created, encapsulated in UDP, encapsulated in IP, encapsulated in Eth. To send frame to router, need MAC address of router interface: ARP
- ARP query broadcast, received by router, which replies with ARP reply giving MAC address of router interface
- client now knows MAC address of first hop router, so can now send frame containing DNS query

A day in the life... using DNS

- demuxed to DNS
- DNS replies to client with IP address of www.google.com

 IP datagram containing DNS query forwarded via LAN switch from client to 1st hop router

 IP datagram forwarded from campus network into Comcast network, routed (tables created by RIP, OSPF, IS-IS and/or BGP routing protocols) to DNS server

A day in the life...TCP connection carrying HTTP

- to send HTTP request, client first opens TCP socket to web server
- TCP SYN segment (step 1 in TCP 3-way handshake) interdomain routed to web server
- web server responds with TCP SYNACK (step 2 in TCP 3way handshake)
- TCP connection established!

A day in the life... HTTP request/reply

- HTTP request sent into TCP socket
- IP datagram containing HTTP request routed to www.google.com
- web server responds with HTTP reply (containing web page)
- IP datagram containing HTTP reply routed back to client

Another Example in Your Daily Life

- Suppose you walk into LWSN, power on your laptop, connect to PAL3.0 (WiFi), open Youtube to watch a TED talk.
 - What are all the protocol steps that take place? Please introduce each step and protocols used as much as you can.
 - Please explicitly indicate in your steps how you obtain the IP and MAC address of a gateway router.

A Synthesis Example: More

@ Hosts

- DHCP first, if no valid IP
 - why? a valid IP first, regardless of applications
- The rest is invoked by the application
 - Dependence \rightarrow other protocols
 - e.g., WEB (URL) \rightarrow DNS \rightarrow UDP \rightarrow IP \rightarrow MAC address in Ethernet (or 802.11) \rightarrow ARP
 - e.g., HTTP \rightarrow TCP \rightarrow the first TCP segment (three-way handshaking)
 - e.g., L2 delivery via WiFi \rightarrow CSMA/CA

<u>@Routers (switches)</u> [a network: a distributed system]

- Routing protocols (inter-AS, intra-AS) performed
- Self-learning performed at switches