CS422 Final Review

Spring 2024

Grading Policy

- Grade breakdown
 - Homework: 15%
 - Labs: 30%
 - Midterm: 25%
 - Final: 30%
- Check your grades at Brightspace
 - If questions, contact me no later than April 26 (Friday)
- Final grades will be curved ...

Final: 15:30PM - 17:30PM, Apr 30 (Tue)

• @ GRIS 103

Bring your PUID

- Closed-book, closed-note ... (similar to your Midterm)
- No make-up exam
 - Exception only for emergency (with written document), according to University policy;
 - Contact me ASAP if any question

Extra Office hours next Monday

- 13:00PM 14:00PM, April 29 Monday
- LWSN 2142E and/or @Teams
 - Teams link at course homepage, <u>https://www.cs.purdue.edu/homes/chunyi/teaching/cs422-sp24/cs422-sp24/cs422-sp24.html</u>

Internet protocol stack

Applications ... built on ... **Reliable (or unreliable) transport** ... built on ... **Best-effort global** packet delivery ... built on ... **Best-effort** local packet delivery ... built on ... Physical transfer of bits

Source: Scott Shenker (UC Berkeley): slide 7 at The Future of Networking, and the Past of Protocols https://www.youtube.com/watch?v=YHeyuD89n1Y&t=111s

One-page highlights

- Knowing <u>how</u> and <u>why</u> for each technique component
 - E.g., why four algorithms in TCP congestion control (slow start, congestion avoidance, fast retx/recovery, reset)?
 - E.g., why are there so many multiple access protocols? Which multiple access protocol fits in the targeted scenario?
 - E.g., Why is MAC address flat while IP address not?
- Knowing <u>how</u> different layers/protocols <u>work together</u>
 - The relationship between higher and lower layers
 - The order of different protocols
 - Example: synthesis

Ch4 + Ch5: Network layer

- Two functions on networking layer
 - Routing (control-plane)
 - Forwarding (data-plane)
 - Q: How do they work together?

Per-router routing: Forwarding table

- Datagram switching
 - Longest prefix match
 - How to denote an IP address?
 - CIDR: e.g.233.1.1.0/24

Ch4 + Ch5: Network layer (contd.)

- IPv4 Datagram Format (20B header)
- IP address allocation
 - DHCP: how to get an IP address within a subnet?
 - Address allocation for one subnet (address blocks)
- IPv4 address runs out
 - NAT (private IP address, port-IP translation)
 - IPv6 (128 bits)

ver	head. Ien	type of service	length	
16-bit identifier			flgs	fragment offset
time to live		upper layer	header checksum	
32 bit source IP address				
32 bit destination IP address				
options (if any)				
data				

22 hite

Ch4 + Ch5: Network layer (contd.)

• How to generate forwarding tables at routers?

- IP address blocks/ranges in the table
- Routing algorithms:
 - Link-state
 - distance-vector
 - Q: How do they work? What are their difference?
- Routing protocols:
 - Intra-AS routing: OSPF (ISIS)
 - Inter-AS routing: BGP
 - How do they work together?

Ch5: Routing

- Intra-AS routing: e.g, OSPF within AS1?
- Inter-AS routing: eBGP and iBGP
 - AS PATH
 - How to select if multiple choices?
 - Policy first \rightarrow short AS PATH \rightarrow hot potato routing

Ch 6: Link layer + Ch 7 Wireless (partly)

- Basic services in link layers
 - Framing
 - Link access (multiple access)
 - Reliable transfer (link-level)
 - Error detection and correction
- Error detection and correction
 - 2D parity code
 - CRC (Q: how to calculate R, given D and G)

• Hint: A-B = A XOR B, A+B = A XOR B

Multiple Access Protocol

- Why?
 - Broadcast (shared) channel: collision without coordination
- How?
 - channel partitioning: TDMA, FDMA, CDMA
 - Random access: Slotted-ALOHA, ALOHA, CSMA, CSMA/CD, CSMA/CA
 - "taking turns": Polling, token
- How to pick a proper multiple access protocol?

Ethernet CSMA/CD algorithm

- CSMA/CD
- After aborting, NIC enters binary (exponential) backoff:

802.11 CSMA/CA algorithm

- 802.11: no collision detection!
- avoid collisions (CA): 2⁺ nodes transmitting at same time
- 802.11: CSMA sense before transmitting
 - don't collide with ongoing transmission by other node
- DIFS-DATA-SIFS-ACK: mandatory
- RTS-CTS-DATA-ACK
 - RTS-CTS: reserve channel (hidden terminal)

Ch6: link-layer framing & addressing

preamble dest. address

- Framing
 - Ethernet frame format
 - MAC address: 48 bit
 - Flat (how different from IP address?)
 - How to learn MAC address? (ARP)
- Link layer: plug-and-play
- Ethernet Switch
 - Switch forwarding table
 - How to map the interface and MAC address
 - Self-learning
 - When to flood
 - When to selective forward?

data (payload)

CRC

type

source

address

Ch6 + Ch7: From Ethernet to Wireless

- switch vs router: common and difference?
 - Switch (L2): transparent to hosts
 - N switches may be used in one subnet
- VLAN: virtualization over switch
- Wireless: WiFi + 4G (5G)
 - base station or WiFi AP: relay
 - Wireless characteristics
 - Much complex link layers ...

One-page highlights

- Knowing <u>how</u> and <u>why</u> for each technique component
 - E.g., why four algorithms in TCP congestion control (slow start, congestion avoidance, fast retx/recovery, reset)?
 - E.g., why are there so many multiple access protocols? Which multiple access protocol fits in the targeted scenario?
 - E.g., Why is MAC address flat while IP address not?

Knowing <u>how</u> different layers/protocols <u>work together</u>

- The relationship between higher and lower layers
- The order of different protocols
- Example: synthesis

A Vertical View & Beyond

Recall our synthesis example:

- Protocols/layers
- Nodes
 - @Hosts
 - @ routers
 - @ switches
 - @ DNS server,
 - @...

e.g., what happens @source host? In which order? How do they interact with other network equipment (following a protocol or function)?

Another Synthesis Example

- Suppose you walk into LWSN, power on your laptop, connect to PAL3.0 (WiFi), open Youtube to watch a TED talk.
 - What are all the protocol steps that take place in turn? Please introduce each step and protocols used as much as you can.
 CSMA/CA first or DHCP first? (CSMA/CA, why?)
 DNS earlier or TCP earlier? (DNS, why?)
 - Please explicitly indicate in your steps how you obtain the IP and MAC address of a gateway router.

Which address (IP address or MAC address) does your laptop know first? (IP address, why?)

Synthesis Example (More)

Refer to the lecture (at end of chapter 6)

@ Hosts

- DHCP
 - why? a valid IP first, regardless of applications
- The rest is invoked by the application
 - Dependence \rightarrow other protocols
 - e.g., WEB (URL) \rightarrow DNS \rightarrow UDP \rightarrow IP \rightarrow MAC address in Ethernet (or 802.11) \rightarrow ARP
 - e.g., HTTP \rightarrow TCP \rightarrow the first TCP segment (three-way handshaking)
 - e.g., L2 delivery via WiFi → CSMA/CA

@Routers (switches) [a network: a distributed system]

- Routing protocols (inter-AS, intra-AS) performed
- Self-learning performed

Any Question?

- Contact me (<u>chunyi@purdue.edu</u>) or TAs (<u>cs422-ta@cs.purdue.edu</u>)
 - Campuswire
 - Office hours next week
 - 13:00PM 14:00PM, April 29 Monday
 - @LWSN 2142E and/or @Teams

Several minutes on Course evaluation by April 28, 2024! Many thanks!

Final: 15:30PM - 17:30PM, Apr 30 (Tue), GIS 103