
C
S
42
2
@
P
u
rd
u
e

CS422 Lab2: Build Your Own Web Server over Sockets

Due: 23:59:59 PM, Wed Feb 14, 2023
Total points: 75 points

1 Goal

This is a programming lab. In this lab, you are going to develop client-server socket programming and build
a concurrent Web server in C. Also, we will take the chance to learn a little bit more about how Web browser
and web server behind the scene.

2 Part A: Build Client-Server over Socket Programming (30 points)

• Set up server and client over Socket programming. The sample code and tutorial of socket programming
are provided along with this assignment and lab instructions. Basically, the server opens a server
process over TCP while each client creates a client process to connect to this server process. After you
open the server, you can open the client and you will be prompted to input a message on the client,
and then the message will be sent to the server after clicking ”Enter”. Upon receiving the message,
the server will send the message back, which will be displayed on the client terminal. The server will
record and display the message on its terminal, too.

• (5 points) You need to slightly revise the provided code to allow the client and server to run on different
machines which can be specified by the IP address and port number in the command line. You should
run the code using the following commands:
./server [port#]
./client [ip server addr] [port#]

We expect that the client allows you to input at least ONE MESSAGE as the REQUEST. The server
should print the received [REQUEST] in the terminal and capitalized the [REQUEST], and finally send
back the capitalized [REQUEST] to the client. On the client side, both the original and capitalized
[REQUEST] will be printed in the terminal when it is received by the client. You can find the sample
output in sample basic.txt

Tip: The request may contain ”\n”. You should define the keyboard shortcut CTRL + D to signal
that you have finished typing your request.

You can begin by running both of server and client at the localhost. Namely, use localhost as
[ip server addr] or simply use 127.0.0.1. After it works, you need to finally make the client and server
run on two different machines (say, lab machines at HAAS G050), from amber01.cs.purdue.edu to
amber30.cs.purdue.edu.

• (15 points) You need to revise the code to support multiple clients on the server using Pthreads and
save it as serverMul.c. You can test the new server with at least two clients running on different
machines or one machine with two different terminals. You run the code using the following commands:
./serverMul [port#]
./client [ip server addr] [port#]
./client [ip server addr] [port#]

1



C
S
42
2
@
P
u
rd
u
e

We expect the server can connect with these clients at the same time and print REQUESTS sent by
each client in the terminal. You can find the sample output in sample mul.txt. Please follow the
semantics of sample output files. Tips: To ensure the first client program does not terminate before
you start the second client program, you can use “while” or for “loop” with “sleep()” in your code to
repeat the client requests. You can also define your own way to close the client.

(10 points) Test your client code. Similar to page 36 in chapter 2 lecture slides, please use the client
program you develop to try out HTTP. You need to first get your client to connect with a website (say,
gaia.cs.umass.edu or other websites, port number: 80), and then try a correct and wrong GET request.

Please include the following results in your report:

1) a CORRECT GET request you used, the website tested, and the HTTP response the client received
in the terminal. You don’t need to show BODY part but the status line and header lines.

2) a WRONG GET request you used, the website tested, and the HTTP response the client received in
the terminal. You need to explain why this GET request is wrong and show the status line and header
lines of HTTP responses.

You can find the sample output at sample web 200.txt and sample web 404.txt. Tip: please prepare your
HTTP request message in advance (the same as I did in class) and then copy and paste the request message
(not type it) in the terminal of the client.

3 Part B: Develop Your Web Server over HTTP/1.1(45 points)

Please read Chapter 2 of the textbook carefully. The textbook will help you to understand how HTTP
works. Instead of using port 80 or 8080 or 6789 for the listening socket, you should pick your own to avoid
conflicts. It is suggested not to use port numbers 0-1024.

This simple web server needs to implement the following features:

• When the client sends GET to request for one .html which exists, it should respond “200 OK ”and
return this .html file.

• When the client sends GET to request for one .html which doesn’t exist, it should send the response
“404 Not found ”.

• When the client sends GET with the wrong format (e.g. URL String Syntax Error), it should send
the response “400 Bad Request ”.

• When the client sends GET with a different HTTP version, it should send the response “505 HTTP
Version Not Supported ”.

Please save your server code as server1.c. If you also revise the client code to test all the above features
and save your client code as client1.c.

Several files are provided to test with your web server. Of course, please feel free to create and use your
own test files.

• text.html: a html file which contains text only.

• picture.html: a html file which contains text and a small picture (< 200KB).

• bigpicture.html a html file which contains text and a big picture (> 1MB).

You should run the code using the following commands:
./server1 [port#]

2



C
S
42
2
@
P
u
rd
u
e

We expect the server can print the first line of client’s (browser’s) request and the first line of server’s
response (e.g., GET /index.php HTTP/1.1 \r \ n HTTP /1.1 200 OK). You can find the sample output at
sample http response1.txt and sample http response2.txt.

Tip: You should send the response and the files to the client using the establishment socket.

You need to test your server with the browser:

• Create a folder named “www” in the folder containing your codes and programs. Include the relative
path of “www” folder in your server’s code and copy your .html files to it ONLY DURING TESTING.
Please DO NOT INCLUDE “www” FOLDER OR ANY .html FILES IN YOU SUBMISSION. The
same for Part C.

• (10 points) For your server, you should be able to see the HTTP request format in the console of your
server machine. For your client, you should be able to show the specific response given different HTTP
requests and the content of the requested file. In the following test, please copy the print on the console
at the server side into your lab report.

• (20 points) Work with all three test files. Connect to your server from a browser with the URL of
http://<machine name>:<port number>/<html file name> and see if it works. For example, you can
try http://localhost:8888/index.html if your web server uses the port number of 8888 and has a
file called index.html in its root folder for all the web contents. Please make sure the server should
work with the existing browser (Chrome, Firefox, etc) to get the test webpages.

Hint: the hard part is to handle large objects, say, bigpicture.html. Please do consider how to manage
memory to transfer large objects.

• (5 points) Deploy your server in your local machine or any CS lab machine. Run tests to fetch three
sample webpage files in the assignment. Please tell me the total time (round-trip-time) for the client
to get each webpage file. (Hint: you can use wireshark or other tools provided web browsers to get the
time needed. Please include your test results in the report, along with the approach you used.

• (10 points) Test with other HTTP responses (404, 400, and 505).

Tip: Your server should be able to respond correctly in different cases. You do not need to make any
change in client’s code to get full credit for PART B, we only test your server1.

4 Materials to turn in

You will submit your assignment at gradescope. You submission should zip all the files into “lab2 PUID.zip”,
including the following files:

1. All your source code files (serverMul.c, client.c, server1.c). Please add appropriate comments to
your code and make it easy to understand.

2. Your project report called lab2.* (txt, pdf or word format). In the report,

• Please include your name and student ID at the top of the first page.

• Include the answers and results as specified above.

• Include a brief readme in the report to explain how to compile and run your source code, if
needed. (if the grader can’t compile/run your code, the project is considered not to be finished).

5 More Tips and Support

Please start early.
More questions about the assignment should be posted on Campuswire or asked during PSOs.

3


