Chapter 1
Introduction

A note on the use of these PowerPoint slides:
We’re making these slides freely available to all (faculty, students, readers). They’re in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a lot of work on our part. In return for use, we only ask the following:

- If you use these slides (e.g., in a class) that you mention their source (after all, we’d like people to use our book!)
- If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

For a revision history, see the slide note for this page.

Thanks and enjoy! JFK/KWR

Acknowledgement: The source PowerPoint slides are public available, provided by Authors (JFK/KWR). They are revised for CS422@Purdue.

Computer Networking: A Top-Down Approach
8th edition
Jim Kurose, Keith Ross
Pearson, 2020

All material copyright 1996-2020
J.F Kurose and K.W. Ross, All Rights Reserved
Chapter 1: introduction

Chapter goal:
- Get “feel,” “big picture,” introduction to terminology
 - more depth, detail later in course

Overview/roadmap:
- What is the Internet? What is a protocol?
- Network edge: hosts, access network, physical media
- Network core: packet/circuit switching, internet structure
- Performance: loss, delay, throughput
- Protocol layers, service models
What is the Internet?
The Internet: a “nuts and bolts” view

Billions of connected computing *devices*:
- *hosts* = end systems
- running *network apps* at Internet’s “edge”

Packet switches: forward packets (chunks of data)
- routers, switches

Communication links
- fiber, copper, radio, satellite
- transmission rate: *bandwidth*

Networks
- collection of devices, routers, links: managed by an organization
The Internet: a “nuts and bolts” view

- **Internet:** “network of networks”
 - Interconnected ISPs

- **Protocols are everywhere**
 - control sending, receiving of messages
 - e.g., HTTP (Web), streaming video, Skype, TCP, IP, WiFi, 4G, Ethernet

- **Internet standards**
 - RFC: Request for Comments
 - IETF: Internet Engineering Task Force
The Internet: a “services” view

- **Infrastructure** that provides services to applications:
 - Web, streaming video, multimedia teleconferencing, email, games, e-commerce, social media, interconnected appliances, ...

- provides **programming interface** to distributed applications:
 - “hooks” allowing sending/receiving apps to “connect” to, use Internet transport service
 - provides service options, analogous to postal service
What’s a protocol?

Human protocols:
- “what’s the time?”
- “I have a question”
- introductions

Network protocols:
- computers (devices) rather than humans
- all communication activity in Internet governed by protocols

Rules for:
- specific messages sent
- specific actions taken when message received, or other events

Protocols define the format, order of messages sent and received among network entities, and actions taken on message transmission, receipt
What’s a protocol?

A human protocol and a computer network protocol:

Q: other human protocols?
Chapter 1: roadmap

- What *is* the Internet?
- What *is* a protocol?
- **Network edge:** hosts, access network, physical media
- Network core: packet/circuit switching, internet structure
- Performance: loss, delay, throughput
- **Security**
- Protocol layers, service models
- History
A closer look at Internet structure

Network edge:

- hosts: clients and servers
- servers often in data centers
A closer look at Internet structure

Network edge:
- hosts: clients and servers
- servers often in data centers

Access networks, physical media:
- wired, wireless communication links
A closer look at Internet structure

Network edge:
- hosts: clients and servers
- servers often in data centers

Access networks, physical media:
- wired, wireless communication links

Network core:
- interconnected routers
- network of networks
Access networks and physical media

Q: How to connect end systems to edge router?

- residential access nets
- institutional access networks (school, company)
- mobile access networks (WiFi, 4G/5G)
Access networks: cable-based access

- **HFC: hybrid fiber coax**
 - asymmetric: up to 40 Mbps – 1.2 Gbps downstream transmission rate, 30-100 Mbps upstream transmission rate

- **Network** of cable, fiber attaches homes to ISP router
 - homes *share access network* to cable headend
Wireless access networks

Shared *wireless* access network connects end system to router

- via base station aka “access point”

Wireless local area networks (WLANs)
- typically within or around building (~100 ft)
- 802.11b/g/n/ac/be (WiFi): up to 46 Gbps transmission rate
- Also called WiFi 5, 6, 6e and 7

Wide-area cellular access networks
- provided by mobile, cellular network operator (10’s km)
- 10 - 1000 Mbps
- 5G/4G cellular networks
Access networks: enterprise networks

- companies, universities, etc.
- mix of wired, wireless link technologies, connecting a mix of switches and routers (we’ll cover differences shortly)
 - Ethernet: wired access at 100Mbps, 1Gbps, 10Gbps
 - WiFi: wireless access points at 11, 54, 450 Mbps, 3.5Gbps, 46 Gbps
Access networks: data center networks

- high-bandwidth links (10s to 100s Gbps) connect hundreds to thousands of servers together, and to Internet

Courtesy: Massachusetts Green High Performance Computing Center (mghpcc.org)
Chapter 1: roadmap

- What is the Internet?
- What is a protocol?
- Network edge: hosts, access network, physical media
- **Network core**: packet/circuit switching, internet structure
- Performance: loss, delay, throughput
- Security
- Protocol layers, service models
- History
The network core

- mesh of interconnected routers
- **packet-switching**: hosts break application-layer messages into **packets**
 - network forwards packets from one router to the next, across links on path from **source to destination**
Two key network-core functions

Forwarding:
- aka “switching”
- *local* action: move arriving packets from router’s input link to appropriate router output link

<table>
<thead>
<tr>
<th>header value</th>
<th>output link</th>
</tr>
</thead>
<tbody>
<tr>
<td>0100</td>
<td>3</td>
</tr>
<tr>
<td>0101</td>
<td>2</td>
</tr>
<tr>
<td>0111</td>
<td>2</td>
</tr>
<tr>
<td>1001</td>
<td>1</td>
</tr>
</tbody>
</table>

Routing:
- *global* action: determine source-destination paths taken by packets
- routing algorithms
packet transmission delay: takes L/R seconds to transmit (push out) L-bit packet into link at R bps

store and forward: entire packet must arrive at router before it can be transmitted on next link

One-hop numerical example:
- $L = 10$ Kbits
- $R = 100$ Mbps
- one-hop transmission delay = 0.1 msec
Packet-switching: queueing

Queueing occurs when work arrives faster than it can be serviced:
Packet-switching: queueing

Packet queuing and loss: if arrival rate (in bps) to link exceeds transmission rate (bps) of link for some period of time:

- packets will queue, waiting to be transmitted on output link
- packets can be dropped (lost) if memory (buffer) in router fills up
Alternative to packet switching: circuit switching

end-end resources allocated to, reserved for “call” between source and destination

- in diagram, each link has four circuits.
 - call gets 2nd circuit in top link and 1st circuit in right link.
- dedicated resources: no sharing
 - circuit-like (guaranteed) performance
- circuit segment idle if not used by call (no sharing)
- commonly used in traditional telephone networks

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive
Packet switching versus circuit switching

example:
- 1 Gb/s link
- each user:
 - 100 Mb/s when “active”
 - active 10% of time

Q: how many users can use this network under circuit-switching and packet switching?

- circuit-switching: 10 users
- packet switching: with 35 users, probability > 10 active at same time is less than .0004

Q: how did we get value 0.0004?
A: A math problem (for those with course in probability only)

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive
Packet switching versus circuit switching

Is packet switching a “slam dunk winner”?
- great for “bursty” data – sometimes has data to send, but at other times not
 • resource sharing
 • simpler, no call setup
- excessive congestion possible: packet delay and loss due to buffer overflow
 • protocols needed for reliable data transfer, congestion control
- Q: How to provide circuit-like behavior with packet-switching?
 • “It’s complicated.” We’ll study various techniques that try to make packet switching as “circuit-like” as possible.

Q: human analogies of reserved resources (circuit switching) versus on-demand allocation (packet switching)?
Chapter 1: roadmap

- What *is* the Internet?
- What *is* a protocol?
- Network edge: hosts, access network, physical media
- Network core: packet/circuit switching, internet structure
- Performance: loss, delay, throughput
- Security
- Protocol layers, service models
- History
How do packet delay and loss occur?

- packets *queue* in router buffers, waiting for turn for transmission
 - queue length grows when arrival rate to link (temporarily) exceeds output link capacity
- packet *loss* occurs when memory to hold queued packets fills up

![Diagram showing packet delay and loss](image)

- Packet being transmitted *(transmission delay)*
- Packets in buffers *(queueing delay)*
- Free (available) buffers: arriving packets dropped *(loss)* if no free buffers
Packet delay: four sources

\[d_{\text{nodal}} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} + d_{\text{prop}} \]

\[d_{\text{proc}}: \text{ nodal processing} \]
\[\quad \text{check bit errors} \]
\[\quad \text{determine output link} \]
\[\quad \text{typically < microsecs} \]

\[d_{\text{queue}}: \text{ queueing delay} \]
\[\quad \text{time waiting at output link for transmission} \]
\[\quad \text{depends on congestion level of router} \]
Packet delay: four sources

\[d_{\text{nodal}} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} + d_{\text{prop}} \]

\(d_{\text{trans}}\): transmission delay:
- \(L\): packet length (bits)
- \(R\): link transmission rate (bps)
- \(d_{\text{trans}} = L/R\)

\(d_{\text{prop}}\): propagation delay:
- \(d\): length of physical link
- \(s\): propagation speed (~2x10^8 m/sec)
- \(d_{\text{prop}} = d/s\)

\(d_{\text{trans}}\) and \(d_{\text{prop}}\) very different
In-Class calculation: Caravan analogy

- car ~ bit; caravan ~ packet; toll service ~ link transmission
- Q: How long until caravan is lined up before 2nd toll booth?

<table>
<thead>
<tr>
<th>Settings</th>
<th>transmission delay $d_{\text{trans}} = L/R$</th>
<th>propagation delay $d_{\text{prop}} = D/s$</th>
<th>d_{total}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario 1</td>
<td>$L/R = 10 /0.1\text{bps} = 100$ s</td>
<td>$D/s = 100/100 = 1\text{hr}$</td>
<td>$1\text{hr} + 100$ s</td>
</tr>
<tr>
<td>Scenario 2</td>
<td>$L/R = 10 /1\text{bps} = 10$ s</td>
<td>$D/s = 100\text{m}/100 = 3.6$ s</td>
<td>13.6 s</td>
</tr>
</tbody>
</table>

Q: Will cars arrive to 2nd booth before all cars served at first booth? No!
In-Class calculation: More Booths ...

- car ~ bit; caravan ~ packet; toll service ~ link transmission

- **Q:** How long until caravan passes the last toll booth?

\[
d_{\text{total}} = \sum d_{\text{hop}} \approx \sum \left(\frac{L}{R_x} + \frac{D_x}{S_x} \right)
\]

(only transmission and prop delay considered)
Packet queueing delay (revisited)

- a: average packet arrival rate
- L: packet length (bits)
- R: link bandwidth (bit transmission rate)

\[
\frac{L \cdot a}{R} = \text{arrival rate of bits over service rate of bits, } \text{"traffic intensity"}
\]

- $La/R \sim 0$: avg. queueing delay small
- $La/R \rightarrow 1$: avg. queueing delay large
- $La/R > 1$: more "work" arriving is more than can be serviced - average delay infinite!
“Real” Internet delays and routes

- what do “real” Internet delay & loss look like?
- **traceroute** program: provides delay measurement from source to router along end-end Internet path towards destination. For all \(i \):
 - sends three packets that will reach router \(i \) on path towards destination (with time-to-live field value of \(i \))
 - router \(i \) will return packets to sender
 - sender measures time interval between transmission and reply
“Real” Internet delays, routes

- **traceroute: www.google.com**

 traceroute to www.google.com (142.250.191.132), 64 hops max, 72 byte packets

 1. lamb-20-c7710-01-vlan1330.tcom.purdue.edu (10.184.0.10) \(3.413 \text{ ms } 5.932 \text{ ms } 9.562 \text{ ms}\)
 2. lamb-20-c7710-03-vlan3014.tcom.purdue.edu (172.28.160.195) \(4.965 \text{ ms } 7.620 \text{ ms } 7.767 \text{ ms}\)
 3. 192.168.18.8 (192.168.18.8) \(9.190 \text{ ms } 8.347 \text{ ms } 5.382 \text{ ms}\)
 4. tel-210-c7710-01-tpp-e1-11-1.tcom.purdue.edu (172.28.249.18) \(19.250 \text{ ms } 7.934 \text{ ms } 4.958 \text{ ms}\)
 5. lamb-20-c7710-01-tpp-e1-3-1.tcom.purdue.edu (172.28.249.1) \(5.298 \text{ ms } 7.569 \text{ ms } 5.606 \text{ ms}\)
 6. lamb-20-c7710-01-tpp-e10-2.tcom.purdue.edu (172.28.249.88) \(5.270 \text{ ms } 6.441 \text{ ms } 6.710 \text{ ms}\)
 7. indiana-gigapop-lldc-internet-mx960.tcom.purdue.edu (192.5.40.187) \(11.179 \text{ ms } 6.225 \text{ ms } 9.231 \text{ ms}\)
 8. lo-0.1.rtr.star.indiana.gigapop.net (149.165.255.11) \(18.560 \text{ ms } 14.497 \text{ ms } 17.082 \text{ ms}\)
 9. et-0-2-2.2286.sw2.star.omnipop.btaa.org (149.165.183.86) \(19.431 \text{ ms } 15.515 \text{ ms } 14.557 \text{ ms}\)
 10. r-equinox-isp-ae0-2401.ip4.wiscnet.net (140.189.9.133) \(14.838 \text{ ms } 15.049 \text{ ms } 15.539 \text{ ms}\)
 11. 72.14.218.180 (72.14.218.180) \(14.289 \text{ ms } 14.357 \text{ ms } 17.355 \text{ ms}\)
 12. 74.125.251.149 (74.125.251.149) \(16.564 \text{ ms } 12.532 \text{ ms } 12.358 \text{ ms}\)
 13. 142.251.60.7 (142.251.60.7) \(12.217 \text{ ms } 14.306 \text{ ms } 13.943 \text{ ms}\)
 14. ord38s29-in-f4.1e100.net (142.250.191.132) \(46.041 \text{ ms } 36.942 \text{ ms } 14.111 \text{ ms}\)

* Do some traceroutes from exotic countries at www.traceroute.org
Demo in Class

- traceroute -I www.cs.purdue.edu
- Traceroute www.google.com
- traceroute www.cam.ac.uk

(man traceroute)

- What are differences you can see?
- Can you see the link across the ocean? Why or why not?
Networking tools: Packet sniffer and analyzer

- **tcpdump** (command)
 - > tcpdump –i en0
 - > tcpdump -i en0 -c 10 -w test.cap
 - > tcpdump –r test.cap

- **wireshark** (UI)
Packet loss

- queue (aka buffer) preceding link in buffer has finite capacity
- packet arriving to full queue dropped (aka lost)
- lost packet may be retransmitted by previous node, by source end system, or not at all

* Check out the Java applet for an interactive animation (on publisher’s website) of queuing and loss

Introduction: 1-49
Throughput

- **throughput**: rate (bits/time unit) at which bits are being sent from sender to receiver
 - *instantaneous*: rate at given point in time
 - *average*: rate over longer period of time

server sends bits (fluid) into pipe

pipe that can carry fluid at rate (R_s bits/sec)

pipe that can carry fluid at rate (R_c bits/sec)
Throughput

$R_s < R_c$ What is average end-end throughput?

$R_s > R_c$ What is average end-end throughput?

bottleneck link link on end-end path that constrains end-end throughput
Throughput: network scenario

- per-connection end-end throughput: $\min(R_c, R_s, R/10)$
- in practice: R_c or R_s is often bottleneck

10 connections (fairly) share backbone bottleneck link R bits/sec

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/
Chapter 1: roadmap

- What is the Internet?
- What is a protocol?
- Network edge: hosts, access network, physical media
- Network core: packet/circuit switching, internet structure
- Performance: loss, delay, throughput
- Security
- Protocol layers, service models
- History
Protocol “layers” and reference models

Networks are complex, with many “pieces”:
- hosts
- routers
- links of various media
- applications
- protocols
- hardware, software

Question: is there any hope of organizing structure of network?
- and/or our discussion of networks?
Why layering?

Approach to designing/discussing complex systems:

- explicit structure allows identification, relationship of system’s pieces
 - layered *reference model* for discussion

- modularization eases maintenance, updating of system
 - change in layer's service *implementation*: transparent to rest of system
 - e.g., change in gate procedure doesn’t affect rest of system
Layered Internet protocol stack

- **application**: supporting network applications
 - HTTP, IMAP, SMTP, DNS

- **transport**: process-process data transfer
 - TCP, UDP

- **network**: routing of datagrams from source to destination
 - IP, routing protocols

- **link**: data transfer between neighboring network elements
 - Ethernet, 802.11 (WiFi), PPP

- **physical**: bits “on the wire”
Services, Layering and Encapsulation

Application exchanges messages to implement some application service using services of transport layer.

Transport-layer protocol transfers M (e.g., reliably) from one process to another, using services of network layer.

- transport-layer protocol encapsulates application-layer message, M, with transport layer-layer header H_t to create a transport-layer segment.
 - H_t used by transport layer protocol to implement its service.
Transport-layer protocol transfers M (e.g., reliably) from one process to another, using services of network layer.

Network-layer protocol transfers transport-layer segment \([H_t \mid M]\) from one host to another, using link layer services.

- network-layer protocol *encapsulates* transport-layer segment \([H_t \mid M]\) with network layer-layer header \(H_n\) to create a network-layer datagram
 - \(H_n\) used by network layer protocol to implement its service
Services, Layering and Encapsulation

- Link-layer protocol encapsulates network datagram \([H_n | [H_t | M]\) with link-layer header \(H_l\) to create a link-layer frame.
Services, Layering and Encapsulation

Introduction: 1-60
Encapsulation: an end-end view
Part I: Layering in Internet protocol stack

Applications
 ... built on ...
Reliable (or unreliable) transport
 ... built on ...
Best-effort global packet delivery
 ... built on ...
Best-effort local packet delivery
 ... built on ...
Physical transfer of bits

Source: Scott Shenker (UC Berkeley): slide 7 at The Future of Networking, and the Past of Protocols
https://www.youtube.com/watch?v=YHeyuD89n1Y&t=111s
Chapter 1: Summary

- what’s the Internet?
- network edge
 - hosts, access network
- network core
 - Packet switching versus. circuit switching
- performance: loss, delay, throughput
- what’s a protocol?
 - protocol layers, service models