Acknowledgement: The source PowerPoint slides are public available, provided by Authors (JFK/KWR). They are revised for CS422@Purdue. Chapter 1 Introduction

A note on the use of these PowerPoint slides:

We're making these slides freely available to all (faculty, students, readers). They're in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a *lot* of work on our part. In return for use, we only ask the following:

- If you use these slides (e.g., in a class) that you mention their source (after all, we'd like people to use our book!)
- If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

For a revision history, see the slide note for this page.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2020 J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top-Down Approach 8th edition Jim Kurose, Keith Ross Pearson, 2020

COMPUTER

A TOP-DOWN APPROACH

Eighth Edition

P

Chapter 1: introduction

Chapter goal:

- Get "feel," "big picture," introduction to terminology
 - more depth, detail *later* in course

Overview/roadmap:

- What is the Internet? What is a protocol?
- Network edge: hosts, access network, physical media
- Network core: packet/circuit switching, internet structure
- Performance: loss, delay, throughput
- Protocol layers, service models

What is the Internet?

The Internet: a "nuts and bolts" view

Billions of connected computing *devices*:

- hosts = end systems
- running network apps at Internet's "edge"

Packet switches: forward packets (chunks of data)

routers, switches

Communication links

- fiber, copper, radio, satellite
- transmission rate: bandwidth

Networks

 collection of devices, routers, links: managed by an organization

The Internet: a "nuts and bolts" view

- Internet: "network of networks"
 - Interconnected ISPs
- protocols are everywhere
 - control sending, receiving of messages
 - e.g., HTTP (Web), streaming video, Skype, TCP, IP, WiFi, 4G, Ethernet
- Internet standards
 - RFC: Request for Comments
 - IETF: Internet Engineering Task Force

The Internet: a "services" view

- Infrastructure that provides services to applications:
 - Web, streaming video, multimedia teleconferencing, email, games, e-commerce, social media, inter-connected appliances, ...
- provides *programming interface* to distributed applications:
 - "hooks" allowing sending/receiving apps to "connect" to, use Internet transport service
 - provides service options, analogous to postal service

What's a protocol?

Human protocols:

- "what's the time?"
- "I have a question"
- introductions

Rules for:

... specific messages sent

... specific actions taken when message received, or other events

Network protocols:

- computers (devices) rather than humans
- all communication activity in Internet governed by protocols

Protocols define the format, order of messages sent and received among network entities, and actions taken on message transmission, receipt

What's a protocol?

A human protocol and a computer network protocol:

Q: other human protocols?

Chapter 1: roadmap

- What is the Internet?
- What is a protocol?
- Network edge: hosts, access network, physical media
- Network core: packet/circuit switching, internet structure
- Performance: loss, delay, throughput
- Security
- Protocol layers, service models

- History

A closer look at Internet structure

Network edge:

- hosts: clients and servers
- servers often in data centers

A closer look at Internet structure

Network edge:

- hosts: clients and servers
- servers often in data centers

Access networks, physical media:

wired, wireless communication links

A closer look at Internet structure

Network edge:

- hosts: clients and servers
- servers often in data centers

Access networks, physical media:wired, wireless communication links

Network core:

- Interconnected routers
- network of networks

Access networks and physical media

Q: How to connect end systems to edge router?

- residential access nets
- institutional access networks (school, company)
- mobile access networks (WiFi, 4G/5G)

Access networks: cable-based access

- HFC: hybrid fiber coax
 - asymmetric: up to 40 Mbps 1.2 Gbps downstream transmission rate, 30-100 Mbps upstream transmission rate
- network of cable, fiber attaches homes to ISP router
 - homes *share access network* to cable headend

Wireless access networks

Shared *wireless* access network connects end system to router

- via base station aka "access point"
- Wireless local area networks (WLANs)
- typically within or around building (~100 ft)
- 802.11b/g/n/ac/be (WiFi): up to 46 Gbps transmission rate
- Also called WiFi 5, 6, 6e and 7

Wide-area cellular access networks

- provided by mobile, cellular network operator (10's km)
- 10 1000 Mbps
- 5G/4G cellular networks

Access networks: enterprise networks

- companies, universities, etc.
- mix of wired, wireless link technologies, connecting a mix of switches and routers (we'll cover differences shortly)
 - Ethernet: wired access at 100Mbps, 1Gbps, 10Gbps
 - WiFi: wireless access points at 11, 54, 450 Mbps, 3.5Gbps, 46 Gbps

Access networks: data center networks

 high-bandwidth links (10s to 100s Gbps) connect hundreds to thousands of servers together, and to Internet

Courtesy: Massachusetts Green High Performance Computing Center (mghpcc.org)

Chapter 1: roadmap

- What is the Internet?
- What is a protocol?
- Network edge: hosts, access network, physical media
- Network core: packet/circuit switching, internet structure
- Performance: loss, delay, throughput
- Security
- Protocol layers, service models

History

The network core

- mesh of interconnected routers
- packet-switching: hosts break application-layer messages into packets
 - network forwards packets from one router to the next, across links on path from source to destination

Two key network-core functions

Forwarding:

- aka "switching"
- *local* action: move arriving packets from router's input link to appropriate router output link

Routing:

- global action: determine sourcedestination paths taken by packets
- routing algorithms

Packet-switching: store-and-forward

- packet transmission delay: takes L/R seconds to transmit (push out) L-bit packet into link at R bps
- store and forward: <u>entire</u> packet must arrive at router <u>before</u> it can be transmitted on next link

One-hop numerical example:

- L = 10 Kbits
- *R* = 100 Mbps
- one-hop transmission delay
 = 0.1 msec

Packet-switching: queueing

Queueing occurs when work arrives faster than it can be serviced:

Packet-switching: queueing

Packet queuing and loss: if arrival rate (in bps) to link exceeds transmission rate (bps) of link for some period of time:

- packets will queue, waiting to be transmitted on output link
- packets can be dropped (lost) if memory (buffer) in router fills up

Alternative to packet switching: circuit switching

end-end resources allocated to, reserved for "call" between source and destination

- In diagram, each link has four circuits.
 - call gets 2nd circuit in top link and 1st circuit in right link.
- dedicated resources: no sharing
 - circuit-like (guaranteed) performance
- circuit segment idle if not used by call (no sharing)
- commonly used in traditional telephone networks

Packet switching versus circuit switching

example:

- 1 Gb/s link
- each user:
 - 100 Mb/s when "active"
 - active 10% of time

Q: how many users can use this network under circuit-switching and packet switching?

- circuit-switching: 10 users
- packet switching: with 35 users, probability > 10 active at same time is less than .0004 *

Q: how did we get value 0.0004? A: A math problem (for those with course in probability only)

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive

Packet switching versus circuit switching

Is packet switching a "slam dunk winner"?

- great for "bursty" data sometimes has data to send, but at other times not
 - resource sharing
 - simpler, no call setup
- excessive congestion possible: packet delay and loss due to buffer overflow
 - protocols needed for reliable data transfer, congestion control
- *Q:* How to provide circuit-like behavior with packet-switching?
 - "It's complicated." We'll study various techniques that try to make packet switching as "circuit-like" as possible.

Q: human analogies of reserved resources (circuit switching) versus on-demand allocation (packet switching)?

Chapter 1: roadmap

- What is the Internet?
- What is a protocol?
- Network edge: hosts, access network, physical media
- Network core: packet/circuit switching, internet structure
- Performance: loss, delay, throughput
- Security
- Protocol layers, service models
- History

How do packet delay and loss occur?

- packets *queue* in router buffers, waiting for turn for transmission
 - queue length grows when arrival rate to link (temporarily) exceeds output link capacity
- packet loss occurs when memory to hold queued packets fills up

Packet delay: four sources

$$d_{\text{nodal}} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} + d_{\text{prop}}$$

d_{proc}: nodal processing

- check bit errors
- determine output link
- typically < microsecs</p>

d_{queue}: queueing delay

- time waiting at output link for transmission
- depends on congestion level of router

Packet delay: four sources

$$d_{\text{nodal}} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} + d_{\text{prop}}$$

 d_{trans} and d_{prop}

very different

*d*_{trans}: transmission delay:

L: packet length (bits)

 $\mathbf{I}_{trans} = L/R$

R: link transmission rate (bps)

d_{prop} : propagation delay:

d: length of physical link

• $d_{\text{prop}} = d/s$

s: propagation speed (~2x10⁸ m/sec)

In-Class calculation: Caravan analogy

Scenario 1. Scenario 2:

100 km/hr

- toll booth takes 1 sec to serve one car (bit transmission time)
- car ~ bit; caravan ~ packet; toll service ~ link t
- Q: How long until caravan is lined up before 2nd toll booth?

Settings	transmission delay d _{trans} = L/R	propagation delay d _{prop} = D/s	d _{total}
Scenario 1	L/R = 10 /0.1bps = 100 s	D/s = 100/100 = 1hr	<mark>1hr + 100s</mark>
Scenario 2	L/R = 10 / 1bps = 10 s	D/s= 100m/100 = 3.6s	13.6s

Q: Will cars arrive to 2nd booth before all cars served at first booth? No! Introduction: 1-42

In-Class calculation: More Booths ...

- car ~ bit; caravan ~ packet; toll service ~ link transmission
- *Q:* How long until caravan passes the last toll booth?

$$d_{total} = \sum d_{hop} \approx \sum (L/Rx + Dx/Sx)$$

(only transmission and prop delay considered)

Packet queueing delay (revisited)

- *a:* average packet arrival rate
- L: packet length (bits)
- R: link bandwidth (bit transmission rate)
- $\frac{L \cdot a}{R} : \frac{\text{arrival rate of bits}}{\text{service rate of bits}} \quad$ *"traffic intensity"*
- La/R ~ 0: avg. queueing delay small
- La/R -> 1: avg. queueing delay large
- La/R > 1: more "work" arriving is more than can be serviced - average delay infinite!

"Real" Internet delays and routes

- what do "real" Internet delay & loss look like?
- traceroute program: provides delay measurement from source to router along end-end Internet path towards destination. For all *i*:
 - sends three packets that will reach router *i* on path towards destination (with time-to-live field value of *i*)
 - router *i* will return packets to sender
 - sender measures time interval between transmission and reply

"Real" Internet delays, routes

3 delay measurements from PAL3.0

traceroute: www.google.com

traceroute to www.google.com (142.250.191.132), 64 hops max, 72 byte packets

- 1 lamb-20-c7710-01-vlan1330.tcom.purdue.edu (10.184.0.10) 3.413 ms 5.932 ms 9.562 ms
- 2 lamb-20-c7710-03-vlan3014.tcom.purdue.edu (172.28.160.195) 4.965 ms 7.620 ms 7.767 ms
- 3 192.168.18.8 (192.168.18.8) 9.190 ms 8.347 ms 5.382 ms
- 4 tel-210-c7710-01-ptp-e1-11-1.tcom.purdue.edu (172.28.249.18) 19.250 ms 7.934 ms 4.958 ms
- 5 lamb-20-c7710-01-ptp-e1-3-1.tcom.purdue.edu (172.28.249.1) 5.298 ms 7.569 ms 5.606 ms
- 6 lamb-20-c7710-01-ptp-e10-2.tcom.purdue.edu (172.28.249.88) 5.270 ms 6.441 ms 6.710 ms
- 7 indiana-gigapop-lldc-internet-mx960.tcom.purdue.edu (192.5.40.187) 11.179 ms 6.225 ms 9.231 ms
- 8 lo-0.1.rtr.star.indiana.gigapop.net (149.165.255.11) 18.560 ms 14.497 ms 17.082 ms
- 9 et-0-2-2.2286.sw2.star.omnipop.btaa.org (149.165.183.86) 19.431 ms 15.515 ms 14.557 ms
- 10 r-equinix-isp-ae0-2401.ip4.wiscnet.net (140.189.9.133) 14.838 ms 15.049 ms 15.539 ms
- 11 72.14.218.180 (72.14.218.180) 14.289 ms 14.357 ms 17.355 ms
- 12 74.125.251.149 (74.125.251.149) 16.564 ms 12.532 ms 12.358 ms
- 13 142.251.60.7 (142.251.60.7) 12.217 ms 14.306 ms 13.943 ms
- 14 ord38s29-in-f4.1e100.net (142.250.191.132) 46.041 ms 36.942 ms 14.111 ms

* Do some traceroutes from exotic countries at www.traceroute.org

Demo in Class

- traceroute -I <u>www.cs.purdue.edu</u>
- Traceroute <u>www.google.com</u>
- traceroute <u>www.cam.ac.uk</u>

(man traceroute)

- What are differences you can see?
- Can you see the link across the ocean? Why or why not?

Networking tools: Packet sniffer and analyzer

tcpdump (command)

- > tcpdump –i en0
- > tcpdump -i en0 -c 10 -w test.cap
- > tcpdump –r test.cap

wireshark (UI)

Packet loss

- queue (aka buffer) preceding link in buffer has finite capacity
- packet arriving to full queue dropped (aka lost)
- lost packet may be retransmitted by previous node, by source end system, or not at all

* Check out the Java applet for an interactive animation (on publisher's website) of queuing and loss

Throughput

- throughput: rate (bits/time unit) at which bits are being sent from sender to receiver
 - *instantaneous:* rate at given point in time
 - *average:* rate over longer period of time

Throughput

 $R_s < R_c$ What is average end-end throughput?

 $R_s > R_c$ What is average end-end throughput?

— bottleneck link
— link on end-end path that constrains end-end throughput

Throughput: network scenario

10 connections (fairly) share backbone bottleneck link *R* bits/sec

- per-connection endend throughput: min(R_c, R_s, R/10)
- in practice: R_c or R_s is often bottleneck

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/

Chapter 1: roadmap

- What is the Internet?
- What is a protocol?
- Network edge: hosts, access network, physical media
- Network core: packet/circuit switching, internet structure
- Performance: loss, delay, throughput
- Security

History

Protocol layers, service models

Protocol "layers" and reference models

Networks are complex, with many "pieces":

- hosts
- routers
- Iinks of various media
- applications
- protocols
- hardware, software

Question: is there any hope of *organizing* structure of network?

and/or our *discussion* of networks?

Why layering?

Approach to designing/discussing complex systems:

- explicit structure allows identification, relationship of system's pieces
 - layered *reference model* for discussion
- modularization eases maintenance, updating of system
 - change in layer's service *implementation*: transparent to rest of system
 - e.g., change in gate procedure doesn't affect rest of system

Layered Internet protocol stack

- application: supporting network applications
 - HTTP, IMAP, SMTP, DNS
- transport: process-process data transfer
 - TCP, UDP
- network: routing of datagrams from source to destination
 - IP, routing protocols
- Ink: data transfer between neighboring network elements
 - Ethernet, 802.11 (WiFi), PPP
- physical: bits "on the wire"

	application	 Application exchanges messages to implement some application service using services of transport layer Ht M Transport-layer protocol transfers M (e.g., reliably) from one process to another, using services of network layer transport-layer protocol encapsulates application-layer message, M, with transport layer-layer header Ht to create a transport-layer segment Ht used by transport layer protocol to implement its service 	application	
	transport		transport	
	network		network	
	link		link	
	physical		physical	
source destinati				ination

Part I: Layering in Internet protocol stack

Applications ... built on ... **Reliable (or unreliable) transport** ... built on ... **Best-effort global packet delivery** ... built on ... **Best-effort local packet delivery** ... built on ... Physical transfer of bits

Source: Scott Shenker (UC Berkeley): slide 7 at The Future of Networking, and the Past of Protocols https://www.youtube.com/watch?v=YHeyuD89n1Y&t=111s

Chapter I: Summary

- what's the Internet?
- network edge
 - hosts, access network
- network core
 - Packet switching versus. circuit switching
- performance: loss, delay, throughput
- what's a protocol?
 - protocol layers, service models