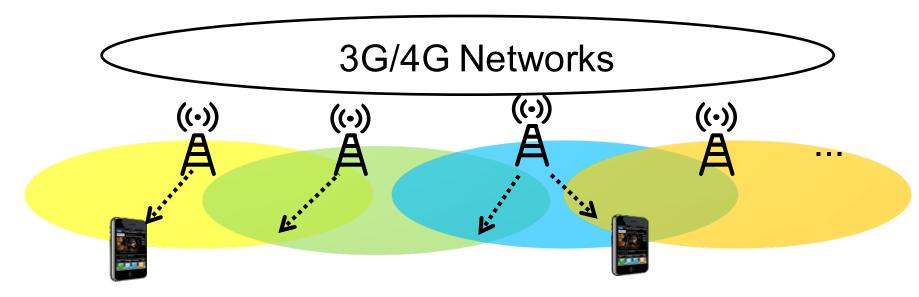
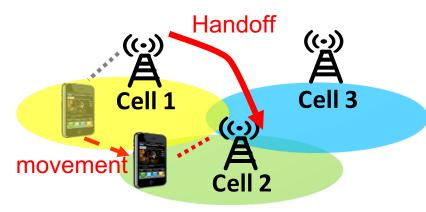

- Revisiting Configuration Management in 3G/4G Mobile Networks

Chunyi Peng


The Ohio State University

Joint work with Yuanjie Li⁺, Haotian Deng^{*}, Jiayao Li⁺, Songwu Lu⁺ ⁺ University of California, Los Angeles ^{*} The Ohio State University


"Anytime, Anywhere" Access via Cellular Networks

Mobility Management (MM) Via Handoff

Handoff Stability

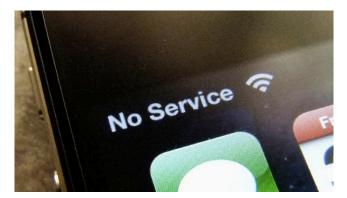
- Stability
 - Converge given invariant settings (location, radio quality, traffic, etc.)

Instability

((•))

Cell 1

- No convergence
- persistent loop: C1->C2->C3->C1->C2->C3...


Cell 2

((-))

Cell 3

Why Stability Desirable?

- Handoff comes at a cost
 - 100ms ~ 10s for each handoff
 - Radio/network resource consumed (e.g., 3-8x signaling msgs)
 - Service degradation/disruption (e.g., 10-20x slowdown)
- Frequent handoffs -> much more pain

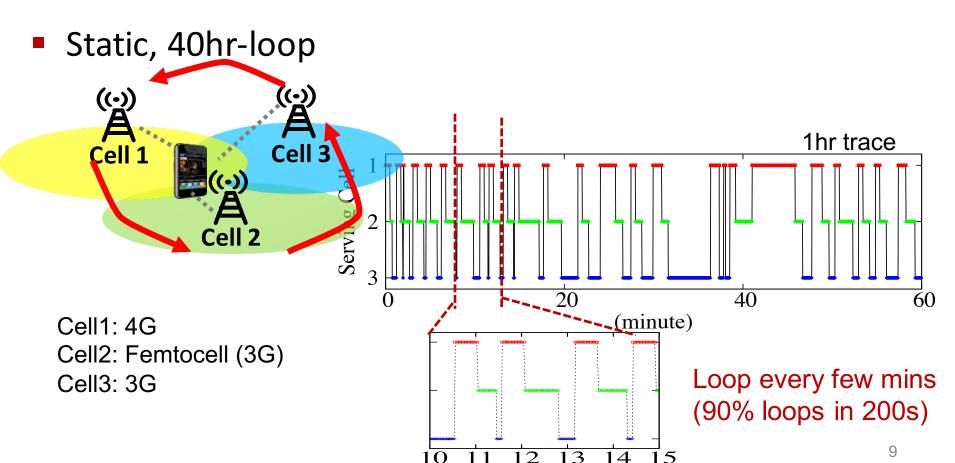
Clarification

- Instability ≠ Transient loops
 - Not ping-pong effects caused by radio dynamics & user movement

- Our focus: Persistent loop
 - Caused by fundamental (persistent) conflicts (e.g., misconfigurations, inconsistent policy, logic conflicts)
 - Structural property in mobility management

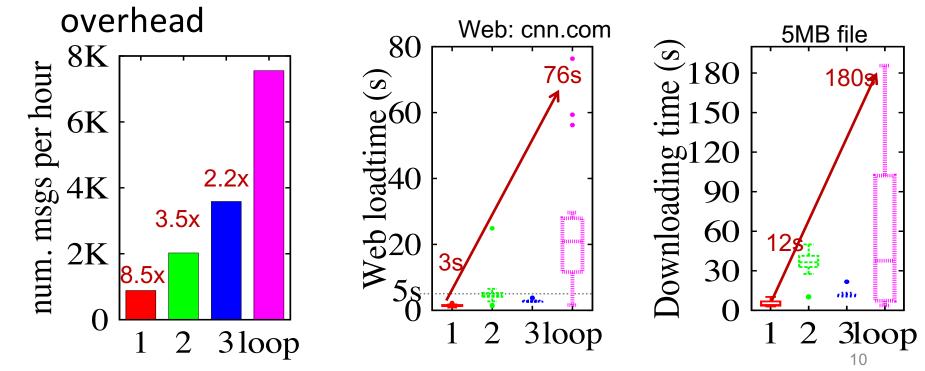
This Work

Q1: Does unstable handoff exist in reality?

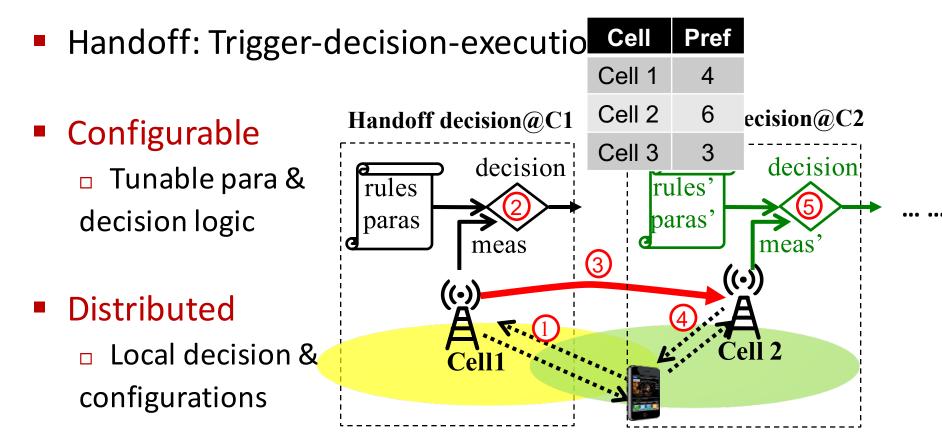

Q2: When (under what conditions) shall instability happen?

Q3: How to detect instability?

Q1: Does instability exist?


Unfortunately yes!

3-Cell Loop Example



Negative Impacts Verified in Real-world Harm to both carriers and users

Excessive signaling
 Performance degradation

How Can It Happen?

Loop Caused Inconsistent Configurations

Cell

Cell 1

Cell 2

Cell 3

Pref

6

3

Pref. < Pref.

Cell

Cell 1

Cell 2

Cell 3

Pref_{3,3}

<u>((</u>Δ))

Cell

Pref

5

3

Pref_{2 3}

Cell 3

Different preferences driven by diverse needs

□ C1 \rightarrow C2 (4G \rightarrow Femtocell):

traffic offloading

□ C2 \rightarrow C3 (Femtocell \rightarrow 3G):

 $c_1 (c_2) > 1 c_1$

Equal preference, better radio

Well-justified individual handoff policy

Well-behaved handoff among cells

ギ

Q2: When shall instability happen?

Formulation and analysis (Details in the paper)

Formulation

- Each handoff decision: $s \rightarrow [t = F_s(C, P)]$
 - □ *s*, *t*: serving/target cell
 - \square F_s : decision logic (function) for serving cell s
 - □ C: set of candidate cells (with runtime meas)
 - □ *P*: configurable parameters
- Handoff sequences: $s \rightarrow c_1 \rightarrow ... \rightarrow c_i \rightarrow [c_{i+1} = F_{ci}(c_i)] \rightarrow ... \rightarrow t$
- Stability: for any *invariant* measurements, any handoff sequence always converge to a single cell t

Idle-state handoff (w/o traffic)

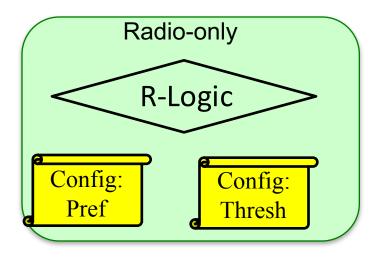
Active-state handoff (w/ traffic)

Idle-State Handoff

Easy!

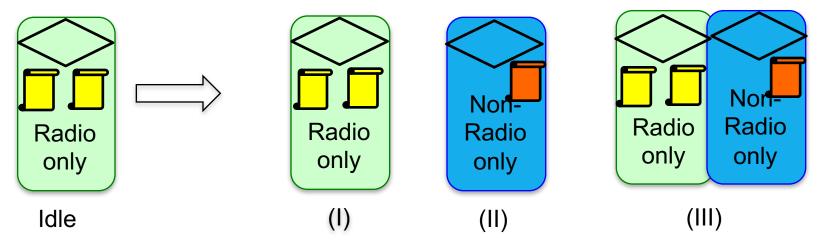
@s, pairwise comparsion

- Regulated by 3GPP standards $c \in C$, c wins if one is satisfied
- Based on radio evaluation

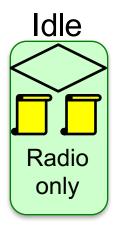

$$\begin{cases} P_{s,c} > P_{s,s}, & r_c > \Theta_{s,c}^{high} \\ P_{s,c} = P_{s,s}, & r_c > r_s + \Theta_{s,c}^{equal} \\ P_{s,c} < P_{s,s}, & r_s < \Theta_s^{serve}, r_c > \Theta_{s,c}^{low} \end{cases}$$
preference
radio evaluation (threshold)

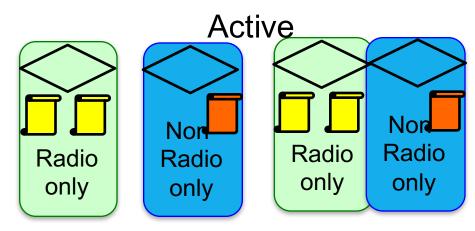
Idle-State Handoff

Radio-only handoff


$$s \rightarrow [t = F_s(C, P)]$$

- *F_s*: known (same at cells)
- P: configurable parameters (preferences & thresholds)




Active-State Handoff

- Not easy!
- Not fully regulated (e.g, Vendor-specific polices)
- Based on radio and/or non-radio evaluation

Causes of Instabilities: A Classification

- Uncoordinated configurations
 - Inconsistent preferences
 - Inconsistent thresholds
 - Active-idle misconfigurations

- Loop-prone decision logics
 - Active-active logic conflicts
 - Active-idle logic conflicts

Instability Conditions

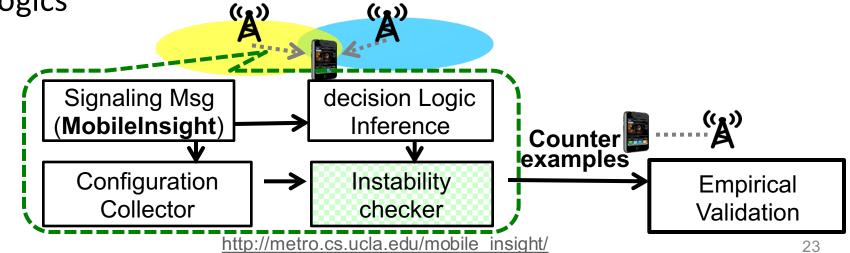
Inconsistent preferences (loop in preference settings)

Proposition-1

A persistent loop $c_1 \rightarrow ... \rightarrow c_n \rightarrow c_1$ can **always** happen under some invariant measurements, if

- 1. At least one cell c_i configures $Pref_{i,i} < Pref_{i,i+1}$
- 2. Every cell c_j configures $Pref_{j,j} \le Pref_{j,j+1}$, $Pref_{n,n} \le Pref_{n,1}$

Other Instability Conditions

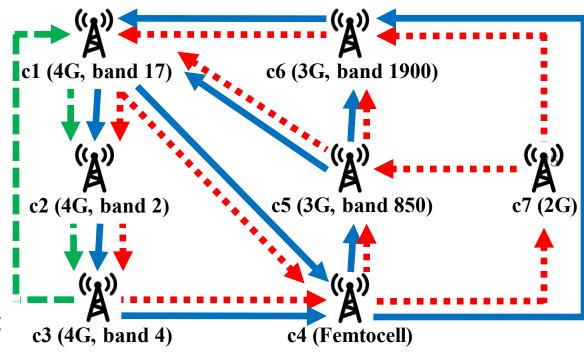

- Inconsistent radio thresholds (Prop-2)
 In fact, preferences + thresholds
- Active-Idle misconfiguration (Prop-4)
 - Similar to Prop-2, but radio conditions are necessary but not sufficient for active handoffs
- Active-active logic conflicts (Prop-5)
 When radio evaluation is involved
- Active-Idle logic conflicts (Prop-6)
 Loop-prone in case the active handoff does not evaluate radio conditions

Q3: How to Detect Instabilities?

Detection and real-world check

In-Device Detection

- Approach: given configuration parameters/logics, check (in)stability conditions
- No data from operators!
- In-device: infer network-side configurations and decision logics

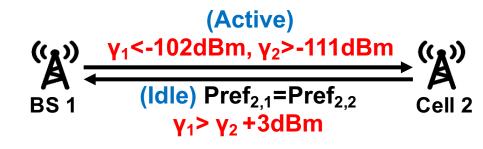

Experiment Settings

- Two major U.S. mobile network operators
- In two US cities (Los Angeles, CA and Columbus, OH)
- 50 outdoor locations, 63 indoor locations,

 21 instances of instabilities detected and observed in reality, covering all the categories

Inconsistent Preferences

- 17 instances found in one U.S. operator
- Diverse causes in reality
 - L1: 4G-Femtocell-3G: uncoordinated goals
 - L2: 4G-Femtocell-2G-3G: device-side misconfiguration
 - L3: 4G-4G: imprudent
 4G infrastructure
 upgrade

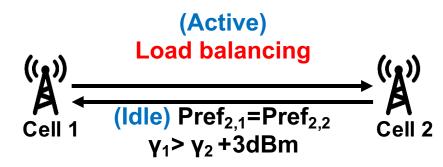


Inconsistent Thresholds

None

Active-Idle Misconfiguration

L4: 3G-Femto


- 1 instance found in both U.S. operators
- A design loophole in 3G Radio Resource Control (RRC) protocol
 - Active-state handoff: thresholds of radio quality conflict with idle-state handoff decision logic

Active-Active and Active-Idle Logic Conflicts

- Active-Active logic conflicts
 - □ L5: 4G-4G
 - 1 instance in one US operator

Active-Idle logic conflicts
 L6: 3G-3G (both operators)
 L7: 3G-Femto (one operator)

How Common?

	#Scenario	Occurrence of	Loop occurrence
	instances	Misconfigurations or	(parameter+logic
		Loop-prone logic	+observation)
L1: 4G-Femto-3G	8	96.8%	25.0%
L2: 4G-Femto-2G-3G	8	96.8%	0.49%
L3: 4G-4G	1	2.2%	2.2%
L4: 3G-Femto	1	96.8%	9.4%
L5: 4G-4G	1	1.6%	1.6%
L6: 3G-3G	1	63.4%	2.15%
L7: 3G-Femto	1	96.8%	0.49%

Discussion: Fix Guidelines

- Network-side solution
 - Self-check of configuration conflicts
 - Safe configuration update (loop-free)
 - Handle policy update (dynamics)
 - Runtime migration (history information)
- Device-side solution
 - In-device detection
 - Break the loop (requires access to phone chipset)

Conclusion

- Instability exists in mobility management plane
 Distributed management in nature
- Instability can be prevented with coordination of mobility management
 - Regulation of parameters and decision logics are necessary
- More research aspects remain open
 - Other structural properties: reachability, optimality, convergence speed, etc.

Thank you!

http://web.cse.ohio-state.edu/~chunyi/projects/mmdiag.html

MobileInsight (tool): http://metro.cs.ucla.edu/mobile_insight/