# InFrame:

Multiflexing Full-Frame Visible Communication for Humans and Devices



011101010111....



This is in \*\*\* park.
http://www.nps.org/redw/...

Anran Wang Chunyi Peng Ouyang Zhang Guobin Shen Bing Zeng





Research



# Vision, the most important sense



# Display, not only for human eyes



#### **Emerging Screen-Camera Communication**







#### But, tension in display allocation arises



#### Can we do both?

# Enabling full-frame viewing for both human and devices

# YES, WE CAN.



# Demo: video captured by camera



# In fact, video frames are



1

#### InFrame: Full-Frame, Dual-Mode

- Screen-Human video watching (primary)
  - Goal#1: no impairing video watching experience
- Screen-Camera data communication
  - Goal#2: reasonable performance (throughput)



#### Opportunity: Perception Gap



- Physical limits of eyes
  - Temporal resolution (40-50Hz)
  - Imperceptible: too fast (>50Hz)
  - Flicker fusion: time-variant fluctuations of light intensity are not perceptible to human eyes if beyond a critical flicker frequency (CFF)





- Display: higher fresh rate
  - 120/240+ frame per second (FPS)
- Camera: high resolution, high capture rate, e.g.,
  - iPhone 6: 8M pixel, 240FPS
  - Samsung S5: 16M, 120FPS
- Moreover, device capability is advancing at a faster pace

## I. Screen-Human video watching

Goal#1: without impairing video watching

Challenge: human perception is complex and sensitive

# **Complementary Frames**

**Temporal Fusion** 

Display: 120fps

**Time** 1/60 second

Original video frames  $V_i$ 

Data frames Di

Displayed frames







#### Data Block Smoothing

V2+D2











**Sharp transition -> flicker** 

#### Transition duty cycles T

- pixel-level
- 0 to 1 or 1 to 0
- Amplitude follows a waveform
  - half of the squareroot raised Cosine



#### II. Screen-Camera data communication

Goal#2: reasonable performance

Challenge: interference from the primary channel

+ existing constraints in screen-camera comm.

#### Visual Pattern Design

- What is bit 0 or 1?
  - Interference from original video



Retrievable from any video



Chunyi Peng @ OSU

Bit 0

#### Data Frame Structure

> Structure: super pixel, block, group of blocks



## **Evaluation: Feasibility in User Study**

- > 8 users: 5 males and 3 females
  - Half wearing glasses

Color brightness = (R+G+B)/3

- Two experts on design and video
- Flicker score (0-4): 0/1 = no flicker/almost unnoticeable



## Throughput

- > Amplitude = 20, 30, cycle = 10, 12, 14
- > Three videos:

| Video | Throughput           | Decoding Rate                                    |
|-------|----------------------|--------------------------------------------------|
|       | 9.2 <b>~12.6Kbps</b> | Available GOB: 95-98%<br>Correction rate: 98-99% |
|       | 9.2- <b>12.8Kbps</b> | Available GOB: 96-97%<br>Correction rate: 98-99% |
|       | 5.0~ <b>7.0Kbps</b>  | Available GOB: 60-70%<br>Correction rate: 80-90% |

## Still, Open issues and ongoing work

- Applications for InFrame
  - Screen-Human link: context for human activities
  - Screen-Device link: eFormat (byte/text) -> automatic logging and processing
    - Video Ad + digital Coupons
- Throughput: a better multiplexing and frame design
- Practical issues
  - Viewing operations (video play, pause, forward...)
  - Camera capture quality; anchor design
  - Real-time rendering, computation and energy costs

#### Summary

- Full-frame video viewing for both human and devices
  - One visible channel, two views
- Opportunity: perception gap between human and device
  - Even larger in the future
- Two-mode communication & sensing paradigm
  - Human: attention-free, or even effort-free
  - Device: opportunistic channel