A First Look at Unstable Mobility Management in Cellular Networks

Yuanjie Li¹ Jiaqi Xu² Chunyi Peng² Songwu Lu¹

¹University of California, Los Angeles
²The Ohio State University

HotMobile’16
Ubiquitous Cellular Network Access

Cellular Networks

7.9+ billion in 2015
Mobility Management (MM) via Handoff

Cellular Networks

- Seamless connectivity (via switching the serving cell)
 - Each cell: limited radio coverage
Desirable Handoff: Stability

Why desirable?
- Handoff comes at a cost
 - Multi-round signaling exchange
 - Service disruption/degradation

- Converge to certain cell given an invariant setting
Desirable Handoff

- Stability
 - Converge to certain cell

Problematic Handoff

- Instability (persistent loop):
 - C1->C2->C3->C1->C2->C3…
This Work: Instability in Mobility Management

- Q1: Does it exist in real networks?
- Q2: Why unstable?
- Q3: How to identify such risk?

Caused by fundamental (persistent) conflicts in policy not by transient factors (radio dynamics etc)
Q1: Does unstable MM exist in reality?

- Unfortunately, Yes!
3-Cell Loop Example

- Static, 40hr-loop

Cell1: 4G
Cell2: Femtocell (3G)
Cell3: 3G

Loop every few mins (90% loops in 200s)
Negative Impacts in Real-world

- Hurt both carriers and users
- Excessive signaling overhead (2-8x)
- Performance degradation (10+ fold slowdown)

![Graph showing num. msgs per hour](image)

- [Bar chart with num. msgs per hour]

 - 1 loop: 1K
 - 2 loop: 2K, 3.5x
 - 3 loop: 8K, 8.5x

![Graph showing web loadtime](image)

- [Line graph with web loadtime]

 - cnn 5MB file:
 - 3s
 - 76s

- [Line graph with downloading time]

 - 5MB file:
 - 12s
 - 180s
Q2: Why is MM unstable?
Distributed Nature of Handoff

- Each handoff: trigger-decision-execution phases
- Sequence of handoffs

Cell 1

Handoff decision@C1

Handoff decision@C2

…

Cell 2
Handoff for Versatile Demands

- Seamless connectivity
- Voice/data support
- Performance

Each individual handoff: OK

≠

The interplay among multiples: OK
3-Cell Loop Example

Rule/preference configuration@C1 (4G)
- C2 (Femto) > C1 (4G) for offloading
- C1 (4G) > C3 (3G) for higher-speed

C1: C1 → C2

@C2 (3G Femto)
- Best radio strength with same preferences for all cells

C2: C2 → C3

@C3 (3G)
- C1 (4G) > C3 (3G) for higher-speed

C3: C3 → C1
From Example to Generalization

- Each handoff decision: \(t = F_s(s, C) \)
 - \(s \): serving cell
 - \(C \): set of candidate cells
 - \(F_s \): decision function for serving cell \(s \)
 - \(t \): target cell

- The sequence of handoff decisions
 \(s \rightarrow F_s(s) \rightarrow \cdots c_i \rightarrow [c_{i+1} = F_{c_i}(c_i)] \rightarrow \cdots, c_i \in C. \)
From Example to Generalization

- Instability = No convergence
 - e.g., persistent loop: \(c \rightarrow \cdots c_i \rightarrow c_{i+1} \rightarrow \cdots c \).

- **[Necessary stability condition]** there exists at least one \(t \), s.t. \(\exists t \in C, t = Ft(t, C) \)

- **[Necessary and sufficient condition]** (1) \(\exists t \in C, t = Ft(t, C) \); (2) there exists a handoff path from the initial cell \(s \) to the desirable \(t \)
Q3: How to detect possible instability?
MMDIAG

- In-device diagnosis
 - Carriers: reluctant to provide network-side MM info
- Two-phase: analyzer and validation
MMDIAG

- Model based on 3GPP spec
- Decision logic, configuration parameters and runtime observation (scenario)
MMDIAG

- Model based on 3GPP spec
- Decision logic, configuration parameters and runtime observation (scenario)
- Violation check

§ Model based on 3GPP spec
§ Decision logic, configuration parameters and runtime observation (scenario)
§ Violation check

- Config. Collector
- Scenario Emulator
- MM Automata
- Instability Analyzer
- Counter examples
- Empirical Validation
MMDIAG

- Scenario reconstruction and experiments
 - Configurations and observations in counterexample
 - Trace collection and comparison
Real-World Findings

- One top-tier US carrier
- Los Angeles and Columbus
 63 locations (outdoor)
 50 spots (indoor)
Preliminary Results

- 17 loops (idle)
- 1 loop (active)
Four Classes (Root Causes)

- **#1:** uncoordinated handoff goals
 - 8 variants, 4G-Femto-3G
 - c1 (4G, band 17)
 - c2 (4G, band 2)
 - c3 (4G, band 4)
 - c4 (Femtocell)
 - c5 (3G, band 850)
 - c6 (3G, band 1900)
 - c7 (2G)
Four Classes

- #2: device-side misconfiguration
 - 8 variants, 4G-Femto-2G-3G

- Chunyi Peng
- HotMobile’16

Diagram:
- L1: 4G-Femtoell-3G
- L2: 4G-Femtoell-2G-3G
- L3: 4G-4G
- c1 (4G, band 17)
- c2 (4G, band 2)
- c3 (4G, band 4)
- c4 (Femtocell)
- c5 (3G, band 850)
- c6 (3G, band 1900)
- c7 (2G)
Four Classes

- **#3: Imprudent 4G upgrade**
 - One 4G-only loop

- **#4: uncoordinated load balancing**
 - One 4G-only loop (active)
Takeaway

- Largely stable in practice
 - Instability mainly caused by Femtocells or incompatible upgrades

- But in principle, instability likely exists
 - Distributed nature
 - Diversity and external (non-carrier) factors in case of heterogeneous networks (femtocells, small cells, WiFi, etc)
Open Issues

- Non-stability properties
 - Handoff converges to an undesirable choice (3G/2G when 4G available)

- Cooperate with network-side efforts

- From detection to fix
 - Report identified problems to carriers
 - Assist end-devices to intervene the loop
Summary

- A first look at instability in mobility management over cellular network

- Disclose real-world persistent loops caused by misconfigurations and policy conflicts

- Propose MMDIAG to detect unstable MM

- Call for more attention and efforts
Thank you! Questions?