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ABSTRACT
The ubiquitous QR codes and some similar barcodes are be-
coming a convenient and popular approach to impromptu com-
munication between mobile devices and their surrounding
cyber-physical world. However, such codes suffer from two
common drawbacks: poor viewing experience and inability to
be identified through itself. In this work, we propose ART-
CODE– Adaptive Robust doT matrix barcode, which aims to
preserve ART and CODE features in one visual pattern. It
works on any surface (paper or electronic displays) and is
able to convert any image or any form of human-readable
contents (e.g., a picture, a logo, a slogan) into an ARTCODE.
It looks like an image which retains human-readable and aes-
thetically pleasant contents, and in the meanwhile, it acts as
a QR code which conveys data bits over the visual channel.
The core enablers in ARTCODE are (1) the design of the col-
ored dot matrix for data embedding with little distortion from
the original image and (2) a comprehensive error correction
scheme which enhances decoding robustness against noises
and interferences from the original image in ARTCODE. We
implement ARTCODE with the receiver on Android phones
and the sender from a PC or a phone (it can be printed in
paper). We conduct extensive user survey and experiments for
evaluation. It validates the effectiveness and wide applicability
of ARTCODE: It works well with all of 197 images randomly
downloaded, covering representative categories of the gray-
scale images, logos, colored ones with low/medium/strong
contrasts. The image quality is quite acceptable in a subjective
user-perception survey with 50 participants and data communi-
cation accuracy achieves as high as 99% in almost all the cases
(> 96% raw accuracy in ARTCODE without error detection
and other schemes).
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(a) QR code (original) (b) QR code + a thumb-
nail

(c) ARTCODE

Figure 1: Three visualization code examples encode the
same information: a URL to the Wikipedia page of Lenna:
https://en.wikipedia.org/wiki/Lenna.

INTRODUCTION
Scanning is a novel, fast, and convenient approach for im-
promptu communication between mobile phones and their
surrounding cyber-physical world. Information is encoded in
special visual patterns (e.g., Quick Response (QR) codes [4])
and displayed on the sender surface in various form factors,
ranging from the exterior of a physical object, a poster/printout
to an electronic display such as a phone screen, a computer
monitor, a TV, and even a multiple-screen display wall. With-
out need of any device pairing or communication setup before-
hand, mobile phones simply scan these patterns and directly
extract data bits therein. With inherent simplicity, scanning
has been widely adopted to deliver information (especially
short messages like URLs and object identities) in a variety of
domains across project tracking, item identification, mobile
advertising, publicity, payment, eCommerce, social network-
ing, and in-proximity data sharing, to name a few. Recent
statistics reports that the download number of Android scan-
ner apps has already exceeded 100 million by November 2014;
“Scan.me” [5], one popular scanner app, has carried out 87
million QR code scans [24].

Scanning is easy but knowing me is hard. While QR code is
machine-friendly to facilitate fast data transmission, it is not
quite consumable by humans to distinguish or identify the code
they scan through itself. As shown in Fig. 1a, QR codes, as
well as some other similar ones, employ random permutations
of black and white modules (square dots). It is hard, if not
impossible, for humans to read the code and then relate it with
the context or the information that it conveys. Additionally,
it is aesthetically unpleasant while it is placed with human-
readable content (e.g., text, logo, picture, video) [29].

It is often highly desirable for the user to know what is be-
ing scanned. We often demand for human-readable (human-
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Figure 2: A motivating example (Paypal link for Puma
Soleil shoes) uses two-in-one visual patterns (here, ART-
CODE) (right) which combine data bits into human-
identifiable contents, compared with the QR code-based
solution (left).
friendly) information along with this device-oriented data com-
munication channel. A common real-life example is payment,
as illustrated in Fig. 2. The current practice (left) is to separate
the context targeted to humans (here, image of the shoes which
is not shown on this payment page) from the QR code that
embeds the URL to its extended information like the website
of a company or the link to pay an order. Such practice suffers
two problems. First, both contend for the display space. A
sacrifice has to be made on human-readable content as shown
on the left. Human has to count on previous context to know
what we are paying (doing) and makes a temporal compromise.
Such activity is viable only in interactive scenarios when the
screen can change, not possible for the printout or the static
screen. Second, it impairs user experience. It is distractive
and unpleasant to human eyes even when it takes a small area.
Moreover, it loses the opportunity to deliver or highlight the
logo, brand, slogan, goods and other essential information that
the merchants care most. Clearly, a two-in-one visual code
can easily resolve these issues. If such code exists, it would
look like an image or any form that carries human-readable
content (see the right plot of Figure 2); It would retain normal
user-viewing experience to the best extent possible. On the
other hand, this code would act as a QR code and convey side
information over the visual display-to-camera channel.

All these motivate us to design ARTCODE, Adaptive Robust
doT matrix barcode, which carries the human-friendly infor-
mation (mostly, artistic images and layouts) and machine-
friendly information (coded data bits) together in the same
source over the visual channel. It preserves pleasant user-
viewing experience (as if the device-oriented code would not
exist), while be able to simultaneously empower convenient
camera-assisted data communication.

To this end, we devise a visualization approach that can turn
any image into a code-embedded image. In particular, ART-
CODE is desired to resolve the tension between data embedding
and image preserving. Intuitively, less distortion of original
image leads to smaller or fewer embedded modules, bringing
in difficulties for scanning process. Machine-readable codes
may appear conspicuous to human eyes. Therefore, the major
issue is to achieve human-readable code design with imple-
menting the functionality of code-camera data transmission.
To address this issue, we devise techniques to tackle technical
problems in encoding and decoding:

On the encoding side, we introduce the conception of colored
dot matrix, that forms original image by blending neighboring
dots. We intend to embed data by altering partial dots. The dot
matrix is obtained with an error diffusion dithering, based on
a color set adaptively generated by K-means clustering. There-
fore, this dot matrix is able to preserve images with facilitating
data embedment. We further adopt a data embedment scheme
within a matrix proposed in [10], and integrate it into code
design. The scheme embeds multiple bits into a block with
only one bit altered, enabling large capacity transmission with
little damage on image. It was designed for the purpose of
data hiding within an image. We adopt its notion and employ
the approach within a wireless communication issue. Finally,
we design a scheme that selects encoding colors based on
both the proportion of a color in whole image and two colors’
distances in RGB space. The first criterion preserves code’s
image quality and the second criterion guarantees that code
can be successfully detected and decoded in receiver side. Be-
sides, in order to enable reliable data transmission, we design
a reliable ARTCODE detection scheme and a comprehensive
error correction scheme.

On the decoding side, we perform code detection and then de-
coding and gradually recover the codes within the background
image noise. We perform preprocessing and module local-
ization in context of ARTCODE and perform comprehensive
error correction.

Fig. 3 shows the architecture of ARTCODE. It consists of
the sender for code generation and the receiver for detection
and decoding. The details will be elaborated in the following
sections. We implement ARTCODE’s sender on the PC and
Android phones and its receiver on Android phones.

We evaluate ARTCODE through extensive experiments and
a subjective user study with 50 participants. We show that
ARTCODE is widely applicable to any image which preserves
nice image quality and retains high data communication ac-
curacy. We also assess ARTCODE under various settings and
find it works well under various conditions with appropriate
parameter settings. Basically, the image quality is below 4
(mostly under 3) out of 10 in terms of image distortion and the
accuracy is as high as 99% when ARTCODE is fully used. It
achieves 96% raw accuracy when data are encoded into colors.

We make three main contributions in the paper:

1. We design ARTCODE which enables two-in-one visual
communication for both humans and devices;

2. We propose a variety of techniques including adaptive col-
ors, dithering, shuffling, data-hiding to achieve both goals;

3. We implement and evaluate ARTCODE in extensive user
surveys and experiments and validate its effectiveness, ro-
bustness and nice properties in visual-effect preservation
and information-carrying.

PRESERVE ART IN ARTCODE ENCODING
The core problem is how to modify the original image so that
such changes are significant enough for the camera to recover
embedded data still without obvious distortion in visual effects.
ARTCODE largely preserves the original human-readable im-



Colored dot matrix generation

Figure 3: ARTCODE architecture.

age contents. To address this tension between both communi-
cations for humans and devices, we tackle the following three
technical questions in encoding:

(1) How to make changes to an image to largely keep its form
and enable data embedment? This relates how to transform an
image into a code structure that maintains the form of original
image and allows partial changes at proper positions to encode
data. (2) How to reduce visual distortion in data embedment?
Embedded information targeting at cameras is regarded as
noises to human eyes. In order to well preserve the original
image, the introduced noises should be made less visually
conspicuous. (3) How to manipulate colors to encode data? In
colored ARTCODE, which colors should be selected to encode
data? This has two requirements: a) selected colors should be
adaptive to images and introduce minor distortion to images;
b) selected colors should be distinguished by cameras so as to
encode data. In the following three subsections we propose
our encoding scheme addressing these technical questions.

Colored Dot Matrix and Shuffling
The first issue is to transform any image into a structure suit-
able for data embedment while still retaining the basic image
effect, and to determine where to embed data in this structure.
We are motivated from one drawing/painting art technique
called pointillism and transform any image into a combina-
tion of small dots, some of which can be altered to encode
data. Pointillism is a technique of painting in which small,
distinct dots of color are applied in patterns to form an image.
The technique relies on the ability of the eye and mind of the
viewer to blend the color spots into a fuller range of tones [7].
The next step is to decide which dots can be altered. In order
to disperse visual distortion to the whole image, we perform a
shuffling algorithm where we refer to a shuffling table to find
embeddable modules.

Colored Dot Matrix Generation. ARTCODE uses a
pointillism-like blending technique to generate a structure,
maintaining original images’ general appearance. By extract-
ing major colors of the original image to form a color palette
and performing a dithering algorithm based on this palette,
ARTCODE converts an image into a colored dot matrix, which
displays the original image by blending colors of neighboring
dots (we call modules in ARTCODE). Dot matrix is designed
to be squares, facilitating the implementation of barcode com-
munication. Data can be easily embedded into this dot ma-
trix through changing the colors or positions of partial dots.

(a) Pointillism for ARTCODE (b) zoom-in

Figure 4: (a) ARTCODE uses a pointillism-like technique
to convert any image into ARTCODE structure with many
small dots; (b) a zoom-in of original image (above) and a
zoom-in of ARTCODE structure (below).

Colored dot matrix generation consists of the following two
phases.

Phase 1. Color palette selection by clustering: Colored dot
matrix is an image form that maintains the original images’
major information. Embedding data into a colored dot matrix
composed of a few major colors of images is less conspicuous
than embedding data into the original images. The reason
behind is that encoding modules1, which also take these major
colors, look more “similar” to their backgrounds and appear
less abrupt, while the original images’ major information can
be preserved by non-encoding modules.

In order to best display the original image with a dot matrix
of fewer colors, we select the colors that represent a majority
of the original image to form a color palette. Specifically, to
generate such a color palette, we use K-means clustering that
partitions all colors in the original image into n clusters so
that the original image can be preserved with these n colors.
With pixels’ RGB values in a colored image being the input, K-
means clustering firstly assigns n random 3-dimensional (RGB
space) vectors as initial centers, from which the algorithm
finds a nearest center for each color and assigns each color a
cluster accordingly. Then, K-means obtains the new centers
by calculating the average RGB values of colors belonging
to the same cluster. The process undergoes several iterations
until convergence is reached. We take the image of Lenna as
an example, illustrated in Fig. 5, where extracted colors are
shown in palettes and n is chosen among 8, 16 and 32.

Phase 2. Revised error diffusion dithering: We use a revised
error diffusion dithering algorithm to generate a colored dot
matrix with adaptive color palette obtained previously.

Dithering is a technique that converts complicated colored
or gray-scale images to images with a palette of much fewer
colors, retaining original images’ appearance. Error diffusion
dithering quantifies RGB values of each module to colors
in palette and delivers quantification errors to neighboring

1There is a slight difference between what we call embeddable mod-
ules and encoding modules. Embeddable modules refer to modules
that can be manipulated to embed data, while encoding modules
refer to modules that are already manipulated with data embedded.
However, in Shuffling part, this difference can be ignored, for finding
encoding modules is equal to finding embeddable modules.



(a) 8 colors (b) 16 colors (c) 32 colors

Figure 5: Colored dot matrix forms of Lenna generated
by K-means color palette selection and revised error dif-
fusion. Color cluster numbers in each palette are 8, 16
and 32, respectively.

Input: Colored image I, Color palette C
Output: Dithered image Modules
Divide I into groups, each group contains 4×4 modules
Initiate value to be a 3 dimensional matrix of all 0s
for each group (i, j) of this image do

ave← average of pixels′ RGB values in a group
valuei, j← valuei, j +ave
m← argminm DistEuc(valuei, j,Cm)
Modulesi, j←Cm
error←Cm− valuei, j

valuei+1, j← valuei+1, j + error× 3
8

valuei, j+1← valuei, j+1 + error× 3
8

valuei+1, j+1← valuei+1, j+1 + error× 1
4

update i, j
end

Algorithm 1: Revised error diffusion dithering

modules. Note that traditional error diffusion dithering is per-
formed on colors with equidifferent RGB values, which does
not hold in our case since the colors obtained with K-means
rely only on the original image and may not be equidifferent.
We therefore develop a revised error diffusion algorithm, the
detailed algorithm of which is given in Alg. 1, where value is
a 3-dimensional matrix representing the error to be diffused
to neighboring modules. Note that C, ave, value and Module
all represent RGB 3 channels. Parameters 3

8 and 1
4 are com-

mon diffusion proportions. Fig. 5 shows dithered dot matrix
generated by 8, 16 and 32 clustered colors.

Shuffling. Once we obtain the colored dot matrix awaiting
embedment, one crucial problem emerges: which modules
in this dot matrix are manipulated as encoding modules and
encode data. One direct approach is to encode data on all mod-
ules of this dot matrix. However, with this approach image
could hardly be preserved. We perform a shuffling algorithm
which spreads encoding modules over the dot matrix accord-
ing to a shuffling table, so that visual distortion caused by
encoding is dispersed. Particularly, ARTCODE finds embed-
dable modules by referring to a shuffling table, which is an
L-length vector, the values of which are randomly generated.
The same shuffling table is informed to both sender and re-
ceiver a priori to find encoding modules and embed data onto
or extract data from these shuffled modules. The modules
localized by shuffling become encoding modules while the
rest are non-encoding ones. Embedding process will only
deal with encoding modules, and non-encoding ones remain
unchanged throughout the embedment process.

An important advantage of employing shuffling table as em-
bedding key lies in that, different users scan an ARTCODE and
obtain different messages. ARTCODE embeds information to
positions determined by shuffling table and the receiver side
uses shuffling table to localize embedding positions, enabling
multiple messages transmission. ARTCODE releaser can em-
bed several messages into one code and ARTCODE scanners
can only obtain messages whose shuffling table they possess.
This may bring promising application to electronic payment.
QR codes or some similar barcodes are currently utilized for
communication between sellers and buyers on their mobile
payment applications. Considering the variety of electronic
payment service providers, merchants have to display several
companies’ QR codes. However, with ARTCODE, related
companies can form a unity and publish only one code while
customers have access to all payment links of these companies.

Embedding Data with Minor Modifications
Once we obtain a structure suitable for embedment, how to em-
bed data with tiny distortion is to be determined. In a human-
recognizable and machine-readable dual-channel visualization
code, the embedment of machine-readable information in the
dot matrix is regarded as noises for human perception. There-
fore, a demand for preserving original image is to embed data
of large capacity with as few changes to colored dot matrix as
possible. In order to trade off the capacity and visual quality
demands of ARTCODE, we integrate the method proposed
in [10] and adapt it to the present work.

The main idea in [10] is to divide the ensemble of encoding
modules into unit blocks and use position information of mod-
ules in a block to encode data. Each module position in a block
is given a weight; to embed data of more than 1 bit requires
changing only 1 module in position of corresponding weight.
The authors proposed that in a binary matrix, an l-length (l
can be any positive integer) block embeds k = blog2(l +1)c
bits by changing at most one bit, for their are in total l possible
position changes, plus 1 original unchanged block.

We divide the set of L embeddable modules obtained in shuf-
fling into subsets of modules, and call these subsets blocks.
Each block contains l modules. We map the color of each
module to 0 or 1 and obtain an l-length binary vector for each
block2, and denote A to be one of these vectors. We define
an l-length decimal serial number vector W , each value of
which represents the weight of each position in A. In this
vector W , values are integers from 1 to 2k−1. The remaining
l− (2k−1) values can be any integer from 1 to 2k−1. Binary
representation of W is denoted by W ′. With the following
three steps, vector A turns into A′, which is the encoded vector,
with only one bit changed. We denote the information to be
embedded in block A as s1, s2, ..., sk.

Step 1: Calculate hiding functions as in Equ. 1, where A(x)
denotes the value in position x of vector A, W ′j(x) denotes the

2Mapping from color to bit is explained in next subsection. Note
that although we deal with colored images, we adopt an approach
that embeds data into binary vectors, assuming that each encoding
module encodes two states (0 or 1) by changing the module’s colors.
Fewer encoded states guarantee that these colors can be robustly
recognized.



(a) original vector A

(b) embedded vector A′

(c) serial number vector W

(d) binary representation of W

Figure 6: An illustration of our adopted data embedding
technique.

j-th bit in binary number W ′(x), j ranges from 1 to k.

H j =
l

∑
x=1

A(x)•W ′j(x), j = 1,2, ...,k. (1)

Step 2: Calculate original hiding number h j.

h j = H j mod 2. (2)

Step 3: Find binary modification position R and modification
position MP. ⊕ stands for xor operator. Changing the bit in
position MP of vector A embeds k bits of data in A.

R j = h j⊕ s j,

MP =
l

∑
j=1

2 j−1×R j.
(3)

We take a vector A sized 16 as an example, shown in Fig. 6a,
and embed 4 bits 0100 into A. Serial number vector W and
its binary representation are presented in Fig. 6c and Fig. 6d.
According to Equ. 1, H1 = 4, H2 = 3, H3 = 3, H4 = 2. With
Equ. 2 and Equ. 3, we obtain R1 = 0, R2 = 0, R3 = 1, R4 = 0,
MP = 4. Therefore, we change A(4) from 0 to 1, as in Fig. 6b.
Then we map the bit change to a change in color and obtain
the embedded dot matrix.

To extract data from an embedded dot matrix, the scheme is
similar to data embedding part. We divide the ensemble of
encoding modules into l-length vectors. Serial number vector
W remains the same as in encoding part. Data extraction
process follows two steps: (1) Calculate hiding functions with
Equ. 1 and obtain H j, j = 1,2, ...,k. (2) Calculate h j with
Equ. 2. The bits embedded in this block are h j.

Encoding Color to Bit
ARTCODE is composed of colored dots, and in the ideal case,
all n colors used for colored dot matrix generation can be em-
ployed as encoding colors. However, decoding accuracy and
visual effect preservation are the two constraints in encoding
color selection from n colors. To guarantee that embedded
data can be correctly extracted, encoding colors should be
“sufficiently distant” from each other to be recognized by scan-
ning devices. The requirements on visual effect preservation
suggest that selected encoding colors take large proportion
in embedding positions, so that colored dot matrix after em-
bedment looks more “similar” to the one before embedment.

White corner

Double deck
alignment

Code area

Black corner

Figure 7: ARTCODE structure.

Considering the above two criteria, we design a scheme for
encoding color selection, consisting of following steps:

Step 1: In color palette, calculate all n colors’ proportion they
occupy in L encoding modules.

Step 2: Find all feasible color sets. The Euclidean distance in
RGB space of any two colors in a feasible color set is larger
than a threshold r.

Step 3: Calculate the sum of colors’ proportion in each feasi-
ble color set. Compare them and select the color set with the
largest proportion.

Step 4: If, by any chance, the algorithm fails to find a feasible
color set, the algorithm decreases the threshold until feasible
color sets are found. Color set proportion is calculated again
and the set with largest proportion is selected. Then, we adjust
colors in this set to fit the demand of original threshold r.

ARTCODE maps each color in feasible color set to 0 or 1.
There is no specific constraint in determining whether a color
should take 0 or 1. It is sufficient to make the number of
encoding modules of 0 and that of 1 be approximately equal.

RELIABLE ARTCODE DETECTION AND DECODING
In this section we present our detection and decoding scheme.
Detection part consists of pre-processing and localization. De-
coding scheme recognizes colors in localized positions, maps
it to a vector according to shuffling table and extracts data.

ARTCODE Detection

Pre-processing Pre-processing includes two steps. Firstly
we implement a local thresholding binarization algorithm. The
algorithm divides captured image to sub-blocks and deter-
mines a threshold of binarization for each block. Then, we
perform an image erosion-dilation approach to eliminate moiré
pattern. Moiré pattern is noisy straight lines in image outputs
of binarization, caused by camera capturing screens.

Module Localization As huge finder patterns greatly affect
the visual effects of the barcode as in [12], we determine not
to insert any locators in the code area and place an alignment
pattern on the four borders of the barcode for module localiza-
tion. To enhance the color recognition accuracy we place all
encoding colors on the second deck of alignment pattern as ref-
erence colors. In this way we obtain a double deck alignment



Figure 8: We count black pixels from two directions (red
lines) starting from detected module to determine the rel-
ative positions of detected black module and white corner.

(shown in Fig. 7). On each of the four borders, double deck
alignment consists of two lines of alignment pattern. The outer
line of double deck alignment is an alternating permutation of
black and white modules and the inner line is an alternating
permutation of all encoding colors.

The alignment pattern localization step takes pre-processed
images as input and locates firstly four corners of the barcode.
Corner detection process consists of three steps: a) Detection
process uses a small rectangle located at the center of the
frame, enlarges the rectangle until it covers the whole barcode.
b) On four corners of the rectangle, we use straight lines which
are 45◦ to the corner’s adjacent borders and shift them towards
center of the rectangle, until these lines reach black pixels
(corners of the barcode). c) We move

√
2

2 of estimated code
size to reach the center of corner modules. The bottom-left and
top-right corners are white, so we have to scan surrounding
black modules to determine in which direction we find the
white corner center, shown in Fig. 8.

Once we obtain the four corners of the alignment pattern, we
first estimate the module size. Then we start from one corner
and find all the black module centers in the alignment pattern.
If, unluckily, a module fails to be found, we will estimate its
location with its adjacent modules.

Based on the alignment pattern, we can now locate the mod-
ules inside the code. Considering the existence of camera
distortions, including pincushion distortion, barrel distortion,
linear distortion, etc., we utilize a localization algorithm in-
spired by Anran Wang et al. in [29]. This algorithm calculates
the distortion ratio of the four borders and combines them
linearly in order to restrain the effects of distortions. The al-
gorithm utilized to calculate the coordinate y (x is analogous)
can be expressed as:

le f t =
alignle f t [ j].y− cornerle f t−top.y

cornerle f t−bot .y− cornerle f t−top.y

right =
alignle f t [ j].y− cornerright−top.y

cornerright−bot .y− cornerright−top.y

disx =
aligntop[i].x− cornerle f t−top.x

cornerright−top.x− cornerle f t−top.x
disy = le f t× (1−disx)+ right×disx

y = aligntop[i].y× (1−disy)+alignbot [i]×disy

(4)

In Equ. 4, le f t and right denote respectively the distortions of
the left and right alignment patterns.

ARTCODE Decoding

Color recognition Once we localize the modules inside the
barcode and the second layer of double deck alignment pattern,
we calculate the average RGB values for each color in the
color palette located on double deck alignment pattern. Color
recognition consists assigns nearest RGB values in encoding
color set obtained by double deck alignment pattern. Then
the raw data is sent to the decoder to obtain the encoded
information.

Comprehensive Error Correction One important problem
caused by introduction of colors is that color recognition rate
decreases compared with black and white modules, although
we only select a small set of colors to encode data. In order
to guarantee the transmission reliability, we propose an error
correction scheme for ARTCODE, dividing data into Segments.
Transmission reliability is a crucial issue in ARTCODE or
traditional barcode design [30].

When designing the data correction scheme, we have to con-
sider two aspects. a) As we utilize adaptively selected encod-
ing colors instead of two colors in traditional barcodes, the
recognition success rate of each module decreases. b) As we
employ a shuffling algorithm to locate embeddable modules,
these embeddable modules spread randomly in ARTCODE. In
this way errors occur randomly in the decoded binary matrix.

We design an error correction scheme for ARTCODE called
Comprehensive Decoding, considering the fact that one single
frame captured by the camera may fail to extract complete data.
We apply both Reed Solomon (RS) error correction scheme
and Cyclic Redundancy Code (CRC) error detection scheme.
Our proposed approach is to append error detection and cor-
rection redundancy to adjacent several bits. The proportion
of redundancy is adaptive to overall detection accuracy. We
call these adjacent data bits with error detection and correction
bits a Segment. Each Segment has specific coordinates in the
dot matrix. A Segment is firstly corrected by RS error correc-
tion algorithm. Afterwards if CRC error detection algorithm
detects an error, processor will demand the camera to send in
another frame for detection and decoding.

PUTTING THEM TOGETHER
We now put all the components together. Fig. 3 shows the
ARTCODE architecture. The whole system consists of two
major parts on the sender and the receiver sides.

At the sender side, a) from an image we employ K-means clus-
tering to select a number of colors that can best represent the
original image to form a color palette, and perform a revised
dithering to generate colored dot matrix form of the image. b)
We apply a shuffling algorithm to generate a shuffling table,
with which the algorithm finds embeddable modules in the
colored dot matrix. c) We rank all colors in the color palette
according to their occupied proportion in colored dot matrix
and select colors with large proportion and sufficient RGB
space distance as encoding colors. d) We assign 0 and 1 to
each encoding color, and adopt a data hiding scheme which



embeds multiple bits into a fixed-sized block with only one
bit changed. e) We integrate RS error correction algorithm
and CRC error detection algorithm to guarantee a reliable data
transmission.

In the process of scanning, the camera delivers several frames
to the processor. a) The first step is pre-processing and lo-
calization. Binarization and erosion are performed as pre-
processing step in order to eliminate the moiré patterns. Then
we localize the double deck alignment and calculate the loca-
tions of each module inside the code by integrating a distortion-
aware localization algorithm proposed in [29]. Afterwards, we
extract the colors in the reference palette located at the second
layer of double deck alignment pattern. b) Detection algorithm
refer to the shuffling table to localize embeddable modules
and compare their RGB values with the colors given on the
reference palette, and assigns 1 or 0 to each module. Note
that to keep the integrity and correctness of data we design a
comprehensive decoding scheme.

We implement ARTCODE with about 1300 and 2500 lines of
code for the sender and receiver parts. Sender takes an orig-
inal image and a short data bitstream as input, generates the
ARTCODE-ed image and displays it on the screen. Receiver
takes captured frames as input, detects the existence of align-
ment patterns, and retrieves data in one or multiple possible
corrupted frames. We implement the sender for the PC and
Android phones and the receiver only for Android phones.

EVALUATION
We evaluate ARTCODE from two aspects: image visual quality
and information-carrying capability. We first present an overall
performance for all the images under the default (identical)
setting. We then pick a subset of images for the image visual
quality assessment through a subjective user survey and the
evaluation of data throughput under various parameter and
environment settings.

Experimental setting We use an LG D2792P screen (with
a Dell PC) or a Samsung Galaxy S5 smartphone as the sender.
The screens are 24 inches and 5.1 inches, respectively; The
resolutions both are 1920× 1080 pixels. We test with two
android phone models as the receiver: Galaxy S5 and Nexus 4
E960. Their maximal resolutions of the primary (back) cam-
eras are 16 MP and 8 MP, which are 5312×2988 pixels and
3264×2448 pixels. The results are similar for both receiver
phones and thus merged in the following experiments.

Overall Performance
We download 197 images from Google Image to test with the
overall performance under any image. These include images
randomly selected from research results under keywords Logo,
Gray-scale, Portrait, Landscape, Animal, and also classical
images like Lenna. There are 25 gray-scale images, 22 logos
and 150 colored images. Considering contrast is a key factor
in color selection, we further divide the colored images into
48 low contrast, 64 intermediate contrast and 38 high contrast
ones. Such classification are based on the variance of their
gray-scale histograms. Larger value means stronger contrast.
The default setting is to embed 50 bytes (m=50) using 16
clustered colors (k = 16) with embedding block size l = 15.

We first examine ARTCODE’s visual quality through a user
study with 50 participants (college students). 47 participants
frequently use QR codes in their daily life. To assess ART-
CODE’s image preserving quality, each participant gives a
subjective distortion score δ given the original and coded im-
ages. The score scales from 0 to 10, where 0 means that the
distortion is not perceptible, 5 means that the embedment is
noticeable but visually acceptable and 10 means that the im-
prints of data embedment heavily corrupts the original image
quality. For each participant, we randomly select 40 images
out of 197 images (including six mandatory ones in Fig. 9)
and test with 14 codes under various settings (only the default
setting for the overall evaluation).

Six samples are given in Fig. 9. They are representative images
from 5 categories: a gray-scale one(Gray), two logos (Logo1,
Logo2), a low contrast image (Elephant), a medium-contrast
image (Butterfly), and a high contrast image (Lenna). Clearly,
ARTCODE preserves image quality. Fig. 10a shows the results
for the whole image set. All are below 4, which is acceptable.
In all five categories, grayscale and logo images have relatively
smaller distortion. This is likely because their images are
relatively simpler and quality is less affected under changes.

Fig. 10b further shows its information-carrying accuracy. We
use module accuracy as the accuracy of all bit vector encoded
by colors, regardless of data embedding scheme and error
correction scheme. We use the PC screen as the sender and
each code is 8.4× 8.4cm2. The camera-screen distance is
18 cm. For each image, we have 5 runs and calculate the
average accuracy. The statistics is also shown in Table 10c.
The median of accuracy is larger than 96% in all the cases and
the worst case in 197 images is 92.2%.

In a nutshell, ARTCODE is effective to a variety of images.
We believe that it can be applicable to any image to achieve
both goals of image preservation and information carrying.

Assessment on Image Visual Quality
We now examine ARTCODE’s effects on visual quality with
regards to various encoding parameters: number of clustered
colors, bytes embedded and block size. If not specifically
stated, the default values are used.

Number of clustered colors k We vary the number of clus-
tered color in a range of 4, 8, 16 and 32. Fig. 12a shows the
average distortion scores over all image sources and six repre-
sentative samples. The distortion decrease as k increases. It is
obvious that the more colors selected via K-means clustering,
the smaller visual damage ARTCODE imposes on original
image. The example of Lenna can be found in Fig. 11. Clearly,
the color number larger than 16 is a good choice ( δ < 4) with
acceptable visual quality.

Number of embedded bytes m We vary it from 10B, 30B,
50B, 100B to 300B and obtain the distortion scores in Fig. 12b
. The quality decreases as m grows. When m is large than
100B, the damage on images are not tolerable. It indicates that
ARTCODE is only suitable to carry small-volume data (like a
URL message).



(a) Gray (δ = 2.1) (b) Logo1 (δ = 2.3) (c) Logo2 (δ = 2.2) (d) Elephant (δ = 2.8) (e) Butterfly (δ = 2.4) (f) Lenna (δ = 2.6)

Figure 9: Six ARTCODE samples with their original images under the default setting.
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(b) Decoding accurate rate
Gray Logo Low High Medium

δ 2.15 2.5 3.15 3 2.95
(min-max) (1.8–2.5) (2–3) (2.4–3.9) (2.1–3.9) (2–3.9)
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(c) Statistics
Figure 10: Overall performance of ARTCODE.

Size of embedding block l We test with five different val-
ues: 3, 7, 11, 15 and 19 and show the distortion scores in
Fig. 12c. As we mentioned above, l denotes the size of embed-
ding block which can embed blog2(l +1)c bits by changing
1 bit. Assuming that we embed data sized m bits, the error
correction bits we need ∝ m. The number of modules which
should be altered ∝

m
blog2(l+1)c . In this way, visual distortion

basically decreases as l increases, but it changes only when l
equals 2i−1, i is a positive integer and larger than 1, for we
round down log2(l+1). However, if the embedding block size
is too large, it will be difficult to decode all the modules in the
block. In the following data communication experiments, we
find that both high decoding accuracy and low visual distortion
can be achieved when l is between 7 and 15.

From all the plots in Fig. 12, we observe that the grayscale im-
ages and logos have better visual perception. This is consistent

with our overall evaluation. Such user study again validates
ARTCODE can preserve image under appropriate parameters.
Taking both visual effects and data capacity into account, we
set the number of clustered colors ∈ [16,32], the block size
∈ [7,15] and the number of bytes no larger than 100B.

Information-Carrying Capability
In this part we analyze the accuracy performances of ART-
CODE under different scanning conditions: ambient light illu-
minance, screen brightness, camera resolution and scanning
distance. If not specifically stated, the experiments are done
in indoor conditions, with ambient light intensity equaling to
75 lux, screen brightness equaling to 80 lux. For the distance-
code size test, we utilize both an LED screen and a Nexus 4
smartphone screen to display the code, while for other tests
we use the smartphone screen. The distance between code and
camera is set to be 18cm and the code is displayed with a size
of 8.4×8.4 cm2. The default receiver is Samsung Galaxy S5
with its camera resolution to be 3264×1836 pixels. We use a
digital Lux meter (SIGMA AS803) to measure light intensity.
We use the same five images as mentioned in previous section
and generate five ARTCODEs of each of them because the
clustered colors are different every time we use K-means. All
data in this part is the average value of these ARTCODEs. We
compare module accuracy, single frame accuracy and multiple
frame accuracy. Single frame accuracy represents successfully
decoded data rate in a single frame and multi frame accuracy
represents data rate with Comprehensive decoding. For each
ARTCODE we take 20 adjacent frames and the module accu-
racy and single frame accuracy are taken from an averaging of
all these frames under each condition and the multiple frame
accuracy is measured by using up to 5 frames to decode.

Illuminance and Display Brightness As light being a
transmission media in code detection process, the light in-
tensity is an essential factor when evaluating barcode per-
formances. We conclude ambient light intensity and sender
screen brightness as the main indices in measuring light inten-
sity. We choose five different ambient light conditions, where
the intensities are respectively 10 lux, 30 lux, 70 lux, 150 lux,
and 300 lux with screen brightness to be 80 lux. The screen



(a) k = 4(7.2) (b) k = 8(4.5) (c) k=32(2.2) (d) m=10(1.1)(e) m=30(2.2)(f) m=100(4.3)(g) m=300(7.6) (h) l = 3(3.6) (i) l = 7(3.3) (j) l = 11(3.1)(k) l = 19(1.6)
Figure 11: The ARTCODE samples under various settings (default: k = 16,m = 50, l = 15 in Fig. 9f) with distortion scores.
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Figure 12: Visual quality (distortion scores) under different setings.

brightness intensities are respectively 10 lux, 42 lux, 80 lux,
127 lux and 168 lux with ambient light intensity to be 75 lux.
The accuracy analysis is shown in Fig. 13a and Fig. 13b. It
is clear from the figures that the accuracy increases tremen-
dously both under screen brightness increase and ambient light
change. Module accuracy, single frame accuracy and multi-
frame accuracy increase from around 75.2% to 99%, 20.1% to
95% and 30% to 99% respectively. After reaching a threshold
of minimum light condition for decoding, the increase ten-
dency goes smooth and steady, and the three accuracies go
steady at around 99%, 95% ,99%.

Camera Resolution We analyze the influence of camera
resolution and show the results in Fig. 13c. Image resolution is
an important factor, for it is closely related to the image quality
and therefore affects the decode rate. We choose five different
image resolutions (2048× 1152 pixels, 3264× 1836 pixels,
3264×2448 pixels, 3984×2988 pixels, 5312×2988 pixels)
and the experiment is carried out with same lighting conditions
(75 lux of ambient light and 80 lux of screen light). The
result shows that accuracy increases with high resolution due
to the increasing pixels number in each module. Module
accuracy, single frame accuracy and multi-frame accuracy
go steady at around 99%, 95% ,99%. The image resolution
under 3264×1836 sharply brings down the three accuracies
to 30%,13.5% and 22.5%. As more smartphones are equipped
with high quality camera, the off-the-shell smartphones are
sufficient to meet ARTCODE’s requirements.

Scanning Distance In Fig. 13d and Fig. 13e we show the
accuracy of ARTCODE with scanning distance varying. We
carry out this experiment with two code sizes — 5.2 cm and
8.4 cm. The 5.2 cm sized ARTCODE is displayed by Galaxy
S5 screen and the 8.4 cm sized ARTCODE is displayed on LG
D2792P screen. The accuracy result is symmetric and uni-
modal. At 8.4 cm ARTCODE size condition, accuracies start
at 10.9%, 5.5% and 10.5%, go steady at around 99%, 93%
and 99% between 18 cm and 36 cm and drop to 40.2%, 10.6%
and 15.4% at 42 cm. At 5.2 cm ARTCODE size condition,
accuracies start at 6.5%, 2.5% and 4.6%, go steady at around
90%, 85% and 99% between 14 cm and 22 cm and drop to
56.5%, 10.4% and 15.4% at 26 cm. Results show that for

the 5.2 cm sized ARTCODE and the 8.4 cm sized ARTCODE,
acceptable distances are respectively from 14 cm to 22 cm,
and from 18 cm to 36 cm. As recognition and localization al-
gorithms need to avoid close scanning and noise introduced by
long distance scanning is harmful to decoding, an appropriate
scanning distance is essential in decoding process and that’s
why there is usually a scanning zone centered in the screen in
barcode scanning applications.

RELATED WORK
We compare ARTCODE with the literature in three aspects.

Artistic barcode design Several recent studies seek to pre-
serve image or artistic design in QR codes [1–3, 12–15, 19,
20, 22, 37]. Several coded samples are given in Fig. 14. To
make QR code readable or attractive to human eye, the most
intuitive way is to incorporate a logo, a thumbnail or other
information in the QR code [2, 22] (Example: Fig. 1b). How-
ever, this approach often suffers with a small area for readable
content. Afterwards, researchers have applied different im-
age processing techniques to ameliorate the code design, such
as applying obfuscating masks in QART [1], halftone-based
algorithms (halftoning is to replace some modules with pre-
serving particular spectral distribution properties) in Halftone
QR [12] and image barcode (IBC) [13], image blending [37],
information-theoretic approach [14], optimization under given
image distortion [15], pre-defined tilting patterns (two patterns
for 0 or 1 bit) in PiCode [19], patterns of luminance modu-
lation [20]. ARTCODE is inspired by these prior work but
differ from them in several aspects. First, they focus on image
rendering and overlooks the code-to-camera data communica-
tion. They do not take information-carrying into account, at
least, not explicitly evaluate the impact of their designs; In
contrast, ARTCODE is designed to serve both goals of image
preservation and information carrying. Second, by leverag-
ing novel techniques on pointillism, shuffling and adaptive
color selection, ARTCODE even preserves better image qual-
ity than these existing work (see Figures 9 and 14). Moreover,
ARTCODE makes great technical efforts in exploring the color
choice whereas they either fail to leverage it [1,12,13,19,20] or
does not exploit the full data-carrying potential [15]. Last but
not least, ARTCODE incorporates techniques (pre-processing,
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Figure 13: These images illustrate the performances of ARTCODE under different conditions.

(a) QART (b) Halftone QR (c) Visuallead (d) QR Image (e) PiCode

Figure 14: Other artistic code samples in [1, 3, 12, 15, 19].

module localization, color recognition etc.), for reliable code-
to-camera communication.

Watermarking and steganography They have been ac-
tively studied to embed (often hide) information (e.g., copy-
right) in an image (e.g., [9,11,23,26–28,32–34,36]). They seek
to make the altered image as close to the original one as possi-
ble. [11,26,36] gave nice surveys on versatile techniques such
as embedding data in the least significant bit [9, 33], manipu-
lating the histogram [23], pattern-reserved injection [34], data
concealing using a limited number of bit changes (2 bits) [28],
and embedding in multi-level [32]. Our work differs from
them. ARTCODE seeks image-preserved data communication
and must address degradations over the optical channel while
they do not. Indeed, a commercial application developed by
Digimarc integrates watermarking technologies to encode data
into an image, which can be further scanned by smartphone
cameras [6]. Its capacity is small (6 bytes), thus the code
encodes only a short ID and refers to the company’s database
via cellular network or Wifi to obtain full length of data. Our
work differs in that ARTCODE fulfills complete functionality
of barcodes and do not need extra information to obtain the
data transmitted.

Unobtrusive and obtrusive screen-to-camera communi-
cation There are several non-obtrusive screen-to-camera
communications which hide data bits over the screen-to-
camera links, including InFrame++ [29], HiLight [21], Visual
MIMO [35] and IVC [8]. In particular, InFrame++ hides data
into video contents through complementary frames [29]; Hi-
Light conveys data bits through the pixel transparency change

within a time window [21]; VRCode [31] and IVC [8] hide
data upon two consecutive frames with one original one and
one altered one (using a pyramid decomposition in [31] and
brightness change [8]). Our difference is that they hide data
into a coded streaming with varying frames whereas ART-
CODE targets at image-preserved data communication which
can work with any static image on any display, including
poster/printout etc.. Obtrusive (normal) screen-to-camera com-
munications have been extensively studied in recent years,
such as Pixnet [25], COBRA [16], LightSync [17], Strata [18],
RDcode [30]. The proposed techniques mainly address chal-
lenges in screen-to-camera optical channels such as rolling
shutter effect [17], color effects [16], dynamic capture qual-
ity [18], and error handling [30]. These techniques comple-
ment our design in ARTCODE.

CONCLUSION
In this paper we put forward ARTCODE, a new two-in-one
code design, that embeds data entirely in an image and pre-
serves artistic image with provisioning barcode communica-
tion functionality. We leverage an error diffusion dithering
algorithm to generate the dot matrix, integrated with an adap-
tive color palette. In order to disperse visual distortion, we
perform shuffling onto the dot matrix and thus spreads encod-
ing modules and encode bits into colors conforming to the
image. To tackle interference from the background image, we
design a reliable barcode decoding scheme specifically for
ARTCODE. Envisioning the increasing need of interactions
between devices and their surroundings, we believe that such
intuitive codes will have larger potential in practice. It delivers
contents to both humans and their devices and offers more
pleasant and informative user experience.
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