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Abstract
We present the design, implementation, and evaluation of

BeepBeep, a high-accuracy acoustic-based ranging system.
It operates in a spontaneous, ad-hoc, and device-to-device
context without leveraging any pre-planned infrastructure. It
is a pure software-based solution and uses only the most ba-
sic set of commodity hardware – a speaker, a microphone,
and some form of device-to-device communication – so that
it is readily applicable to many low-cost sensor platforms
and to most commercial-off-the-shelf mobile devices like
cell phones and PDAs. It achieves high accuracy through
a combination of three techniques: two-way sensing, self-
recording, and sample counting. The basic idea is the fol-
lowing. To estimate the range between two devices, each
will emit a specially-designed sound signal (“Beep”) and
collect a simultaneous recording from its microphone. Each
recording should contain two such beeps, one from its own
speaker and the other from its peer. By counting the num-
ber of samples between these two beeps and exchanging the
time duration information with its peer, each device can de-
rive the two-way time of flight of the beeps at the granularity
of sound sampling rate. This technique cleverly avoids many
sources of inaccuracy found in other typical time-of-arrival
schemes, such as clock synchronization, non-real-time han-
dling, software delays, etc. Our experiments on two common
cell phone models have shown that we can achieve around
one or two centimeters accuracy within a range of more than
ten meters, despite a series of technical challenges in imple-
menting the idea.

Categories and Subject Descriptors
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1 Introduction
In this paper, we are interested in high accuracy ranging

using only the most basic set of commodity hardware capa-
bilities: a speaker, a microphone, and some form of inter-
device communication. Such technique, if feasible, will
have many desirable features and will be widely applicable
in many sensing and mobile applications. This is because
the set of capabilities can be considered as a common de-
nominator of many sensor platforms and mobile devices, in-
cluding many commercial off-the-shelf (COTS) devices like
cell phones, PDAs, MP3 players, etc. Compared to alterna-
tives that require special-purpose hardware (such as [1, 2])
or pre-existence of precision location infrastructure [3], a
commodity-based solution will obviously have wider appli-
cations and cost less. For the same reason, we further desire
a solution that can be implemented in software, preferably
entirely in user-space.

High accuracy ranging is typically achieved through mea-
suring time-of-arrival (TOA) information of acoustic or radio
signals [1–6]. The distance is thus the product of the signal
speed and the time of flight of the signal traveling between
two devices. Obviously, the ranging accuracy depends on
the signal speed and the precision of TOA measurement. To
elevate the accuracy, acoustic signals are usually chosen be-
cause of their relative slow speed. But the precision of TOA
measurement remains a big challenge in any system imple-
mentation.

In practice, TOA measurement is often done with both
sides taking a timestamp of their respective local clock at the
moment the signal is emitted or received. There are three
intrinsic uncertainties in this process that can contribute to
the ranging inaccuracy: the possible clock skew and drift be-
tween devices, the possible misalignment between the sender
timestamp and the actual signal emission, and the possible
delay of a sound signal arrival being recognized at receiver.
In general, many factors can cause the latter two uncertain-
ties in a real system, such as the lack of real-time control,
software delay, interrupt handling delay, system loads, etc.
These uncertainties, if not controlled, can seriously affect the



ranging accuracy. For example, our tests on two COTS mo-
bile devices reveal that these two delays can easily add up to
several milliseconds on average, which translates to several
feet of ranging error (Section 2.2).

It is therefore extremely challenging to provide high ac-
curacy ranging in a software-only and device-only solution
using only the minimum commodity hardware set we speci-
fied earlier. For the solution to be applicable to COTS mobile
devices, there are additional constraints. We cannot assume
we have a real-time operating system or be able to change
kernel or driver. In fact, many COTS devices like cell phones
are built on closed platforms and many often have operator-
imposed locks that prevent changing OS. We will have to im-
plement the entire ranging system in user-space. It is clear
that the above timestamping approach will not be able to pro-
vide the high accuracy we desire.

In this research, we have developed a novel high-accuracy
acoustic ranging mechanism and further implemented it in
a pure software-based ranging system on COTS mobile de-
vices. The key idea for achieving high accuracy is our in-
novative use of three techniques: two-way sensing, self-
recording, and sample counting. First, the two devices will
each in turn emit a specially-designed sound signal, calleda
“Beep”, within one second of each other. Meanwhile, each
device will also record a few seconds of continuous sound
from its microphone. Each recording should then contain
exactly two Beep signals picked up by its microphone, one
emitted from the other device and one from itself. Next,
each device will count the number of sound samples be-
tween these two Beeps, and divide it by the sampling rate
to get the elapsed time between the two TOA events. The
devices further exchange the elapsed time information with
each other. The differential of these two elapsed times rep-
resents the sum of the time of flight of the two Beeps and
hence the two-way distance between the two devices. We
called our system “BeepBeep” because of the signature dou-
ble Beep sounds during a ranging session.

By using sample counting instead of timestamping, our
mechanism mitigates all the uncertainties listed earlier,and
avoids the source of inaccuracies found in traditional times-
tamp approaches. In fact, our mechanism has no notion of
local clock or timestamp at all. The granularity of our TOA
measurement is limited only to the sound sampling rate. Un-
der today’s prevailing hardware standard of 44.1KHz, our
mechanism can have a ranging accuracy of 0.8cm. As far
as we know, this is the best ever achieved using only com-
modity hardware (speaker and microphone) on COTS mobile
devices. It is also comparable to, if not better than, the best
results ever reported in the literature that use special hard-
ware design or complex signal processing.

To summarize, we have made the following contribution.
First, we identified the three major uncertainties common to
any time-of-arrival based ranging system and evaluated them
on COTS mobile devices. Secondly, we proposed the Beep-
Beep ranging mechanism that cleverly overcomes all these
uncertainties. Thirdly, we designed and implemented the
BeepBeep ranging system, purely in software. Finally, we
systematically evaluated the system and our design choices
under several typical indoor and outdoor environments using

COTS mobile devices. We have achieved centimeter accu-
racy, the best ever reported in the literature.

The rest of the paper is organized as follows: we present
the motivating scenarios and the challenges with TOA-based
systems in Section 2. The detailed BeepBeep ranging mech-
anism is presented in Section 3. We describe the software
system architecture and implementation of the BeepBeep
ranging system in Section 4. The performance of the sys-
tem is evaluated in Section 5. Related work is reviewed in
Section 6, followed by in-depth discussions in Section 7. Fi-
nally, Section 8 concludes the paper and highlights our future
work.

2 Motivation and Challenges
2.1 Motivation

High accuracy ranging and localization systems have
been an active research theme in the wireless sensor network
research field [1, 7–12]. As we have discussed earlier, if a
range technique can achieve similar or better accuracy but
use only most basic set of hardware, it will be applicable to
more platforms and suitable for more applications. It may
further reduce cost to do ranging in sensor networks.

Besides sensor networks, we believe that ranging or prox-
imity information can also be very useful in everyday’s mo-
bile applications. For example, multi-device applications
like precision asset location [13] and touch-to-connect pair-
ing in Bluetooth 2.1 [14], collocated multi-users applications
like spontaneous interaction and collaboration [15], simul-
taneous photo sharing [16, 17], and “better-together” video
viewing [18], can all benefit from high-accuracy ranging.
With high-accuracy ranging, fine-grained spatial control can
be provided and context-aware systems can be developed.
For example, sharing can be automatically terminated once
a party goes outside a certain proximity in a co-located shar-
ing scenario. Similarly, the video playback should be dy-
namically expand to the two screens or shrink to one screen
as the other device comes and goes in the together-viewing
scenario [18]. The ability to provide high accuracy ranging
with commodity software and hardware is even more appeal-
ing here, as it can be readily used in a huge volume of COTS
mobile devices.

2.2 Challenges of TOA Estimation
Time-of-arrival based system estimates the distanceD be-

tween the sender and the receiver to be the product of the
time-of-flight, i.e., the time (∆t) it takes a signal such as
sound, radio wave, or light to reach the receiver, and the
propagation speedc of the signal, which is usually assumed
to be a constant knowna priori.

D = c ·∆t (1)

Given the requirement on the desired precision, acoustic sig-
nal is usually chosen because the speed of radio or light sig-
nal is so fast that a small timing error would lead to an unac-
ceptably large ranging error. But even if the relatively slower
acoustic signal is chosen, the precision requirement on TOA
estimation is still very stringent. For example, one millisec-
ond error in TOA estimation will translate to more than 30
centimeters error in the ranging result.
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Figure 1. Event time line in the uncertainty experiement

Traditionally, TOA measurement is done with both sides
taking a timestamp of their respective local clock at the mo-
ment the signal is emitted or received. There are several in-
trinsic uncertainties in this process that will contributeto the
TOA measurement error. The first one is clock synchroniza-
tion uncertainty (µc): the possible clock skew and drifting
between the two devices. To address this problem, many so-
lutions have been proposed in the literature. Some relied on
GPS [19] for time synchronization and some others chose to
work around by using round-trip time measurement (assum-
ing symmetric propagation path) so that all time readings re-
fer to the same clock [20]. Yet most solutions have resorted
to dedicated mechanisms [1,2,4,11].

The second uncertainties is the sending uncertainty (µs):
the possible misalignment between the timestamp and the
actual signal emission. For example, there is often a small
yet arbitrary delay after an output command is issued till the
sound actually comes out from the speaker. Similarly, the
third uncertainty is the receiving one (µr ): the possible delay
of a sound signal arrival being recognized. In general, many
factors can cause these two uncertainties in a real system,
such as the lack of real-time control, software delay, interrupt
handling delay, system loads, etc.

There has been little work in addressing the sending and
receiving uncertainties in software. Most previous work
managed to minimize them by resorting to customized hard-
ware design so that the system can precisely control and ob-
tain the exact instant when a signal is sent or received [3,4].
This is clearly inapplicable if we desire a software solution
and only use commodity hardware.

To understand how large these two uncertainties can be in
a general purpose mobile device, we conduct an experiment
using a COTS mobile phone, the HP iPAQ rw6828. The ex-
periment is designed to find out a lower bound forµs+µr if
a TOA measurement is done in software. To make the signal
time of flight negligible, we put the speaker and microphone
together. We wrote a program to do the following during
an experiment run. The program first takes a timestamp at
time T0 and starts sound recording. It then takes another
timestamp at timeT1 and immediate send out a sound sig-
nal. When the sound comes out of its speaker, the recording
should be able to pick it up from its microphone. Momentar-
ily the program examines the recording and finds the index
n of the recorded signal. Figure 1 illustrates the time line of
these events.

From the figure we can see that we assume the sound sam-
pling in the recording actually started after an unknown delay
µ. Immediate afterT1, there is a sending delayµs when the
sound actually emits from the speaker and arrives at the mi-
crophone. Then there is a receiving delayµr before a normal

TOA measurement can realize an incoming signal, i.e.,T2,
which can be no earlier than timet, the time when the sound
sampling picks up the signal. From the time relationship we
can derive the following equation (fs is the sampling rate):

µs+µr > T0 +µ+n/ fs−T1 > T0 +n/ fs−T1 (2)

Here,T0 + n/ fs−T1 is a lower bound estimation ofµs+ µr .
We repeated the experiment many times and plot the values
of this estimation in Figure 2.
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Figure 2. A lower bound estimation of the sending and
receiving uncertainties

The results indicate thatµs+µr appears to be very random
and affected heavily by the CPU load. Both the average and
deviation increases when the load becomes heavy, such as
playing a video, even if we give the test program the highest
priority. In any case, this study shows that the uncertainties
easily add up to several milliseconds and translate to several
feet of ranging error when the TOA measurement is done in
software.

3 BeepBeep Ranging Mechanism
As briefly mentioned earlier, the BeepBeep system pro-

vides high accurate ranging results relying only on the capa-
bility of COTS mobile devices. Our system can very well
handle all the three aforementioned uncertainties, namely
clock synchronization, sending and receiving uncertainty. In
this section, we elaborate the design of the BeepBeep rang-
ing mechanism and explain the subtlety that leads to the high
precision results.
3.1 Basic ranging scheme

We start from describing the basic ranging procedures
with only two devices, sayA andB, and we will extend this
to multiple devices later.

The basic ranging scheme takes three steps. In the first
step, a two-way sensing is performed, as shown in Figure
3. Assume both devices are in recording state. DeviceA
first emits a sound signal through its speakerSA. This sig-
nal will be recorded by its own microphone (self-recording)
as well as the other deviceB. Then, deviceB emits another
sound signal back through its speakerSB. This signal is also
recorded by both microphones on the two devices. In the
second step, both devices examine their recorded data and
locate the sample points when previously emitted two sig-
nals arrived. We denote the time difference between these
two signals aselapsed time between the two time-of-arrivals
(ETOA) 1. The two devices will exchange their locally mea-
sured ETOA and in the final step, the distance between the

1We use the term ETOA here in order to differentiate from the
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Figure 3. Illustration of the two-way sensing stage in the
BeepBeep ranging procedure.

two devices can be simply computed based on these two val-
ues.
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Figure 4. Illustration of event sequences in BeepBeep
ranging procedure. The time points are marked for easy
explanation and no timestamping is required in the pro-
posed ranging mechanism.

Figure 4 illustrates the timing relation among events when
doing two-way sensing in the first stage. Two time lines are
drawn in the figure with the upper one presenting the local
time of deviceA and the bottom one the local time of device
B. We denotet∗A0 the time when device A instructs its speaker
to emit the sound signal. However, due to the sending un-
certainty, the actual time when the speaker physically emits
may betA0. The time of the signal arrives at microphones
of deviceA andB are marked astA1 and tB1, respectively.
Again, due to the receiving uncertainty, applications on de-
vice A andB may obtain these signal data only at timet∗A1
andt∗B1. Similarly, we denotet∗B2 andtB2 as the time when
deviceB instructs to send out a sound signal and when the
signal is physically out;tA3 andtB3 as the time when the sig-
nal from deviceB arrives at microphones of deviceA andB;
andt∗A3 andt∗B3 as the time when the applications on device
A andB conclude the arrival of the signal data.

We denotedx,y as the distance between the devicex’s

well defined term DTOA (differential times of arrival) or TDOA
(time differences of arrival) which usually refers to the differential
between two TOAs measured at two different receivers using the
same sound source.

speaker to devicey’s microphone. It is clear that we have

dA,A = c · (tA1− tA0) (3)

dA,B = c · (tB1− tA0) (4)

dB,A = c · (tA3− tB2) (5)

dB,B = c · (tB3− tB2) (6)

wherec is the speed of sound. Then, the distance between
the two devicesD can be approximated as

D =
1
2
· (dA,B+dB,A)

=
c
2
· ((tB1− tA0)+ (tA3− tB2))

=
c
2
· (tB1− tB2+ tB3− tB3+ tA3− tA0+ tA1− tA1)

=
c
2
· ((tA3− tA1)− (tB3− tB1)+

(tB3− tB2)+ (tA1− tA0))

=
c
2
· ((tA3− tA1)− (tB3− tB1))+dB,B+dA,A (7)

In Equation 7, the latter two terms are the distances be-
tween the speaker and microphone of the two devices. This
distance is a constant to a certain device and can be mea-
sured a priori. Therefore, the distance between two devices
is determined solely by the first two terms, which are actually
the ETOA values measured on deviceA andB, respectively.
Note that ETOA is calculated by each individual device inde-
pendently, i.e., without referring any timing informationon
the other device, so that no clock synchronization between
devices is needed. Moreover, due to the self-recording strat-
egy, all time measurements are associated with the arrival
instants of the sound signals, and therefore, the sending un-
certainty is also removed. In the next subsection, we show
how precise ETOA can be obtained.
3.2 ETOA Determination

In a typical computer system, obtaining the exact time
instance when the signal arrives is difficult due to the inde-
terministic latency introduced by hardware and software (re-
ceiving uncertainty). In our design, this issue is resolvedby
not referring to any local clock while inferring timing infor-
mation directly from recorded sound samples.

Realizing that the received sound signal is always sam-
pled at a fixed frequency (represented byfs ) by the A/D
converter, we can therefore directly obtain ETOA by count-
ing the sample number between the two TOAs of signals
from recorded data, without dealing with the local clock of
the end system. In other words, we do not rely on the end
system to tell the timestamp that it “thinks” the signal has
arrived. Rather, we depend on the fidelity of the recording
module. Since all the sound signals are recorded, we only
need to check the recorded data and identify the first sample
point of each signal. Then, ETOA is obtained by counting
the number of samples between the two corresponding first
samples.

Note that this strategy has another preferable property to
eliminate the necessity of instantaneous signal detectionand
may shift the signal detection task out of the sensing stage.
Indeed, what we need to do is to simply sample and record



the received signal and conduct signal detection at a later
time or even offline. As a consequence, more complex sig-
nal processing techniques can be applied in our case while
not requiring special hardware support or critical speed opti-
mization.

With sample counting, Equation (7) can be rewritten as

D =
c
2
·

(

nA3−nA1

fsA
−

nB3−nB1

fsB

)

+K (8)

wherenx denotes the index of the sample point at instanttx,
fsA and fsB are the sampling frequency of deviceA andB,
respectively, andK = dB,B+dA,A is a constant. In the rest of
the paper, we will assume the the sampling frequency to be
44.1 kHz unless explicitly noted since the 44.1 kHz sampling
frequency is the basic,de factostandard that almost every
sound card supports. In this case, we havefsA = fsB, and
Equation (8) can be simplified to

D =
c

2 · fs
· ((nA3−nA1)− (nB3−nB1))+K (9)

By using sample counting instead of timestamping, our
mechanism avoids the source of inaccuracies found in tra-
ditional timestamp approaches. In fact, our mechanism has
no notion of local clock or timestamp at all. From Equation
(8), the measurement granularity is positively proportional to
the sound speedc and inversely proportional to the sampling
frequencyfs. Take a typical setting ofc = 340 meters per
second andfs = 44.1 kHz, the distance granularity is then
about 0.77 centimeters. The granularity will be further im-
proved if higher sampling frequencies can be afforded.
3.3 Signal Design and Detection

To achieve high ranging precision, it is critical to pre-
cisely locate the first signal sample in recorded sound sam-
ples. This is particular challenging for COTS mobile de-
vices, since in general, the speakers and microphones in such
devices have only limited capability, e.g. narrow spectrum
support. Furthermore, when working in an indoor environ-
ment, sound signal could arrive at the destination through
multiple paths with different delay. Thismultipath effect
may cause ambiguous ETOA detection and therefore signif-
icantly reduce the detection accuracy if not handled well.

We will address the signal design and detection algorithm
in detail in Section 4.
3.4 Sources of Errors

We summarize the possible sources of errors in this sec-
tion. According to Equation (9), there are three possible
sources of errors, relating to the three parameters, namely
sound speedc, sampling frequencyfs, and TOA detection
(i.e., various sample indicesnt). For instance, the prop-
agation speed of sound in the air varies with temperature
and humidity and the sampling frequency may also drift.
Fortunately, their impacts are usually negligible in practice
and can be mitigated by taking temperature and humidity
into consideration using well-established sound speed mod-
els and by shortening the sensing interval, respectively.

While ETOA avoids associating the TOA of sound sig-
nal to the local clock of the end system, there are still other
factors that may influence the TOA detection precision.

Signal

Generator 

SensingActuating Comm

Detector Calc

Operating System

Hardware

Central Controller

Applications

API

Figure 5. Software architecture of BeepBeep system.

• Signal to noise ratio (SNR)– the received sound signal
will be attenuated and distorted by the communication
channel. Furthermore, the environmental noise may be
usually colored. SNR is also affected by energy used
when transmitting the signal at the sender.

• Multipath effects– the acoustic signal may reach the
receiver via different paths, due to reverberation. The
received signal is thus the combination of signals from
all the possible paths that traverse the position of the
microphone.

• Signal distortion– The hardware (e.g., microphone and
the speaker) of a mobile device usually have good sup-
port only for a very limited spectrum band (e.g., around
3kHz) since their primary usage is voice communica-
tion. The attenuation differs with different frequency
bands. The dynamic range of the speaker’s volume is
also very limited. It is very easy to get saturated and
cause large waveform distortion.

4 System Architecture and Implementation
4.1 Overview

Unlike other ranging or localization systems, the Beep-
Beep ranging system is purely a software solution that does
not require specialized hardware design nor modifications to
the commercial operating system. The BeepBeep system can
be implemented purely in the application-layer, and is ready
for deployment on most ordinary COTS mobile devices.

We further architect the BeepBeep system as a ranging
service so that it can be readily used by other applications.
Figure 5 shows the overall software architecture. It has three
major parts: the interface to other applications (API), the
core logic part, and the underlying physical device related
function modules. The physical device related function mod-
ules include the actuating module that sends out the sound
signal generated by the signal generator; the sensing module
which continuously records all the sound into a local buffer
and feed the buffered data to the signal detector; and the
communication module that allows light-weight information
exchange such as the ETOA data and scheme specific param-
eters.

The core logic part consists of the central controller, the



signal generator, the signal detector and the distance calcu-
lation module. The central controller implements the overall
BeepBeep ranging protocol and controls all other modules’
actions. It also interacts with other applications by receiving
requests and sending back responses through API. A local
timer is maintained in the central controller for ranging sig-
nal scheduling. The signal generator generates the waveform
of ranging signals based on given parameters and feeds the
signal to the actuating module. The generated signals are
also stored as reference signals for signal detection. The
signal detector implements the signal detection algorithms
and determines the indices of the first samples (i.e., TOAs)
of other parties’ signals as well as its own. Ranging signals
are detected by matching the recorded data from the sensing
module against their respective reference signal templates.
The distance calculation module simply calculates the dis-
tance to other parties after receiving all respective ETOAs
according to Equation 9.

4.2 Acoustic Signal Design
The acoustic signal should be designed to have good au-

tocorrelation property, which permits accurate signal detec-
tion when presenting with ambient noise. One typical sig-
nal design that fits our requirement is the linear chirp signal,
but the range of its spectrum has to be limited to obey by
the constraints of the hardware design of speaker and mi-
crophone in COTS devices. Because most of these hard-
ware are designed bearing in mind the primary application
being voice conversation, it is natural that they have good
frequency response only around the narrow spectrum band
of human voice. Figure 6 shows the frequency responses
of the HP iPAQ rw6828 and the Dopod 838 smartphones
when we playback and record a chirp signal from 1kHz to
20kHz. The sound signal has been greatly attenuated when
the frequency is higher than 8kHz, which is the upper bound
of human voice. Therefore, we choose the frequency range
of the linear chirp signal to be between 2–6kHz. Another
issue we meet is that the sound waveform played out has
very large distortion in the first few milliseconds. We think
it might be caused by the speaker diaphragm inertia. To re-
solve this, we precede the chirp signal with five milliseconds
2kHz cosine waveform to warm up the speaker. In our im-
plementation, we choose the signal length to be 50 millisec-
onds which strikes a good compromise between multipath
effects suppressing and noise resistance.
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Figure 6. Frequency response of the HP iPAQ rw6828
(left) and Dopod 838 smartphones (right).

4.3 Signal Detection
The signal is detected by correlation with the reference

chirp signal in the time domain. In our implementation, since
the same chirp signal is used by all ranging parties, it is re-
quired to associate each signal to an individual device in or-
der to calculate ETOAs. To differentiate these signals, we
employ a schedule-based protocol that allocates a specific
time window for each party in a ranging process to emit the
sound signal.2 As aforementioned, all devices are not tightly
synchronized. Therefore, the scheduled time window should
be large enough to reliably separate sound signals from dif-
ferent parties. We denoteN as the number of samples for the
chirp signal. For example, when the signal length is 50ms
and the sound sampling rate is 44.1kHz,N equals to 2205
sample points.

To detect, the recorded data are correlated with the ref-
erence signal and the maximum “peak” is located. This
maximum peak is concluded as the location of a signal if
its cross-correlation value is significantly larger than that
with background noise. We calculate theL2-norm of the
cross-correlation values within a small window ofw0 sam-
ples around the peak,L2(S). Then, we calculateL2-norm of
correlation values in aw0 window that is at leastN samples
before the peak,L2(N), where it is considered to contain only
noise. A signal is detected only whenL2(S)/L2(N) > THSD.
If no such quantified point is found, we conclude that the de-
tection failed, which could be because the signal energy is
too weak or the noise level is high. In our implementation,
we setTHSD = 2 (i.e., 3dB) andw0 = 100.

In an indoor environment, reflection from a secondary
path may overlap with the signal from the line-of-sight
(LOS) path. Such signal combination may cause the max-
imum peak to appear at the secondary path, which is slightly
lagged regarding to the signal that travels in the primary path.
One example is shown in Figure 7. It is clear that the peak
corresponding to the primary path occurs at sample 20916,
while the maximum peak occurs at sample 21050, which is
about 0.3ms later. In our design, we handle the multipath
effects by locating the earliest “sharp” peak in the shadow
window. Intuitively, sharpness characterizes the the level of
peak regarding to its surrounding side-lobes. Since cross-
correlation values of signal from different paths should have
similar sharpness, we determine the first peak that has com-
parable sharpness as the maximum peak as the TOA of the
signal. The detailed procedures is as follows: we calculate
the sharpness of a peak as the ratio of the peak value to the
average absolute cross-correlation values in itsw1 vicinity.
Then, we compute all peaks in the shadow window before
the maximum peak and find the first one whose sharpness
γp is larger thanγmax×THMP, whereTHMP is a threshold.
In our implementation, we empirically setTHMP = 85% and
w1 = 100.

4.4 Ranging Protocol
In this subsection, we describe the ranging protocol used

in the BeepBeep system. Here, we assume that each device

2Pseudonoise signal can be used to exempt the schedule-based
protocol, at the cost of significantly increased signal detection com-
plexity.
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Figure 7. One example case of multipath effect.

has a WiFi radio, and thus, all devices are coordinated with
wireless communications. Our protocol can support multi-
ple devices in one ranging process, where each ofN (N > 2)
devices is trying to measure distances to all other devices
simultaneously. Our protocol will generate onlyN acous-
tic signals to obtain all pair-wise distance measurements be-
tween any two devices. This property is critical to ensure the
scalability of our ranging mechanism whenN is large.

Basically, our protocol contains three steps:
1. Initiation. A ranging process is started by an initiating

device, which calculates and disseminates a schedule in
an initiation messageto all the devices that participate
in the ranging process.

2. Sensing. Each device calculates a delay according to
the schedule and sets a timer. Upon the timer expires, it
emits a sound signal.

3. ETOA Exchanging. After the last device has emitted
the sound signal, each device processes the recorded
signals and determine ETOA between its own signal
and signals from all other devices. These ETOA values
are packed into one packet broadcast to other devices.
Upon receiving ETOA information from all other de-
vices, one device can calculate the distance to all other
devices using Equation (9).

In the Initiation step, the initiating device randomly
chooses an order of each device to emit acoustic signal and
specifies a time interval between two consecutive transmis-
sion of signals. Defining such a schedule has two purposes:
1) it schedules each device to emit acoustic signal at differ-
ent time to prevent possible collisions; and 2) it also helps
identifying the signal of each device. It is because acoustic
signals like chirp, are identical for all devices, and it is re-
quired for a device to have an one-to-one mapping between
the detected signals and the ranging peers in order to calcu-
late ETOA correctly.

After receiving the schedule, each device will start record-
ing with microphone and calculate a proper delay (inter-
val multiplied by its order in the schedule starting from the
instance when the initiating message is received) before it
transmits the chirp signal. Note that since the delay is cal-
culated by each device based on its local clock, it is possible
that the schedules calculated by different devices have slight
skews. To accommodate this, the interval between two con-
secutive sound signals should be large enough to prevent sig-
nal overlaps from different devices. In our implementation,
we find an interval of one second can reliably separate sound
signals from different devices.

After the last device has emitted the sound signal, all de-
vices process their recorded data and search for chirp sig-

nals. A chirp signal is related to a device if the signal is
detected within the time window of that device according to
the pre-defined schedule. Note that it is possible that the sig-
nal detection fails. For example, the corresponding device
is too far away for sound to reach but still within in the range
of WiFi. All measured ETOAs between a device and other
devices including detection failures will be exchanged in the
last step using broadcast. After receiving the broadcasts from
all other devices, a device can calculate its distance to others
or re-initiate a new ranging process if failures have occurred.

There can be multiple groups of devices that want to con-
duct ranging process simultaneously and may contend for
the acoustic channel. This contention is resolved by prevent-
ing two nearby initiators from starting ranging processes si-
multaneously. Every device will listen toinitiation messages
from other devices. If an initiator receives aninitiation mes-
sagefrom a nearby device, it should defer the transmission
of its own initiation messageuntil the end of that ranging
process. Note that in some rare case, it is still possible for
two ranging processes happening concurrently if one initia-
tor fails to reliably receive the broadcastinitiation messages.
As a consequence, multiple chirp signals may be found in
one time window and a collision is detected. Since one
device can not differentiate which signal is from the corre-
sponding ranging peer or from a contending device nearby,
it should report a failure and the two initiators should restart
their ranging process later after a randomly backoff.

4.5 Prototype Implementation
We have implemented the BeepBeep ranging system in

Windows Mobile 5.0. We develop it as a user-mode dynamic
linkable library that other applications can load and use itfor
ranging service. We use multimedia services (WaveXXXse-
ries APIs) embedded in Windows Mobile to control micro-
phones and speakers and rely on WinSock for communica-
tion over WiFi. We further develop two demo applications
that utilize the BeepBeep system to determine the distance
among several mobile devices.

5 BeepBeep System Evaluation
5.1 Hardware Configuration

We have deployed the BeepBeep ranging system onto
two models of commercial off-the-shelf PocketPC phones,
HP iPAQ rw6828 and Dopod 838, as shown in Figure 8. Both
devices are running Microsoft Windows Mobile Version 5.0
(Phone Edition), with WiFi and Bluetooth radios and Infra-
Red interface, QVGA display, 64 MB RAM, two built-in
speakers and one microphone that supports 16-bit 44.1 kHz
sampling rate. The HP iPAQ rw6828 features a more pow-
erful Intel XScale 416 MHz processor while Dopod 838 is
equipped a 195 MHz TI OMAP850 processor. The speakers
are laid out at the bottom on the front face for the HP phone
and at the two sides on the Dopod phone.

Due to space limit, we only report the results using Dopod
838 cell phone. The experimental results on the HP iPAQ
rw6828 phone are similar. Unless explicitly pointed out, all
the experiments are performed using the left speaker and the
microphone on the device. Recall that, we need certain cal-
ibration to remove the impact ofK, the constant length be-
tween the speaker and the microphone for each device. The



Figure 8. Two COTS mobile devices used in the evalua-
tion of BeepBeep ranging system.

specific calibration values for the HP iPAQ rw6828 phone
and the Dopod 838 phone are 3cm and 8cm, respectively.
No calibration is needed for the experiments using earphone
because we makeK = 0 by putting the earphone very close
to the microphone.

5.2 Performance Metrics
We use the following metrics to evaluate the BeepBeep

ranging system:
• Accuracy: accuracy is defined as the difference between

the ranging results and the real distance. It may be ex-
pressed by the maximum, minimum, median and mean
ranging error and the standard deviation of the ranging
error. Such errors and standard deviation can be repre-
sented by theabsolutevalues or the percentage to the
real distance.

• Confidence: confidence is defined as the percentage of
the times a known level of accuracy is reached. As con-
fidence depends on the specific accuracy level, in our
evaluation, we defineα-confident as the proportion of
ranging experiments that achieved a ranging error no
larger than the thresholdα, whereα can be an absolute
error (e.g., 5cm) or a relative error (e.g., 1%).

• Operational range: operational range is defined as
the maximum range that the ranging system can still
achieve a known level of accuracyβ with a certain con-
fidenceα. In our evaluation,β is set to 5cm andα to
90%. This metric is informative as it heavily depends
on the experimental environment such as the room size
and the devices’ capabilities such as the properties of
the speaker and microphone.

5.3 Test Case Design
We evaluate the BeepBeep ranging system under four en-

vironments:
• Case-A – Indoor, quiet: a meeting room that is approxi-

mately 5m×11m with a big table in the center, as shown
in Figure 9 where different test locations are also illus-
trated. The environmental temperature is 25oC.

• Case-B – Indoor, noisy: the same room as Case-A but
with background noise consisting of the air conditioner
noise, background pop music (at various volume levels
and various relative positions between the sound box
and the smartphones), and people chatting around the
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Figure 9. Indoor testbed for ranging experiment.

table. The temperature is 25oC.

• Case-C – Outdoor, car park: the open area in front of a
medium size car park at the side of a large building and
nearby the main driving course. The weather is windy
and wind speed is about 10 miles per hour. The temper-
ature is 10oC.

• Case-D – Outdoor, subway station: the open area at the
entrance of a subway station, just after the rush hour
and with medium traffic. The temperature is 15oC.

In all the experiments, we have placed the devices par-
allel to each other and facing up, as depicted in Figure 3,
and ensured line-of-sight between the two devices. For ev-
ery different setting (i.e., different distances under different
test cases), the experiments were repeated 50 times.

5.4 Experimental Results
In our experiments, the sound speed used in the distance

calculation is set according to the following model [21]:
cair = 331.3+0.6·θ where 331.3 m/s is the benchmark speed
at 0oC andθ represents the air temperature in Celsius (oC).

From the experimental results, we find there are some
obviously failed experiments yielding negative or meters-
in-error results. Including these data would make the re-
sults less informative because a single such datum will sig-
nificantly alter the whole accuracy metric. Such failed ex-
periments can be easily detected by speculating the results.
Therefore we have excluded them from the accuracy evalua-
tion using a simple criterion: only results with less than 20cm
ranging error are included for accuracy evaluation. Figure
10-(a) shows the percentage of such successful experiments,
i.e., those used in accuracy evaluation, at different distances
under the four test cases. Clearly, only very few experiment
results are excluded. Note that in our design, we adopted
a thresholdTHSD to indicate possible failure of the signal
detection. To evaluate its effectiveness, we plot the ratioof
experiments that pass the threshold for all the measurement
data in Figure 10-(b) where theTHSD is set to 3dB. Compar-
ing the two figures, we can see that the differences are very
small which confirms the validity of our design.

Note butall the experiments, successful or failed, are in-
cluded in theα-confidence evaluation so that we can tell how
confident our ranging results are in practice. In other words,
for a field ranging application run, we can haveα-confidence
(e.g., 95%) that the result is successful and the possible error
for this specific result is less thanα centimeters.
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Figure 10. Percentage of successful experiments at differ-
ent distances for the four test cases. Left: less than 20cm
ranging error criterion. Right: THSD=3dB criterion.

Furthermore, in the rest of this section, we have followed
this convention when presenting the accuracy evaluation re-
sults: in the figure, the left and the right vertical axes are the
reference scales for the ranging error (max/min, median and
mean) and the standard deviation, respectively. The dash line
represents the mean ranging error and the solid line shows
the standard deviation.

5.4.1 Indoor Cases
Figure 11-(a) shows the accuracy measurements at differ-

ent distances for the Case-A setting. From the figure, we can
see that our system yields highly accurate and stable rang-
ing results in a quiet indoor environment. Both the median
and mean ranging errors are within±1cm and the standard
deviations are within 2cm.3 Figure 11-(b) shows the corre-
spondingα-confidence plots whereα equals to 1cm, 2cm,
3cm and 5cm. High percentage of experiments lead to less
than 1cm accuracy and is very robust in the range of 4 me-
ters. However, the performance starts to deteriorate when the
distance is even larger. For instance, about 95% experiments
have absolute ranging error within 5cm when the distance is
4 meters, but the number drops to zero at the distance of 5
meters.

The accuracy and confidence measurements at different
distances for the Case-B setting are shown in Figure 12. As
can be seen from the figures, the BeepBeep ranging system
still performs very well. The overall resulting ranging ac-
curacy is comparable to Case-A. These results reflect the
excellent noise resistent property of the chirp signal. The
comparison between Figure 11 and 12 further reveals that
background noises only leads to some decreases in the 1cm-
confidence, but has no much impact on the 2cm-confidence
and above.

From above experimental results, we can conclude that
the operational ranges are both 4 meters for the specific set-
tings of test cases Case-A and Case-B. As will be explained
later, the primary reason is the multipath effects caused by
the small size of meeting room. In fact, when the distance

3Note that we plot the mean ranging error without taking abso-
lute values here to show the accuracy we can achieve if multiple
experiments are allowed and to provide some hints of the ranging
error distribution. The median ranging error and the standard devi-
ation are more informative to the accuracy of a single measurement.
In Table 1, we use absolute value of ranging errors to give theover-
all performance of our BeepBeep system.
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Figure 12. Accuracy and confidence measurement results
at different distances in the Case-B setting.

is 5 meters or above, one device is already very close to a
side wall, which led to strong reflection of the sound sig-
nal.. Nonetheless, as long as within the operational range,
our system works reliably and the ranging results are highly
confident.
5.4.2 Outdoor Cases

The accuracy and confidence measurements for Case-C
and Case-D environments are shown in Figure 13 and Fig-
ure 14, respectively. The BeepBeep ranging system still
works well. The resulting median and mean ranging errors
for Case-C are within [-2cm, 4cm] and those for Case-D are
within [-1.5cm, 1cm]. Compared with the indoor cases, the
ranging error increases and shows a larger dynamic range.
However, the standard deviation is still very small (mostly
less than 2cm), which demonstrates the robustness of our
system.

The confidence plots of the two cases differ significantly.
While that of the Case-D is normal and as expected, theα-
confidence plots (forα equals to 1cm, 2cm, and 3cm) for
Case-C seems quite abnormal. We suspect it is a time-of-the-
day effect and affected by the car traffic, because we started
the experiment at 6:30pm (i.e., off the work time) and the
venue is at the entrance of the car park and close to the main
driving course. Another observation is that in Case-D, when
the distance exceeds 10 meters, the performance starts to
drop and most experiments failed when the distance is larger
than 14 meters, as evidenced in Figure 10-(b). In contrast,
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Figure 13. Accuracy and confidence measurement results
at different distances in the Case-C setting.
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Figure 14. Accuracy and confidence measurement results
at different distances for in the Case-D setting.

in Case-C, the performance is still good when the distance
is larger than 14 meters. In fact, a significant portion of ex-
periments succeeded when the distance is 20 meters, but the
time is already deep into night. Therefore, we exclude those
results.

In above measurement results, we have shown the accu-
racy and confidence metric at different distances under the
four test cases. In practice, since such distance information
is not known a priori, we therefore plot the cumulative dis-
tribution function of the ranging accuracy for all the exper-
iments so as to provide a holistic view . From the figure,
we can see that for all the test cases, our ranging results are
highly reliable within their operational ranges. For instance,
the probability that our system will lead to less than 4cm
ranging accuracy is higher than 95% for Case-A, Case-B and
Case-D and is about 86% for Case-C.
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Figure 15. Cumulative distribution function of the α-
confidence for the four test cases.

5.4.3 Impact of Signal Distortion
We mentioned before that one source of TOA detection

error is the signal distortion. As earphone generally have
better frequency responses than the speaker and preserves the
signal waveform better, we conducted another set of experi-
ments in the Case-A environment using the earphones. The
accuracy and confidence measurements are shown in Figure
16.
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Figure 16. Accuracy and confidence measurement at dif-
ferent distances in the Case-A setting, using earphone.

From the figure, we see that using earphone leads to ex-
cellent accuracy with less than 1cm mean and median rang-
ing error and the maximum ranging error is within±2cm.
The ranging results are also super stable. The average and
maximum standard variations among all the test distances
are 0.47cm and 0.6cm, respectively. Theα-confidence plots
state that 100% 2cm-confidence is achieved and over 70%
chances with the ranging error being smaller than 1cm.

Comparing Figure 16 against Figure 11, we can observe
that the earphone outperforms the speaker in all aspects.
These experiments confirm that signal distortion indeed im-
pairs the ranging accuracy. Therefore, a better speaker will
improve the ranging performance. Contrary to our expecta-
tion, although the earphone’s signal power is much weaker
than that of the speaker, the earphone actually has a larger
operational range. This observation suggests that the impacts
of signal distortion is even larger than the signal to noise ra-
tio.
5.4.4 Multipath Effect Mitigation

The multipath effect usually becomes evident when the
signals from non-LOS paths have comparable strengths with
the LOS signal. The effect will be exaggerated when the
lengths of non-LOS paths are close to that of the LOS path
as it will cause interferences. This is the primary reason why
experiments fails when the distance is large for both the two
indoor cases. In those experiments, due to the space limit, we
have put one device close to some walls and stronger multi-
path effects appear in consequence. We did not notice such
effect in the Case-C setting.

Figure 17-(a) shows the distribution of measurement er-
ror at a 5-meter distance in the Case-A setting if we sim-
ply determine the TOA sample according to the maximum
cross-correlation value, i.e., without multipath effect miti-
gation effort. Clearly, all the 50 experiments are failed and
the errors are larger than 3 meters. Figure 17-(b) shows the
resulting measurement error distribution where our heuris-
tic multipath effect mitigation algorithm is applied. All the
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Figure 17. Multipath effects and mitigation in Case-A.

cases with more than 4 meters errors and most cases with 3
meters errors are correctly handled. There percentage of suc-
cessful experiments becomes 88%. However, there are still a
few error cases left over, which suggests more research work.
Note that, in previous evaluation results, the multipath miti-
gation algorithm has not been applied. If it were applied, the
operational range would be significantly improved, at least
for some relaxed accuracy or confidence requirements.
5.4.5 Evaluation Summary

Table 1 summarizes the statistics for all the experiments.
In the table, the overall average and maximum ranging er-
rors are computed over all the measured distances for differ-
ent test cases. Here, theabsolutevalue of ranging errors are
used for the mean and standard deviation calculation. This
table shows that the BeepBeep ranging system indeed leads
to high accuracy (about 1cm) ranging results and works reli-
ably in all the test cases. The operational range for the indoor
cases is around 4 meters (in our specific experiment room,
but in general constrained by the room size) and that for out-
door cases is in general larger than 10 meters. As long as the
devices are within the operational range, our system works
reliably and the ranging results are highly confident.

6 Related Work
There have been tremendous efforts on the localization

problem on theoretical studies [7, 22, 23] as well as build-
ing practical systems using angulation or lateration [3,4,24],
proximity sensing [25, 26], or even scene analysis [10].
While range information can certainly be calculated from
the locations, in this section, we mainly review those work
that involves ranging and whose ranging scheme is closely
related to ours such as using acoustic signal and (possibly)
achieves high ranging precision. For a general review of lo-
calization systems, we refer readers to [26] where an excel-
lent review was provided. Since one of our primary target (or
rather, constraint) is the COTS devices, we also summarize
the available systems that are built out of COTS devices.
6.1 TOA-based Systems

Most existing high accuracy ranging schemes and
lateration-based localization systems rely on time-of-arrival
(TOA) of acoustic signal, with the few exceptions being the
RIPS system [9] that is based on radio interferometric yet
still achieves high precision up to several centimeters using
only radio signal.

The Bat system [3,27] is a high accuracy indoor localiza-
tion system, based on time-of-flight of ultrasonic signal. It
can achieves an accuracy up to 3 centimeters for most cases.

The system relies on an infrastructure consisting of an irreg-
ular matrix of networked, ultrasonic receivers daisy-chained
together above the ceiling of the room. The receivers are
synchronized and orchestrated using a radio channel. The
Cricket location system [4] infers distance using the concur-
rent radio and ultrasonic signals and their differential time of
arrival, and further let users infer their positions by listening
to the wall/ceil-mounted beacons that form an infrastructure.
Good ranging accuracy is achieved with specially designed
hardware that ensures instantaneous timestamping of the ar-
rivals of radio and ultrasonic signals.

While the proposed BeepBeep ranging system bears the
similarity with above systems in the sense that it also uses
acoustic signal and rely on time-of-arrival to calculate the
distance, the differences are also obvious, including no need
of special hardware design, no dependency on the radio sig-
nal,4 and/or no requirement of clock synchronization among
devices and no dependency on the infrastructure.

ENSBox [1] is a platform designed for rapid prototyping
distributed acoustic sensing systems with a prominent self-
calibration feature. A novel position estimation algorithm
was proposed that integrate the microphone array orientation
information. High accurate ranging and localization results,
up to few centimeters, were achieved. We want to point out
that in the design and implementation of the ENSBox, the
authors also observed the necessity of local detection and
exerted self recording. They used sample counting method
to obtain the more accurate timing of the instant at which the
sound is emitted. That is, they solved the sending uncertainty
to some extent. However, since they still needed to obtain
the timestamps with reference to the local clock of each sen-
sor node, tremendous efforts were thus spent to achieve high
precision clock synchronization. In contrast, BeepBeep uses
a two-way sensing strategy that avoids referring to the local
clock and completely removes the requirement on the clock
synchronization, which in return enables BeepBeep to be di-
rectly applicable to ordinary COTS mobile devices. Beep-
Beep further removes the receiving uncertainty and delivers
more accurate ranging results.

The two-way sensing strategy of BeepBeep also bears
some similarity to those schemes where a round-trip time
(RTT) measurement is adopted, such as [20], with the differ-
ence being that we do not require the other device to bounce
back the signal immediately upon receiving. In other words,
we allow arbitrary delay between the two trips. Moreover,
relying on the signal reflection may have certain requirement
on the target size. Note that two-way sensing is not the only
beauty of BeepBeep, other techniques like self-recording and
sample counting are equally important.

Finally, we want to mention PinPoint [2] which achieves
impressive accuracy (up to several feet) using TOA of ra-
dio signal directly. Their key idea is a mathematical way for
clock difference compensation which leads to very precise
timestamp recovery while allowing the nodes’ local clocks to
run asynchronously. BeepBeep ranging system differs from

4The use of WiFi in our system is optional and adopted for con-
venience. We may use Bluetooth or even directly using audio chan-
nel [28].



Environment Operational Confidence Avgd (Avgn(|Err|)) Maxd (Avgn(|Err|)) Avgd(Std) Maxd(Std)
Setting Range Level (cm) (cm) (cm) (cm)

Earphone 4.5m 100% 0.6 1.4 0.4 0.6
Case-A 4.0m 94% 0.9 1.4 1.2 1.9
Case-B 4.0m 94% 1.1 1.7 1.0 1.3
Case-C 12m 98% 2.7 3.8 1.0 2.1
Case-D 10m 92% 1.0 2.2 1.4 1.6

Table 1. Summary of all experimental results. Subscriptd and n indicate that the operations (i.e., avg, max) are
conducted over different measured distances for each test case and overn (n = 50) times experiments, respectively.

PinPoint in that PinPoint uses radio signal to ranging and re-
quires special hardware design with a high-frequency clock,
while we do not need any reference clock at all. However,
the two systems have in common the concept of two-way
sensing. In fact, PinPoint performs two-way sensing twice
in order to recover the timestamps.

As a remark, we would like to point out that another cate-
gory of localization systems, such as microphone arrays [29],
utilize differential time-of-arrival (DTOA), a slight variation
of TOA. The sound source speaks out a sound, all the re-
ceivers (with known positions) record the sound. Through
the combinations of DTOAs, the position of the sound source
can be determined. In [12], the DTOA idea is reversely used
where clock-synchronized sound sources at different loca-
tions in return send out sound signal at controlled time and
sensors report their detected DTOA to a centralized server
for localization through nonlinear optimization. Their idea
on the innovative use of DTOA is similar to our use of
ETOA. The most differentiating feature that sets apart the
BeepBeep ranging system is the complete avoidance of the
clock synchronization among devices, while in the two class
of DTOA based schemes above, synchronization must be
guaranteed among either all the senders or all the receivers.

6.2 System out of COTS Devices
Many localization approaches have been proposed in the

literature [30], with varying resulting precision and system
complexity such as involvement of specially designed hard-
ware. To the best of our knowledge, few works such as WAL-
RUS [26], Radar [25], Horus [31] and ARIADNE [32] do
not involve specially designed hardware.5 These methods
usually give rough proximity information instead of more
precise ranging information. They also commonly depend
on pre-planned infrastructures and operate in indoor envi-
ronments.

More specifically, WALRUS can reach room-level preci-
sion of mobile devices location with ultrasound signal by ut-
lizing the fact that ultrasound signal does not penetrate walls.
It implicitly treats the static PC in each room as infrastructure
or landmark. Radar uses received radio signal strength from
multiple APs and determines the location using radio prop-
agation model and the radio strength map obtained offline.
Radar reaches a precision up to a few meters and leverage
the pre-deployed APs as infrastructure. Bearing the same
concept, Horus system identifies and combats several causes

5There are other two systems, namely Place Lab and
E911/E112, that provide location service to COTS cell phones, but
their precision is too low to be useful in our targeting scenarios.

of wireless signal variation, proposes a location-clustering
technique to improve computation efficiency and can achieve
less than one meter accuracy most of the time. ARIADNE
further simplifies the construction of the signal strength map
by using a floor plan and only a single actual signal strength
measurement and proposes a clustering algorithm for local-
ization. ARIADNE can achieve about two meters accuracy.

Evidently, their dependency on the infrastructure, indoor
operating environment setting, and achievable location pre-
cision make them not suitable for many of our targeting sce-
narios that is mobile and ad-hoc in nature and requires high
precision.

7 Discussion
In the preceding sections, we have presented and evalu-

ated the BeepBeep ranging system. We have shown that our
system can achieve up to one centimeter precision within a
few meters using our testing devices. This working range
and accuracy may vary depending on the quality of the
speakers and microphones on the devices. In general, de-
vices that are equipped with higher fidelity speakers can lead
to larger operational range with certain sound volume since
their playouts of signals have less distortion. Similarly,a
high sensitive microphone is further helpful to precisely de-
tect the signal from background noise. Moreover, raising
sound volume (but not cause extra waveform distortion) may
also help in increasing the operational range, but this may
consume more energy and is also more annoying as in cur-
rent implementation the ranging signal is audible. With the
prevalence of mobile multimedia applications, we believe
more and more COTS devices will be equipped with high
quality speakers and microphones.

We have adopted a simple linear chirp signal (bandlimited
to 2–6kHz) in our ranging system. However, we do not claim
that is optimal, and we put optimal design of ranging signal
as a future work and some valuable insights have been dis-
covered in [33]. Actually, we are working on some alterna-
tive signal designs. One of them is to use coded pseudo-noise
(PN) signals. Our preliminary study shows a simple chaotic
PN signal may achieve similar accuracy as our simple linear
chirp. Further, in the ranging process, different devices may
emit different PN signals using different codes. It is easier
for each device to associate the signal with a certain device
from the recorded data. Finally, with well-chosen codes, PN
signals can be orthogonal to one another and therefore can
be reliably detected even if multiple signals are overlapped.
Such collision resilient property of PN signal suggests that
schedule-based protocol may be significantly simplified or



even exempted if PN signal are used.
As we have explained earlier, choosing a proper length

of sound signal is a tradeoff. On the one hand, in order to
achieve high SNR, we prefer the signal length to be long.
On the other hand, long sound signals may suffer more due
to multipath effect because the signals from secondary paths
overlap more on the primary path signal. In current design,
we have chosen a fixed signal length (i.e., 50ms) to balance
these two requirements. However, in the future, an adaptive
scheme can be used. For example, we can use shorter sig-
nals when the environment is relatively quiet but subjects to
multipath interference (indoor environments); while we use
longer sound signal in our-door environment where noise is
the dominating factor affecting the ranging precision.

Since what being measured in our BeepBeep ranging sys-
tem is the actual traversed path length of the two acoustic
signals, due to the two-way sensing strategy, it is necessary
to ensure the line-of-sight between the two devices so that the
measured path length can be correctly converted to the phys-
ical distance via a fixed conversion function. In this case, the
distance is simply half of the measured path length. As al-
ready shown in our derivation, there is also a calibration term
(i.e.,K in Equation (9)) if the microphone and the speaker are
not located together. It is possible to utilize some “orthogo-
nal” sensory modalities for the devices to become aware of
the possible non-LOS conditions [33]. Another point worth
mentioning is that as long as the LOS can be ensured, the
orientation of the devices seems not matter much in the extra
experiments we have conducted.

There are also some challenges if the BeepBeep ranging
mechanism is to be directly applied onto the extremely weak
sensor nodes like Mica2 motes, which has small memory
buffer, low computation power and no dedicated I/O pro-
cessor to perform the sampling of the incoming sound sig-
nal. Since the achievable ranging accuracy is directly pro-
portional to the sampling rate, the constraint of small mem-
ory buffer can be worked around if the target precision can
be relaxed. The computation power is less a problem since
we do not require real-time signal detection, i.e., signal de-
tection can be postponed. Because the sampling operation is
controlled by the main microcontroller, it is critical thatthe
ranging process should not be interrupted by other processes.
This is probably doable with some customized protocol and
a shortened ranging process.

Finally, we note that ranging with audible sound might
interact with existing applications (e.g. multimedia), but we
expect such interaction to be tolerable due to following rea-
sons. Firstly, the ranging process is rather quick in practice (
few seconds), and may only happen occasionally.6 Secondly,
as we have shown in the evaluation, the BeepBeep system is
rather robust and resistent to both music and human conver-
sations. Thirdly, according to our own experiences and the
feedbacks from some labmates, the band-limited chirp sig-
nal is still ear pleasing. We believe the BeepBeep system

6Some applications may require continuous measures of dis-
tance. However, we find there are still many heuristics can beused
to reduce the ranging processes. For example, we may use the Sig-
nal Strength of WiFi (RSS) as an indicator of human mobility.We
will redo ranging only when there is a significant change in RSS.

can co-exist well with most of current applications.

8 Conclusion
In this research, we have designed, implemented and eval-

uated the high-accuracy acoustic ranging system – Beep-
Beep. It is a pure software-based solution and uses only the
most basic set of commodity hardware – a speaker, a micro-
phone, and some form of device-to-device communication –
to achieve centimeter accuracy. It operates in a spontaneous,
ad-hoc, and device-to-device context without leveraging any
pre-planned infrastructure. It is readily applicable to many
sensor platforms and to most commercial-off-the-shelf mo-
bile devices like cell phones and PDAs. We believe it will
have wide applications in low-cost sensor networks as well
as in a compelling set of social related mobile applications
that desire the proximity awareness and the fine-grained con-
trol over the spatial relationship.

We identified the three uncertainties typically involved
in the time-of-arrival measurements and carefully designed
the BeepBeep ranging system with three unique features to
conquer those uncertainties, namely the two-way sensing
strategy to avoid clock synchronization uncertainty, the self-
recording strategy to remove the sending uncertainty and the
sample counting method to avoid the receiving uncertainty.
Experimental results on handy cell phones demonstrate the
superior accuracy and excellent consistence of the Beep-
Beep ranging system. It achieves about 1cm and 2cm aver-
age ranging accuracy with less than 2cm standard deviations
for typical indoor and noisy outdoor environments, respec-
tively. Because of the minimum hardware assumptions of
the BeepBeep ranging system, we believe its simple yet ef-
fective ranging mechanism can be directly incorporated into
the design of other customized sensor platforms and will lead
to significant cost reduction.

To summarize, we have made the following contribution.
First, we identified the three major uncertainties common to
any time-of-arrival based ranging system and evaluated them
on COTS mobile devices. Secondly, we proposed the Beep-
Beep ranging mechanism that cleverly overcomes all these
uncertainties. Thirdly, we designed and implemented the
BeepBeep ranging system, purely in software. Finally, we
systematically evaluated the system and our design choices
under several typical indoor and outdoor environments using
COTS mobile devices. We have achieved centimeter accu-
racy, the best ever reported in the literature.

We have mainly focused on the ranging problem on COTS
mobile devices and achieved good results so far. Our ongo-
ing work is to systematically evaluate the various parameters
used in the signal detection algorithm. We also plan to build
an ad-hoc localization system using multiple mobile phones.
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