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Classification margin is commonly used for describing the classification capability of a committee of

classifiers. In this paper, we study the relation between classification margin and misclassification error,

focusing on exploring useful information about misclassification error from the known classification

margin. We propose a max–min type bound concerning the minimal misclassification rate, and present

the classification margins, and devise an algorithm for improving average classification accuracy based

on the proposed bound. Experimental results show the effectiveness of the proposed algorithm and also

validate our analytic results.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

In the past, machine learning and statistical techniques
performing classification tasks focused on designing a single
classifier, like neural networks, decision trees, Bayesian classifiers
and linear discrimination analysis algorithms (LDA) [4]. As has
been observed, for single classifier systems, it is likely to overfit
training data, and also difficult to make a good trade-off between
complexity and generalizability. One possible way to avoid
overfitting of single classifiers but making full use of the training
data is by generating and combining multiple classifiers. Boosting
[18] and bagging [1], which are also covered by the adaptive
resampling and combining techniques (Arcing) [2], are two
popular methods for the purpose. The recent proposed boosting
methods, such as the well-known AdaBoost procedure [5,17],
generate weak learners via dynamically reweighing training
instances based on current classification results. The validity
and efficiency of boosting methods has been extensively studied
both in experiments and in theory [8,6]. The original bagging
algorithms, including their related variants such as random forests
[3] and random subspace methods [10], train base classifiers from
data subsets or feature subspaces, and then output the classifica-
ll rights reserved.
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alysis of classification marg
tion results by voting or averaging. The effectiveness of bagging
methods is known to reduce the variance of base classifiers [7].

One way of characterizing the strength of the combination of
the resulting weak classifiers generated by boosting and bagging
is by classification margin, which has been used in some previous
research. Schapire et al. [17] observe that AdaBoost helps to
maximize the number of examples with large margins. Breiman
[3] used classification margin to study the correlation and validity
of random forests. Other works concerning classification margin
like [9,15] are mainly concerned with how to maximize the
margin for special purposes or under additional assumptions.
Meanwhile, for bagging-type algorithms where the training sets
for training base classifiers are randomly constructed, the trained
base classifiers are then inherently random. In other words, these
trained classifiers can be treated to be drawn from the base
classifier space according to some underlying probability dis-
tribution. Classification margin can then be viewed as the
exceedance probability of correct classifiers, and, in general, the
classification margin of Bagging can be empirically calculated
using out-of-bag estimation. Currently, the connection between
classification margin and classification error has not been fully
investigated. We will focus on exploring the connections between
the classification margin and misclassification error, assuming
that the distribution of classification margin is known in advance.
As we will show in later sections, the connections can be used to
bound the error of optimal subensemble, to estimate average
classification error, and to improve the classification accuracy.
in for classification accuracy with applications, Neurocomputing
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The remainder of this paper is organized as follows. In
Section 2, we formulate the problems after introducing necessary
definitions and notations. In Section 3, we investigate the
relationship between classification margin and misclassification
error. In Section 4, an optimization task is proposed for improving
classification accuracy, and a detailed algorithm is developed.
Conclusions are made in Section 5.

2. Problem formulation

Let X be the feature space and Y be the set of class labels. Let D
denote the dataset, and each instance in D is represented by a
feature-label pair ðx; yÞ, where x 2 X; y 2 Y . In addition, we assume
that samples are generated i.i.d. from an unknown underlying
distribution D over X � Y. Throughout this paper, we will use Pð�Þ

and Eð�Þ as the probability function and expectation, respectively.
In a classification task, a classifier can be viewed as a

parameterized mapping from the feature space X to Y . For example,
the Fisher linear classifier for binary classification problems can be
parameterized by its projection vector and a separating point.
Therefore, we can write each individual classifier as a parameterized
mapping hðx; yÞ, abbreviated by hy, where y is the corresponding
parameter, and x is the input feature. Thus, if the input is x, the
classifier with parameter y will predict the label with hðx; yÞ. Let the
range of the classifier parameters be denoted by Y. Then the base
classifier space consists of all classifiers with parameters in Y. We
also use the same notation to represent the base classifier space
when it does not introduce additional confusion.

As noted above, the classifier parameters are allowed to be
random. For example, the classifiers built in the bagging
algorithms vary with the random bootstrapped training sets.
Therefore, we can assume that the classifiers are drawn for
combining according to some unknown probability distribution
over Y, and write the distribution by W. Now we introduce some
definitions about the classification margin, which coincide with
the definitions off Schapire et al. [17] and that of Breiman for
random forests [3].

Definition 1 (Margin function for ensemble classifiers). For k base
classifiers hð�; y1Þ, hð�; y2Þ; . . . ;hð�; ykÞ, the margin function for the
ensemble is defined as

mgðx; y; y1; y2; . . . ; ykÞ

¼
def 1

k

Xk

i¼1

Iðhðx; yiÞ ¼ yÞ �max
jay
j2Y

Xk

i¼1

Iðhðx; yiÞ ¼ jÞ

0
B@

1
CA, (1)

where Ið�Þ is the indicator function.

Definition 2 (Margin function for parameter space). The margin
function for the classifiers in parameter space Y is a function from
X � Y to ½�1;1�

mrðx; yÞ : X � Y 7!½�1;1�,

mrðx; yÞ ¼
def

PWðhðx; yÞ ¼ yÞ �max
jay
j2Y

PWðhðx; yÞ ¼ jÞ. (2)

The margin in (1) indicates the capability for correctly
classifying ðx; yÞ by majority voting using the given classifiers.
The pair ðx; yÞ is correctly classified if and only if
mgðx; y; y1; y2; . . . ; ykÞ40, so the misclassification error is

PDðmgðx; y; y1; y2; . . . ; ykÞp0Þ. (3)

Moreover, the margin in (1) also reflects the confidence in the
classification. The larger the margin, the more the confidence.

In the definition of (2), the margin function mrðx; yÞmaps X � Y

into ½�1;1�. This margin function can be viewed as the general-
Please cite this article as: Q. Cai, et al., Analysis of classification mar
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ization of the definition in (2) to the base classifier space. The
classification margin we mention below refers to (2) if there is no
further emphasis. Moreover, since ðx; yÞ is randomly generated,
then mrðx; yÞ is a random variable taking value in ½�1;1�, and
possesses a probability distribution Pm whose cumulative dis-
tribution function (cdf) is denoted by Fmð�Þ. Thus, FmðaÞ ¼
PDðfðx; yÞ : mrðx; yÞpagÞ. In practical situations, Fm can be approxi-
mately calculated by empirical estimation. For example, in
bagging algorithms, one can use an out-of-bag estimation to
estimate Fm. Therefore, we will assume that Fmð�Þ is known in
advance in this paper.

With Fmð�Þ being known, if Pmðmrð�Þ ¼ 1Þ ¼ 1, one can infer
that, with probability one, simply single classifier hðx; yÞ, y 2 Y, is
sufficient for the classification task and can achieve the zero error
rate. However, there are many more general cases that are not so
extremal, i.e., mrð�Þ need not be 1. What can we say about the
misclassification error for the general cases? What does the
classification margin imply? Can one use the classification margin
for further improving the classification accuracy? The remainder
of this paper will mainly deal with these problems. To sum up, we
will obtain the following interesting results:
1.
gin
There is a bound for minimal classification error of the
ensemble classifiers with the given classification margin.
2.
 The bound for minimal classification error is attainable. In
other words, this bound is a tight bound.
3.
 One can improve the classification results by making use of
classification margins.

3. Classification margin and misclassification error

The main purpose of this section is to study the relationship
between classification margin and misclassification error. We first
deduce a bound for minimal ensemble error rate from the margin
distribution, and then show its different faces concerning classifica-
tion performance. For simplicity, we only consider two-class
classification problems, i.e., Y ¼ f�1;þ1g, and assume that the
committee size in voting is always odd to avoid undecidable cases.

3.1. Bounds for minimal misclassification error

The base classifier space Y can be divided into two types
according to the number of the classifiers it contains (namely, the
size of Y): finite base classifier space and infinite base classifier
space. There are also two ways of drawing classifiers from Y:
drawing with replacement and drawing without replacement.
Drawing with replacement is more general in practice, since for
many ensemble algorithms like bagging and AdaBoost, the base
classifiers are allowed to be duplicated. Drawing without
replacement does not allow the component classifiers to be
duplicated. Though we are mainly interested in drawing with
replacement, we also include the case of drawing without
replacement for a complete discussion.

3.1.1. Drawing with replacement

Consider classifier space Y with distribution W. We obtain the
following result for drawing with replacement, using a probabil-
istic method.

Proposition 1. For any k, there exists a subset of size k,
fyi�1

; . . . ; yi�
k
g � Y, such that the ensemble error (3) satisfies

PDðmgðx; y; yi�1
; . . . ; yi�

k
Þp0Þp

Z 1

�1
Bða; kÞdFmðaÞ, (4)
for classification accuracy with applications, Neurocomputing
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where the integral is Lebesgue– Stieltjes integral, Bða; kÞ¼:Pk
i¼dk=2eð

k
iÞðð1� aÞ=2Þiðð1þ aÞ=2Þk�i, and dk=2e represents the mini-

mal integer not less than k=2.

Proof. We draw k component classifiers’ parameters y1; . . . ; yk

i.i.d. according to W. For each ðx; yÞ that mgðx; yÞ ¼ a, the number of
classifiers in fhy1

; . . . ;hyk
g that correctly classified ðx; yÞ is a

binomial random variable with parameters k and ð1þ aÞ=2. Thus,
the probability that ðx; yÞ is misclassified by the combination of
hy1

; . . . ;hyk
is

Bða; kÞ¼:
Xk

i¼dk=2e

k

i

� �
1� a

2

� �i 1þ a
2

� �k�i

. (5)

With the aid of Fubini’s theorem (see [16]),

Ey1 ;...;yk�WðPðx;yÞ�Dðmgðx; y; y1; . . . ; ykÞp0ÞÞ

¼ Ey1 ;...;yk�WðEðx;yÞ�DðIðmgðx; y; y1; . . . ; ykÞp0Þjy1; . . . ; ykÞÞ

¼ Eðx;yÞ�D;y1 ;...;yk�WðIðmgðx; y; y1; . . . ; ykÞp0ÞÞ

¼ Eðx;yÞ�DðEy1 ;...;yk�WðIðmgðx; y; y1; . . . ; ykÞp0Þjmrðx; yÞÞÞ

¼ Eðx;yÞ�DðBðmrðx; yÞ; kÞÞ

¼

Z 1

�1
Bða; kÞdFmðaÞ. (6)

Therefore,

Ey1 ;...;yk�WðPðx;yÞ�Dðmgðx; y; y1; . . . ; ykÞp0ÞÞ ¼

Z 1

�1
Bða; kÞdFmðaÞ. (7)

Thus there must exist one choice fyi�1
; . . . ; yi�

k
g 	 Y, such that the

ensemble error rate does not exceed
R 1
�1 Bða; kÞdFmðaÞ. &

3.1.2. Drawing without replacement

For drawing without replacement, if the space Y contains no
atom (an element that takes place with positive probability), the
previous result can still be applied without further modification.
Otherwise, if Y contains some atoms, then the atoms are at
most infinitely countable, since the total probability should not
exceed 1. Since the drawing without replacement is out of our
interest, we only consider one special case that might be useful.
We consider that Y contains only finite atoms y1; . . . ; yn; and these
atoms occur equally with probability 1=n. For this case, the
method of drawing without replacement is to draw fyi1

; . . . ; yik
g,

where k is the specified size and 1pi1oi2o � � �oikpn.

Proposition 2. For any k, there exists a subset fyi�1
; . . . ; yi�

k
g � Y,

where 1pi�1oi�2o � � �oi�kpn, such that the ensemble error rate (3)
satisfies

PDðmgðx; y; yi�1
; . . . ; yi�

k
Þp0Þp

Z 1

�1
f ðn; k; aÞdFmðaÞ, (8)

where

f ðn; k; aÞ ¼
Xminðk;neÞ

i¼dk=2e

ne

i

� � nc

k� i

� �, n

k

� �
, (9)

and nc ¼ nð1þ aÞ=2, ne ¼ nð1� aÞ=2.

Proof. Using the similar arguments as the proof of Proposition 1,
we draw a k-size subset by uniformly random selection (without
replacement). For each ðx; yÞ that mgðx; yÞ ¼ a, the number of
classifiers in Y that correctly classify ðx; yÞ is nc , so the number of
k-subsets in Y that misclassifies ðx; yÞ is

Pminðk;neÞ

i¼dk=2e ð
ne
i Þð

nc
k�iÞ. An

application of the Polya urn model [11] shows that each k-subset
that misclassifies ðx; yÞ is drawn with probability 1=ðnkÞ. Hence the
probability that ðx; yÞ is misclassified is

f ðn; k; aÞ ¼
Xminðk;neÞ

i¼dk=2e

ne

i

� � nc

k� i

� �, n

k

� �
. (10)
Please cite this article as: Q. Cai, et al., Analysis of classification marg
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As in (6), we have

Ey1 ;...;yk�WðPðx;yÞ�Dðmgðx; y; y1; . . . ; ykÞp0ÞÞ ¼

Z 1

�1
f ðn; k; aÞdFmðaÞ. (11)

From (11), there exists at least one choice of k-subset in Y,
fyi�1

; . . . ; yi�
k
g, where 1pi�1oi�2o � � �oi�kpN, such that (8) holds. &

3.1.3. Application to one classifier pruning problem

One direct application of Propositions 1 and 2 is to answer
one problem raised in the classifier pruning scenario: for a
large committee of trained classifiers, if one wants to reduce the
committee size to an acceptable amount, how small can the
misclassification error be achieved?

The problem of identifying an optimal subset is a typical
combinatorial problem, and is NP-complete [20]. However, since
the margin function of the base classifier space can be calculated,
Fmð�Þ can be obtained, and our result can then provide an upper
bound for the error rate of the optimal subensemble. If the
reduced committee classifiers are allowed to be duplicated,
Proposition 1 gives an upper bound for the possible minimal
error rates. If the reduced committee classifiers are not allowed to
be duplicated, Proposition 2 provides an upper bound for the
minimal misclassification error.

3.2. The tightness property

A close look at (4) reveals that the bound is distribution free
with respect to W, and depends only on Fmð�Þ and k. A further
exploration below shows that it is actually tight in the sense that,
for some fixed F�mð�Þ, the bound equals the possible minimal
ensemble error for some sample space which possesses the same
classification margin. (Similarly, we can also show that (8) cannot
be further improved.) Let err�ðY; kÞ denote the minimal ensemble
error of the k classifiers chosen from the base classifier space Y.
We have the following proposition.

Proposition 3. There are some cumulative distribution functions

F�mð�Þ, such that

Z 1

�1
Bða; kÞdF�mðaÞ

¼ supferr�ðY; kÞ : the Fmð�Þ of Y equals F�mð�Þg. (12)

Proof. Firstly, by (4), for all F�m,

Z 1

�1
Bða; kÞdF�mðaÞ

X supferr�ðY; kÞ : the Fmð�Þ of Y equals F�mð�Þg. (13)

We only need to show that F�m exists such that

Z 1

�1
Bða; kÞdFmðaÞ

p supferr�ðY; kÞ : the Fmð�Þ of Y equals F�mð�Þg. (14)

We will show that the family of cdfs that equal 0 at the origin
all satisfy (14). We prove this by construction. Since F�mð0Þ ¼ 0,
then for almost all instance ðx; yÞ, mrðx; yÞ40 (a.k.a.,
PDðmrðx; yÞ40Þ ¼ 1). We consider the infinite base classifier space
Y, and make the feature space X and the sample distribution D

satisfy the following two conditions:

Discriminability: 8y 2 Y, the conditional expectation

EDðIðhðx; yÞ ¼ yÞjmrðx; yÞ ¼ aÞ ¼
1þ a

2
. (15)
in for classification accuracy with applications, Neurocomputing

dx.doi.org/10.1016/j.neucom.2008.03.015


ARTICLE IN PRESS

Q. Cai et al. / Neurocomputing ] (]]]]) ]]]–]]]4
Independence: 8y1; y2; . . . ; yn in Y such that y1a � � �ayn,

PDðIðhðx; y1Þ ¼ yÞ; . . . ; Iðhðx; ynÞ ¼ yÞjmrðx; yÞ ¼ aÞ

¼
Yn

i¼1

PDðIðhðx; yiÞ ¼ yÞjmrðx; yÞ ¼ aÞ. (16)

These conditions state that all the base classifiers have the same

classification ability as (15), and the outputs of the base classifiers

are independent in the sense of (16). It can be verified that the two

conditions are consistent, and the examples meeting the two

conditions exist.

To complete the proof, we will show that under the previous

construction, for fixed a40, 8y1; y2; . . . ; yk (the y’s here need not be

distinct),

PDðmgðx; y; y1; y2; . . . ; ykÞo0jmrðx; yÞ ¼ aÞXBða; kÞ. (17)

Thus

err ¼ EDðPDðmgðx; y; y1; . . . ; ykÞo0jmrðx; yÞ ¼ aÞÞX
R 1
�1 Bða; kÞdF�mðaÞ,

and then err�X
R 1
�1 Bða; kÞdF�mðaÞ, so F�m meets (14).
(1)
P
(

If y1; . . . ; yk are all distinct from each other, then by (15) and (16),

PDðmgðx; y; y1; . . . ; ykÞp0jmrðx; yÞ ¼ aÞÞ ¼ Bða; kÞ. (18)
(2)
 If some of y1; . . . ; yk are duplicated, we denote the committee
of these base classifiers by C, and rewrite them by distinct
parameters y01; . . . ; y

0
m, and let t1; . . . ; tm denote their dupli-

cated times, respectively. Thus
Pm

i¼1ti ¼ k. Now we add new
different classifiers y0mþ1; . . . ; y

0
k to fy01; . . . ; y

0
mg, and obtain a

new committee of k base classifiers, denoted by C 0. Then as in
(18), PDðmgðx; y;C 0Þp0jmrðx; yÞ ¼ aÞ ¼ Bða; kÞ. Since

PDðmgðx; y;CÞp0jmrðx; yÞ ¼ aÞ

� PDðmgðx; y;C0Þp0jmrðx; yÞ ¼ aÞ

¼ Pðmgðx; y;CÞo0;mgðx; y;C0Þ40jmrðx; yÞ ¼ aÞ

� Pðmgðx; y;CÞ40;mgðx; y;C0Þo0jmrðx; yÞ ¼ aÞ, (19)

we only need to show that

Pðmgðx; y;CÞo0;mgðx; y;C 0Þ40jmrðx; yÞ ¼ aÞ

4Pðmgðx; y;CÞ40;mgðx; y;C0Þo0jmrðx; yÞ ¼ aÞ. (20)

The event fðx; yÞ : mgðx; y;CÞo0;mgðx; y;C0Þ40;mrðx; yÞ ¼ ag
can be decomposed into the following events:

oðI1 ;...;IkÞ ¼
def
fðx; yÞ : Iðhy0

1
ðxÞ ¼ yÞ

¼ I1; . . . ; Iðhy0
k
ðxÞ ¼ yÞ ¼ Ik;mrðx; yÞ ¼ ag,

where Ii’s take value in f0;1g, and

Xm

i¼1

Ii � ti4k=2 and
Xk

i¼1

Iiok=2. (21)

Similarly, fðx; yÞ : mgðx; y;CÞ40;mgðx; y;C0Þo0;mrðx; yÞ ¼ ag
can be decomposed into the following events:

o0ðI1 ;...;IkÞ ¼
def
fðx; yÞ : Iðhy0

1
ðxÞ ¼ yÞ

¼ I1; . . . ; Iðhy0
k
ðxÞ ¼ yÞ ¼ Ik;mrðx; yÞ ¼ ag,

where Ii’s take value in f0;1g, and

Xm

i¼1

Ii � tiok=2 and
Xk

i¼1

Ii4k=2. (22)
lease cite this article as: Q. Cai, et al., Analysis of classification margin
2008), doi:10.1016/j.neucom.2008.03.015
For all ðI1; . . . ; IkÞ satisfying (21), it can be verified that
ð1� I1; . . . ;1� IkÞ also satisfies (22). Since

PDðoðI1 ;...;IkÞjmrðx; yÞ ¼ aÞ

¼
kXk

i¼1

Ii

0
BB@

1
CCA 1þ a

2

� �Pk

i¼1
Ii 1� a

2

� �k�
Pk

i¼1
Ii

and

PDðo0ð1�I1 ;...;1�IkÞ
jmrðx; yÞ ¼ aÞ

¼
kXk

i¼1

Ii

0
BB@

1
CCA 1þ a

2

� �k�
Pk

i¼1
Ii 1� a

2

� �Pk

i¼1
Ii

,

then for aX0,

PDðoðI1 ;...;IkÞjmrðx; yÞ ¼ aÞ

4PDðo0ð1�I1 ;...;1�IkÞ
jmrðx; yÞ ¼ aÞ. (23)

Therefore,

Pðmgðx; y;CÞo0;mgðx; y;C0Þ40jmrðx; yÞ ¼ aÞ

¼
X

ðI1 ;...;IkÞ meets ð21Þ

PDðoðI1 ;...;IkÞjmrðx; yÞ ¼ aÞ

4
X

ðI1 ;...;IkÞ meets ð21Þ

PDðoð1�I1 ;...;1�IkÞ
jmrðx; yÞ ¼ aÞ

¼
X

ðI1 ;...;IkÞ meets ð22Þ

PDðo0ðI1 ;...;IkÞjmrðx; yÞ ¼ aÞ

¼ Pðmgðx; y;CÞ40;mgðx; y;C0Þo0jmrðx; yÞ ¼ aÞ (24)

and (20) holds.
Consequently, by (18) and (20), (17) holds. &

3.3. Expectation and rate of convergence

In the proof of Proposition 1, we have shown in (7) that

Z 1

�1
Bða;KÞdFmðaÞ ¼ Ey1 ;...;yk�WðPðx;yÞ�Dðmgðx; y; y1; . . . ; ykÞp0ÞÞ. (25)

This equality leads to the following proposition.

Proposition 4. Drawing k base classifiers independently according

to distribution W, the expectation of the ensemble error rate isR 1
�1 Bða; kÞdFmðaÞ.

Since
R 1
�1 Bða; kÞdFmðaÞ can be viewed as the expectation of

Bða; kÞ, where a is a random variable with distribution FmðaÞ, we
write

R 1
�1 Bða; kÞdFmðaÞ by EDðBða; kÞÞ for later use. A direct

application of Proposition 4 shows that the average classification
error of Bagging algorithms is EDðBða; kÞÞ.

Furthermore, EDðBða; kÞÞ can be used to dominate the following
rate of convergence.

Proposition 5. For a0 2 ½�1;1�, �40,
(a)
 P
y1 ;...;yk �

i:i:d
W
ðPDðmgðx; y; y1; . . . ; ykÞp0Þ

XFmða0Þ þ �Þp
1

�

Z 1

aþ
0

Bða; kÞdFmðaÞ,
for classification accuracy with applications, Neurocomputing
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Pl
(2
P i:i:d ðPDðmgðx; y; y1; . . . ; ykÞp0Þ
(b)
 y1 ;...;yk � W

pFmða0Þ � �Þp
1

�

Z a�
0

0
1� Bða; kÞdFmðaÞ.
Proof. For fixed y1; . . . ; yk, observe that the event fðx; yÞ :
PDðmgðx; y; y1; . . . ; ykÞp0ÞXFmða0Þ þ �g can be decomposed into
two parts

fðx; yÞ : mgðx; y; y1; . . . ; ykÞp0g

¼ fðx; yÞ : mgðx; y; y1; . . . ; ykÞp0;mrðx; yÞ4a0g

[ fðx; yÞ : mgðx; y; y1; . . . ; ykÞp0;mrðx; yÞpa0g. (26)

Thus

PDðmgðx; y; y1; . . . ; ykÞp0Þ

¼ PDðmgðx; y; y1; . . . ; ykÞp0;mrðx; yÞ4a0Þ

þ PDðmgðx; y; y1; . . . ; ykÞp0;mrðx; yÞpa0Þ. (27)

Besides,

PDðmgðx; y; y1; . . . ; ykÞp0;mrðx; yÞpa0Þ

pPDðmrðx; yÞpa0Þ ¼ Fmða0Þ. (28)

Therefore,

PDðmgðx; y; y1; . . . ; ykÞp0ÞpPDðmgðx; y; y1; . . . ; ykÞ

p0;mrðx; yÞ4a0Þ þ Fmða0Þ. (29)

With (29) and Chebychev’s inequality,

P
y1 ;...;yk �

i:i:d
W
ðPDðmgðx; y; y1; . . . ; ykÞp0ÞXFmða0Þ þ �Þ

pP
y1 ;...;yk �

i:i:d
W
ðPDðmgðx; y; y1; . . . ; ykÞp0;mrðx; yÞ4a0ÞX�Þ

p
1

�
E
y1 ;...;yk �

i:i:d
W
ðPDðmgðx; y; y1; . . . ; ykÞp0;mrðx; yÞ4a0ÞÞ

¼
1

�
EDðP

y1 ;...;yk �
i:i:d

W
ðmgðx; y; y1; . . . ; ykÞp0jmrðx; yÞ4a0ÞÞ

¼
1

�

Z 1

aþ
0

Bða; kÞdFmðaÞ. (30)

Thus (a) holds. With a similar argument, (b) also holds. &

3.4. Numerical and asymptotic properties

We present here some numerical and asymptotic properties
concerning the deduced bound, which provide an alternative way
for calculation and characterize the limiting behavior. Before we
go further, we need the following properties for Bða; kÞ.

Lemma 6. (1) Bða; kÞ ¼ betaincðð1� aÞ=2; dk=2e; bk=2c þ 1Þ, where

betainc is the normalized incomplete beta function.

betaincðt; a; bÞ¼
:
Z t

0
ua�1ð1� uÞb�1 du

�Z 1

0
ua�1ð1� uÞb�1 du.

(2) For a40, Bða; kÞpminðexpð�a2k=8Þ; ð2=a
ffiffiffi
k
p
Þ expð�a2k=2ÞÞ.

For ao0, 1� Bða; kÞpminðexpð�a2k=8Þ; ð2=a
ffiffiffi
k
p
Þ expð�a2k=2ÞÞ.

(3) Bða; kÞ is monotonically nonincreasing with a,

lima!1Bða; kÞ ¼ 0, and

lim
k!1

Bða; kÞ ¼
0; a40;

1; ao0:

(

Remark 1. Lemma 6(1) is useful for numerical computation
purpose, since ðkiÞ in (5) will be large when k is large and a
direct computation of (5) will encounter floating point overflow
problems.

Remark 2. Lemma 6(3) shows the monotonicity and limit
property of Bða; kÞ. Lemma 6(2) gives an asymptotic bound for
ease cite this article as: Q. Cai, et al., Analysis of classification marg
008), doi:10.1016/j.neucom.2008.03.015
how fast Bða; kÞ tends to its limit with k increasing, from which we
note that the larger jaj, the faster the Bða; kÞ converges.

Proof. (1) A direct computation or using the properties of Beta
function leads to

Z 1

0
udk=2eð1� uÞbk=2cþ1 du ¼

k

2

� 	
� 1

� �
!

k

2


 �
!

k!
. (31)

By integration by parts,Z ð1�aÞ=2

0
udk=2eð1� uÞbk=2cþ1 du

¼
Xk

i¼dk=2e

k

2

� 	
� 1

� �
!

k

2


 �
!

i!ðk� iÞ!

1� a
2

� �i 1þ a
2

� �k�i

. (32)

By (31) and (32), the equation holds.

(2) We only consider the case that a40, the other case follows

in the same way. Note that ðkiÞðð1� aÞ=2Þiðð1þ aÞ=2Þk�i equals

PrðX ¼ iÞ in the binomial distribution X�Binðk; ð1� aÞ=2Þ. The

Hoeffding bound gives that

Bðk; aÞp exp �
a2k

8

� �
. (33)

An improved bound of Lévy’s bound [12] gives that

Bðk; aÞp
2

a
ffiffiffi
k
p exp �

a2k

2

� �
. (34)

(3) The monotonicity and limiting behavior is a direct result of

(1) and (2). &

Corollary 7. (1) Law of large numbers: PDðmgðx; y; y1; . . . ; ykÞp0Þ
converges to Fmð0Þ with probability 1.

(2) PAC-type convergence: For d40, there exists a constant k0, such

that 8kXk0, with probability at least 1� d, PDðmgðx; y; y1; . . . ; ykÞp
0ÞpFmð0Þ þ d. Moreover, k0 can be taken to be

k0 ¼
16

a2
0

log

ffiffiffi
2
p

d
where

a0 ¼ sup a : FmðaÞpFmð0Þ þ
d
2

� 
. (35)

Proof. (1) For arbitrary �40, applying Proposition 5 with a ¼ 0,

P
y1 ;...;yk �

i:i:d
W
ðPDðmgðx; y; y1; . . . ; ykÞp0Þ

XFmð0Þ þ �Þp
1

�

Z 1

0þ
Bða; kÞdFmðaÞ,

P
y1 ;...;yk �

i:i:d
W
ðPDðmgðx; y; y1; . . . ; ykÞp0Þ

pFmð0Þ � �Þp
1

�

Z 0�

�1
1� Bða; kÞdFmðaÞ.

By Lemma 6(2),

P
y1 ;...;yk �

i:i:d
W
ðjPDðmgðx; y; y1; . . . ; ykÞp0Þ � Fmð0ÞjX�Þ

p
1

�

Z
½�1;1�nf0g

exp �
a2k

8

� �
dFmðaÞ.

By dominated convergence theorem,

lim
k!1

Z
½�1;1�=f0g

exp �
a2k

8

� �
dFmðaÞ ¼ 0,

so P
y1 ;...;yk �

i:i:d
W
ðjPDðmgðx; y; y1; . . . ; ykÞp0Þ � Fmð0ÞjX�Þ ! 0 and

PDðmgðx; y; y1; . . . ; ykÞp0Þ converges to Fmð0Þ with probability 1.
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(2) Let k0; a0 be the same as in (35). For kXk0, by

Proposition 5(a),

P
y1 ;...;yk �

i:i:d
W
ðPDðmgðx; y; y1; . . . ; ykÞp0ÞXFmð0Þ þ dÞ

pP
y1 ;...;yk �

i:i:d
W

PDðmgðx; y; y1; . . . ; ykÞp0ÞXFmða0Þ þ
d
2

� �

p
2

d

Z 1

aþ
0

Bða; kÞdFmðaÞ

p
2

d

Z 1

aþ
0

exp
�a2k

8
dFmðaÞ

p
2

d

Z 1

aþ
0

exp
�a2

0k0

8
dFmðaÞ

pd: & (36)

The above properties in Corollary 7 indicate that:


 For fixed k, the higher the probability that margin mgðx; yÞ is
large, the lower the expected classification error rate. This
coincides with our intuition.



 As k increases, the law of large numbers implies that, with

probability close to 1, the instances in fðx; yÞ : mgðx; yÞ40g will
be correctly classified, and the instances in fðx; yÞ : mgðx; yÞo0g
will be misclassified.



 If with a high probability, the margin mgðx; yÞ is large, then the

k needed to attain a small error rate is small. That is, using only
a relatively small subset of classifiers can achieve an optimal
classification capability.

4. Boosting the accuracy

In this section, we will seek the way to improve classification
accuracy by incorporating classification margins. We will devise
an algorithm for minimizing the proposed bound, and the
experimental results indicate that the proposed algorithm can
reduce the classification error. We also observe that:


 One can grow classifiers from any subspaces of the feature
space by bagging. The idea of growing classifiers from feature
subspaces has also been used in the random subspace method
by Ho [10].



 The classifiers constructed from different feature subspaces

will likely behave diversely, and often a notable portion of
instances can easily be correctly classified in some feature
subspaces but obscure in other subspaces.

By these two observations, it seems possible to improve
classification accuracy by combining classifiers trained from
different feature subspaces and taking advantages of the diverse
classification capability.

4.1. Algorithm framework

4.1.1. Combining strategy

To improve the classification accuracy, it is a natural way to
construct a new base classifier space based on the prescribed
feature subspaces. We will employ a probabilistic technique
which makes the margin function in the new base classifier space
a linear combination of margin functions of the base classifier
spaces grown from the feature subspaces.

Our method for constructing the new base classifier space is by
assigning weights to the base classifier spaces. Let the base
classifier spaces be denoted by Y1; . . . ;Yn, with their margin
functions mr1ð�Þ; . . . ;mrnð�Þ, respectively. Then the new base
classifier space is

Sn
i¼1Yi. We want the margin function mrð�Þ in
Please cite this article as: Q. Cai, et al., Analysis of classification mar
(2008), doi:10.1016/j.neucom.2008.03.015
the new space to be a linear combination of mr1ð�Þ; . . . ;mrnð�Þ:

mrð�Þ ¼ w1 �mr1ð�Þ þw2 �mr2ð�Þ þ � � � þwn �mrnð�Þ, (37)

where wi is the weight assigned to Yi. In (37), wi’s can be further
restricted to be nonnegative since one can reverse the output of all
classifiers in Yi to make wi nonnegative. In addition, wi’s are made
to meet the normalized condition that

Pn
i¼1wi ¼ 1. We use the

following two steps to achieve mrð�Þ: for each base classifier y:
Step 1: Randomly draw one index s from f1; . . . ;ng with

Pðs ¼ iÞ ¼ wi.
Step 2: Draw y randomly from Ys according to Ws.
By these two steps,

mrðx; yÞ ¼ Pðhðx; yÞ ¼ yÞ � Pðhðx; yÞayÞÞ

¼
Xn

i¼1

½Pðhðx; yÞ ¼ yjy 2 YsÞ

� Pðhðx; yÞayjy 2 YsÞ� � Pðs ¼ iÞ

¼
Xn

i¼1

wi �mriðx; yÞ, (38)

which is the desired margin function in (37).
4.1.2. The objective function

To convert the previous ideas into an optimization task, we
need an objective function. By the analysis of classification
margin, it is a natural way to use EDðBða; kÞÞ as the objective
function. This brings three benefits:



gin
It is the average error rate of k base classifiers randomly drawn.
Reducing EDðBða; kÞÞ will reduce the average error rate by
Proposition 4.



 With Fmð�Þ fixed, EDðBða; kÞÞ is the pessimistic bound for

minimal error rates. A further careful choice of the k base
classifiers may be possible to achieve lower error rates.



 EDðBða; kÞÞ also dominates the PAC-type convergence rate.

When EDðBða; kÞÞ is small, the error rate is expected to converge
fast to its limit as the committee size increases.

To construct the new classifier space, the following optimization
problem is to be solved:

min

Z 1

�1
Bða; kÞdFmðaÞ,

where FmðaÞ ¼ P
Xn

i¼1

wi �mriðx; yÞpa

 !

and
Xn

i¼1

wi ¼ 1; wiX0. (39)

4.1.3. A suboptimal algorithm

Let the instances from the training set be denoted by
ðx1; y1Þ; . . . ; ðxm; ymÞ, then the discrete version of (39) is

Xm
j¼1

B
Xn

i¼1

wi �mrðxj; yjÞ; k

 !
. (40)

The summands does not possesses ‘‘good’’ properties such as
monotonicity or convexity for the free parameters wi’s , and (40) is
difficult to be globally minimized. We use an approximate
technique for minimizing (40).

As have been shown, as a " 1, Bða; kÞ monotonically tends to 0.
Thus we expect that maximizing the number of instances whose
classification margin exceeds some specified level is helpful for
reducing (40). We carry this out by solving the following problem,
for classification accuracy with applications, Neurocomputing
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Table 2
Description of datasets

Dataset Attributes Cont. attr. Missing Instances

Balance 4 0 No 576

Breast Wisc 9 9 Yes 699

Bupa 6 6 No 345

Credit-g 20 8 No 1000

Crx 15 6 Yes 690

Echocardio 10 8 Yes 131

Glass 9 9 No 146

Hayes Roth 4 0 No 129

Heart Cleve 13 5 Yes 303

Hepatitis 19 6 Yes 155

Horse Colic 26 8 Yes 366

House Votes 16 0 Yes 435

Ionosphere 34 32 No 351

Pima 8 8 No 768

Promoters 57 0 No 106

Sonar 60 60 No 208

Tic-tac-toe 9 0 No 958

Vehicle 18 18 No 435
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for some gX0:

min
Xm

j¼1

dj

s:t:
Xn

i¼1

wi �mriðxj; yjÞXg� dj

for j ¼ 1; . . . ;m,Xn

i¼1

wi ¼ 1; djX0; wiX0

for i ¼ 1; . . . ;n and j ¼ 1; . . . ;m. (41)

In (41), dj’s can be viewed as penalty if the resulting mrðxj; yjÞ is
lower than the prescribed value g. The optimization problem is
tractable since it is a linear optimization problem and can be
globally minimized efficiently via linear programming [19]. The
solution for (41) only depends on g, and we tune g by grid
searching for minimizing (40). The detailed procedure of our
algorithm is summarized in Table 1.
Yeast 8 8 No 792
4.2. Experimental results

To illustrate the effectiveness of the proposed algorithm, we
compare the proposed algorithm with some other well-known
related algorithms, including AdaBoost [5], bagging [1], random
forest [3], and the random subspace method [10]. We choose
these methods for comparison because: (A) AdaBoost is undoubt-
edly one of the most popular and well-known ensemble methods
that can produce good results; (B) Bagging is one well known
algorithm that is able to induce some classification margins, and
our algorithm in the following experiments depends heavily on
bagging; (C) Random forest is a successful variant of bagging; (D)
Random subspaces methods also incorporate the same ideas of
growing classifiers from randomly chosen feature subspaces as
our methods; in fact, the random subspaces methods can also be
viewed as a special type of bagging where the bootstrap re-
sampling is cast on the features of the instances.

The datasets we used are chosen from the UCI Repository of
machine learning databases [13], which have also been used
extensively in related works. Since we only study the binary
classification problem, we selected the two largest categories in
each dataset for the classification task. The details of the datasets
are presented in Table 2, including the numbers of attributes and
continuous attributes, missing value information, and instance
number. The attributes of these datasets consist of continuous
(numerical) and categorical attributes, and seven datasets contain
missing values.

Since decision trees can handle well both categorical and
numerical attributes as well as missing values, we use decision
Table 1
Algorithmic procedure for training

Input: Training set fðx1 ; y1Þ; . . . ; ðxm ; ymÞg; feature subspaces S1 ; . . . ; Sn as well as

their margin function mr1ð�Þ; � � � ;mrnð�Þ; committee size k.

Training:
Optimization (grid search): Solving (41) based on mrið�Þ for different g’s, and

obtain several candidate coefficients. Pick one solution w�1; . . . ;w
�
n that minimizes

(39). (E.g., let g take 0:05 � i; i ¼ 1; . . . ;20. Optimize (41) and obtain 20 groups of

coefficients. Pick the group that maximizes (39) as the final choice for the

coefficients of the feature subspaces.)

Constructing committee: Grow k classifiers independently from Si’s with

probability w�i ’s. For l ¼ 1; . . . ; k,

Choosing feature subspace: randomly draw a feature subspace Sil
from Si ’s

with probability w�i ’s;

Training base classifier: train the base classifier yl from feature subspace Sil
.

Output: The committee of classifiers y1 ; . . . ; yk .

Please cite this article as: Q. Cai, et al., Analysis of classification marg
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trees as the base classifiers. We implement all the algorithms
using Weka [21], and use the C4.5 decision tree [14] as the base
classifier. Observe that in (37), if the margin functions are
identical or close to each other, the combined margin function
can hardly be changed. Therefore, for each dataset, we randomly
draw a maximum of 25 subspaces from the original feature space
with dimension of about 2

3 of the dimension of entire space. By
doing this, we expect to obtain classifier spaces in some of which
the classifiers are not too weak and the margin functions are not
too close to each other. For the margin functions in each base
classifier spaces, we use an empirical out-of-bag estimation for
their approximation.

Since we use a random sampling technique in choosing feature
subspace to grow base classifiers, we should use a relative large k

(compared with the number of feature subspaces) to achieve
stable classification results. In our experiments, we set the
committee size to be 100. We use a 10-fold cross-validation for
calculating the average classification error, and the experiments
on each dataset are run 100 times independently. The experi-
mental results are given in Table 3. We note that for most datasets,
the average error rates of the proposed algorithm are lower than
the others. Our algorithm achieves the lowest misclassification
error in 13 out of 19 datasets. A 95% confidence t-test also shows
that the proposed algorithm statistically outperforms the others:
our algorithm statistically beats AdaBoost in 15 datasets, bagging
in 13 datasets, random forest in 12 datasets and the random
subspace method in 17 datasets. In addition, the average error
rates in the experiments are all close to the estimated expectation
error given in Proposition 4. These validate that using EDðBða; kÞÞ as
the objective function is effective, and our approximate optimiza-
tion algorithm can successfully utilize the classification ability
in different base classifier spaces to achieve the lower misclassi-
fication error.

Though our algorithm achieves better performance in the
experiments, compared with bagging, it requires additional
computational power in our experiments. Although the margin
functions are presumably known, they require pre-estimation like
out-of-bag estimation; however, since the margin functions are
assumed to be known in advance, it will not be covered in the
training steps. In the training procedure in Table 1, compared with
bagging, the main extra computational costs are introduced by the
grid search linear programming optimization. By the theory of
linear programming, the computational cost of linear program-
ming for (41) for one g depends only on the size of the dataset m
in for classification accuracy with applications, Neurocomputing
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Table 3
Experimental results

Dataset A B F R O (E) A/B/F/R/E

Balance 18:70� 4:32 15:54� 5:05 14:34� 4:30 7:91� 4:27 5:89� 3:44 (5.75) þ=þ =þ =þ =0

Breast Wisc 3:31� 1:91 4:41� 2:59 3:53� 1:85 3:76� 2:50 2:79� 1:95 (2.73) þ=þ =þ =þ =0

Bupa 30:43� 7:70 26:66� 7:17 28:09� 7:30 28:06� 7:73 26:57� 7:33 (25.80) þ=0=þ =þ =0

Credit-g 25:23� 3:55 25:70� 4:11 24:61� 3:75 24:06� 4:10 22:87� 4:26 (23.24) þ=þ =þ =þ =0

Crx 13:72� 4:07 13:75� 4:05 14:28� 3:84 13:49� 4:15 11:62� 3:68 (12.14) þ=þ =þ =þ =0

Echocardio 11:10� 7:66 9:42� 7:17 9:59� 6:98 10:17� 7:73 9:33� 7:33 (8.50) þ=0=0=þ =0

Glass 11:70� 8:69 17:27� 8:53 12:83� 8:05 13:47� 7:81 12:27� 7:80 (11.37) 0=þ =0=þ =0

Hayes Roth 23:11� 10:45 21:0� 10:57 22:09� 10:92 23:46� 9:74 18:39� 9:24 (18.1) þ=þ =þ =þ =0

Heart Cleve 19:06� 6:82 21:21� 6:30 18:81� 6:33 17:76� 6:36 15:58� 5:84 (16.39) þ=þ =þ =þ =0

Hepatitis 16:19� 8:44 17:12� 9:84 16:30� 8:18 16:38� 9:80 13:06� 8:80 (13.25) þ=þ =þ =þ =0

Horse Colic 17:12� 5:59 14:49� 6:70 15:52� 5:53 20:97� 6:60 14:60� 6:32 (14.34) þ=0=þ =þ =0

House Votes 4:90� 3:55 3:24� 2:76 3:52� 2:40 5:60� 3:09 2:96� 2:49 (3.21) þ=0=þ =þ =0

Ionosphere 6:01� 4:21 7:29� 4:42 6:60� 4:10 5:74� 4:15 5:49� 3:87 (5.65) þ=þ =þ =0=0

Pima 26:21� 4:94 24:26� 4:37 24:12� 4:82 25:27� 4:88 23:73� 4:59 (23.89) þ=0=0=þ =0

Promoters 8:53� 10:09 12:55� 10:64 9:39� 9:26 8:55� 8:75 6:73� 7:93 (6.55) þ=þ =þ =þ =0

Sonar 13:52� 7:46 23:43� 10:37 16:29� 8:43 20:43� 9:60 18:76� 9:40 (17.20) �=þ =� =þ =0

Tic-tac-toe 0:89� 1:03 3:93� 2:22 2:79� 1:78 11:17� 3:30 3:44� 2:14 (3.48) �=þ =� =þ =0

Vehicle 1:72� 1:85 4:68� 3:34 2:28� 2:22 2:80� 2:50 1:75� 2:06 (1.38) 0=þ =0=þ =0

Yeast 37:26� 5:05 32:31� 4:77 32:53� 5:55 33:01� 4:67 32:42� 4:22 (32.02) þ=0=0=0=0

#Best 4 2 0 0 13

#Second 3 4 3 5 4

#Moderate 2 1 12 2 2

#Bad 5 3 3 8 0

#Worst 5 9 1 4 0

Experimental results, comparing the error rate of AdaBoost (A), bagging (B), random forests (F), random subspace methods (R), our algorithm (O) together with its

estimated expectation error (E). The standard deviations for the five algorithms are also presented. For each dataset, we put in emphasis the best algorithm(s). The last five

rows count the number of times each algorithm counts, respectively, among the best, second, moderate, bad and worst. A 95% confidence t-test of the misclassification rate

between proposed algorithm and other algorithms is given in the last five columns, where a plus sign designates a statistically significant win, a minus designates a

statistically significant loss, and zero means no statistical significance.
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and the number of feature subspaces n (more precisely, it depends
on mþ n). When mþ n is large (for example, mþ n ¼ 10 000), the
linear programming procedure will be slow and even unafford-
able. Fortunately, in the experiments, mþ n are all smaller than
1500, and linear programming problems below this scale can be
readily solved. For example, the grid search optimization for
Credit-g dataset with g ¼ 0:05 � i; i ¼ 1; . . . ;20, only requires
53.4 s using linprog function in Matlab 6.5 on a pentium 2.4 GHz
class machine. In the classification stage, the computational
power required is the same as other voting-based algorithms.

Besides the improvement of classification accuracy, one
advantage of our proposed algorithm is that the classification
accuracy is predictable. Another advantage of our algorithm is its
flexibility. A closer look at our algorithms reveals that our
algorithm only requires that there are attainable margin functions
on the base classifier spaces, and does not put restrictions on the
construction method for the base classifier spaces. This means
that the algorithm not only can be applied wherever the bagging
algorithms can be used, but also can be applied to other classifier
spaces provided that they possess probability distributions as well
as estimable margin functions.
5. Conclusions

We have studied the relationship between classification
margin and misclassification error. We obtain an upper bound
for the optimal ensemble error based on the classification margin.
We also show that the proposed bound is actually a tight bound,
and can serve as the average ensemble error rate. We also present
other properties of this bound, such as the alternative calculation
method and the limiting behavior.

As a further step, we consider the possibility of improving
classification accuracy based on margin functions, and develop a
Please cite this article as: Q. Cai, et al., Analysis of classification mar
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corresponding algorithm by minimizing the proposed bound. The
experimental results show that reducing the bound helps to
reduce the misclassification error, and the proposed algorithm
outperforms some other related algorithms, including AdaBoost,
bagging, random forests and random subspace methods. This also
validates that it is possible to further improve the classification
accuracy by taking the classification margins into account.
Moreover, since our algorithm only requires that there are some
margin functions on the base classifier spaces, we believe it is
promising to be applicable to a wide range of classifier spaces. In a
future exploration, we will extend our algorithm to large datasets,
and consider combination strategies other than linear combina-
tion for incorporating classification margins.
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