
Implementing Instant Messaging Using Named Data

Jiangzhe Wang∗

lucas@cs.ucla.edu
Chunyi Peng∗

chunyip@cs.ucla.edu
Chiyu Li∗

lichiyu@cs.ucla.edu
Eric Osterweil†

eosterweil@verisign.com
Ryuji Wakikawa‡

ryuji@us.toyota-itc.com
Pei-chun Cheng∗

pccheng@cs.ucla.edu
Lixia Zhang∗

lixia@cs.ucla.edu

ABSTRACT

The Internet has been a huge success, but it is showing signs
of age. Among multiple proposed directions for the Inter-
net’s future design is a promising architecture called Named
Data Networking (NDN). NDN casts data as a first class el-
ement of the network’s architecture in an effort to greatly
facilitate new application development. However, as with
any new architecture, one important deployment issues is
being able to evolve existing applications. In this paper, we
use a library for Instant Messaging (IM) applications called
libpurple as a case study to demonstrate both the advantages
of implementing IM as a serverless application in NDN and
to explore promising approaches to porting applications to
NDN. Our new serverless design enables IM clients to chat
with each other without infrastructure support. Since libpur-
ple is widely used as the transport layer of several IM appli-
cations (including Pidgin, Adium, and Apolio IM) our new
library NDNPurple is able to seamlessly support these ap-
plications without modification to higher-layer code. In this
work, we propose that our serverless design serves as a tem-
plate for porting applications, and using it requires only triv-
ial changes existing applications’ state machines in order to
facilitate interactions with NDN through. We do this by em-
bedding a local pseudo-proxy in the application itself, and
we are therefore able to leave the legacy code’s state ma-
chine alone.

Categories and Subject Descriptors

C.2.4 [Distributed Systems]: Distributed applications
∗Computer Science Department, UCLA
†VeriSign Labs
‡Toyota Infotechnology Center, Mountain View

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AINTEC’10, November 15–17, 2010, Bangkok, Thailand.
Copyright 2010 ACM 978-1-4503-0401-6/10/11 ...$10.00.

General Terms

Design, Experimentation

Keywords

Instant Messaging, Named Data Network

1. INTRODUCTION

The original design goal of today’s TCP/IP Internet ar-
chitecture is an effective interconnection of all existing net-
works and hosts [11]. Since interconnectivity is one of the
Internet’s most fundamental goals, the Internet’s hourglass
architecture is centered around endpoints, or IP addresses.
Through much of the Internet’s history (especially the in
the earliest years) the majority of hosts were stationary and
they had little online content, and there was a default notion
that the address of content needed to be ascertained in or-
der to access it. In this setting, the host-to-host communica-
tion model worked out quite well. However, as the Internet
grows, its usage model and requirements are evolving. The
number of network entities (hosts) is exploding, many are
becoming increasingly mobile, and the way they access data
is evolving too. In this changing environment, new applica-
tions face three basic challenges: server scalability, end-host
mobility, and data security.

As one of the most popular IM and VoIP application, Skype
acts as a prime example of one way that applications can en-
hance their server scalability [7]. By using a Peer-to-Peer
(P2P) architecture, Skype reduces the resource requirements
that a centralized architecture would have to pay. Rather,
Skype relays data traffic through online peers (users’ hosts).
This approach highlights that some users and applications,
such as IM and VoIP, may care more about the data that
they can get from the network than they do about how it
was delivered. Many users and applications may not care
whether their text messages or voice packets are forwarded
from a central server or another nearby Skype peer, as long
as the data source can be authenticated and the data secured.
If we look at network communications from a data-oriented
perspective, it becomes straightforward to solve the afore-
mentioned three challenges: i) one can directly name the



data instead of naming its container, ii) secure the data itself
instead of the communication channels, and iii) deliver data
to interested users rather than specific locations, removing
the need for centralized servers.

In this paper, we use IM as an example to demonstrate the
implementation of serverless applications using the Named
Data Networking approach (aka CCN) [13]. We chose to im-
plement an NDN-based IM middleware by adapting a well-
known IM library called libpurple [4]. We called this port
NDNpurple. By porting a commonly used library, rather
than building a brand new one from scratch, we were able to
implicitly port all of the IM clients that already use libpur-
ple for their substrate. Our contributions in this paper can be
summarized as follows.

1. We describe the implementation of a library NDNPur-

ple that supports existing IM applications, and a demo
application Pidgin built with NDNPurple.

2. We show a working example of how to construct name
space for IM applications, as well as mechanisms of
name discovery, membership management and multi
user access control.

3. Our experience suggests that porting existing applica-
tions into NDN should favor the “keep-and-add” ap-
proach over “erase-and-rewrite” when software code
base is large.

The rest of this paper is organized as follows: Section 2
describes the basic NDN operations and architecture of libpur-
ple based IM applications. Section 3 discusses the design of
NDNPurple for name convention and discovery, and multi-
user access control. Section 4 includes our implementations
details. We discuss related work in Section 5 and conclude
in Section 6.

2. BACKGROUND

In this section, we briefly introduce how NDN works and
the architecture of libpurple-based IM application.

2.1 NDN Overview

Here, we briefly illustrate NDN’s major procedures using
a sample NDN topology shown in figure 1. H1-H3 are three
end user hosts and R1-R4 are NDN routers. On top of the
tree topology is a Youtube server Y that’s connected with
R1 and R2. R1 has three interfaces labeled as f0-f2. We
show the advantages of NDN when three end hosts H1-H3
are interested in the same video clip stored on the Youtube
server, say foo.mpg. NDN requires that every piece of con-
tent is named. For simplicity, we assume the video is named
as ccnx://youtube/foo.mpg.

Every NDN router has three major components: Content
Store, Pending Interest Table(PIT) and Forwarding Informa-
tion Base(FIB) as shown in Figure 2. Similar with BGP[1],
the whole system starts by Youtube server announcing name
prefix ccnx://youtube to the Internet. Therefore in figure 2,

Figure 1: A sample topology of NDN

R1 configures its FIB so that the name prefix is associated
with interface f0, which the prefix is announced from. In
NDN’s subscribe/publish model, end users express interest
to pull data back from the network. For instance, H1 and
H2 want to receive the same video almost simultaneously.
Each one of the two hosts sends an interest message tagged
with human-readable name ccnx://youtube/foo.mpg. Af-
ter a NDN router receives an interest, say R3, it would first
lookup its Content Store to see if there is already cached
content that can satisfy the interest. If the router finds one,
an response will be issued immediately with cached content.
Otherwise, the router checks its PIT to see if it has already
forwarded out an interest with the same name. In our ex-
ample, when all Content Store and PIT tables are empty, the
interest message I1 generated from H1 is forwarded along
the path R3-R1, and then to the Youtube server Y. While R3
and R1 forward I1 toward Y, each of them puts the interest
in its own PIT, as well as the corresponding incoming inter-
face, i.e. f1 for R1. Suppose H2’s interest I2 hits R1 after
R4 forwards I1, R1 will not forward I2 to Y because I1, the
name of which is the same as I2, is pending. R1 only needs
to add f2 to the PIT entry as shown in figure 2.

NDN routes interest messages, but not data. Data pack-
ets are delivered back to their original requesters by going
through the paths that their corresponding interest messages
have traversed. When data is replied from Y, and arrives at
R1, two separate pieces are sent out: one through f1 for H1,
and the other through f2 for H2, thanks to the PIT entry’s
memory of f1 and f2. After data is sent out from R1, the PIT
entry will be removed.

In a word, NDN proposes a content-centric paradigm which
cares about what that users want rather than the network’s
where. NDN uses human-readable name as the primitive for
end users and decouples data from its location. Its major
differences from the conventional IP network can be sum-
marized on three aspects.

• First, NDN applies a subscribe and publish model where
receiver-side sends out interests to initiate communi-



Figure 2: Components of NDN router

cation. Each interest message is tagged with a name
representing what type of data the user would like to
receive. Network routing is done by each NDN router
forwarding interest messages toward publishers that can
possibly satisfy the interest with data. A data packet
satisfies an interest by matching the interest name as
a prefix of its own name. Interest messages are stored
in PIT on every router it traverses and used for data
packets to flow back to the original requesters.

• Second, each piece of content is named and cached on
intermediate routers in NDN. When data packets are
delivered back to the requesters, they can be cached on
every intermediate router, with an explicit and unique
name, e.g. ccnx://youtube/foo.mpg, independent of
an end-to-end session. When a second interest mes-
sage arrives at the NDN router whose cached content
can match the interest’s name, a response would be
issued immediately with the cached data. Therefore,
caching forms an automatic tree rooted at a single mem-
ber and branched over other participants. It not only
reduces duplicate data transmission, but also improves
receiver side performance.

• Third, NDN enforces every packet to be tagged with
its publisher’s signature and secures data itself rather
than the communication channel as in TCP/IP. Since
security is not the major concern of our work in cur-
rent phase, we will not go to in-depth discussion in this
paper.

2.2 Libpurple based IM applications

Libpurple is used by several IM applications including
Pidgin for Windows&Linux and Adium for Mac OS. It is no-
tably known for its support of multiple chat protocols. Fig-
ure 3 illustrates the architecture of libpurple based applica-
tions. We put the aforementioned applications on the top
layer and libpurple in the second layer as a common library.
Libpurple package implements a flora of chat protocols such

Figure 3: Architecture of libpurple based
projects

as Jabber, MSN, Internet Relay Chat(IRC) etc. Among these
protocols, Jabber encodes all of its messages in XML for-
mat [14], and supports more features than others, including
asynchronous message relaying, transport layer security and
audio/VoIP etc.[2] It serves as the underlying chat protocol
of Google Talk [3]. Therefore we start with Jabber as a sam-
ple protocol and generalize the principles of porting existing
protocols.

Depending on the protocols specified, libpurple runs the
corresponding state machine by monitoring events injected
from upper layer applications or triggered by lower layer
network events. In order to send a message out, applica-
tion layer uses the appropriate chat protocol library to con-
struct a message and pass it to libpurple. And to handle
received message, application layer registers callback func-
tions with libpurple. When libpurple receives message from
the network, and decides that application layer should be
notified, the corresponding callback function will be trig-
gered. For instance, before Jabber state machine runs, appli-
cation layer would register a buddy_status_change func-
tion into libpurple, when libpurple receives a status change
message from Jabber server, the buddy_status_change
function would be triggered. What application layer does
in the callback function is redraw the corresponding buddy’s
status icon.

3. NDNPURPLE DESIGN

This section describes our NDNPurple design that enables
Instant Messaging over Named Data Network.

3.1 Design Issues

In chatting scenarios, each user may join and leave a chat
room at any time, and each of them can independently send
his/her messages. In this case, messages are dynamically
generated and should be delivered in real time. The tradi-
tional way to implement a chatting or instant message ap-
plication is to apply client-server model, where a central
chatting server takes charge of all the signaling, membership
management, communication coordination and finally mes-
sage delivery among multiple parties. Our goal is to build a
server-less chatting application over NDN, which can func-



tion when no central server is available to handle the above
tasks. To develop NDN-based Instant Messaging applica-
tions, we must solve the following design issues:

• Name convention . NDN requires that each con-
tent (here, text message and voice call) is identified by
a unique name. How to assign a unique name for each
piece of data? Unfortunately, the underlying NDN layer
has no clue how to automatically generate content names.
The fact that unique names are missing in application
layer requires the middleware (i.e. NDNPurple) to pro-
vide a naming mechanism in order to assure message
delivery over NDN.

• Name discovery . In order to receive data over NDN,
each party needs to get a content name and express the
name in an interest message. However, in a server-
less scenario, how to discover these names for NDN
interests in a distributed way? Definitely, the discov-
ery mechanism is closely related to the design of name
convention. Besides, we will show how to bootstrap
basic parameters that constitutes data names.

• Membership management . Who joins or leaves
a chat room? Who are still active in a chat room?
Without a centralized server, each party has to learn
and manage members in a distributed way. It requires
NDNPurple to provide an extra mechanism to handle
membership management over NDN.

In the following sections, we elaborate our design solutions
to name convention, name discovery and membership man-
agement in NDNPurple.

3.2 Name Convention

In this section, we propose a name convention solution
combining sequence number and user namespace, which pro-
vides unique names for dynamically generated content.

IM application involves dynamic message generation and
delivery. Suppose Alice and Bob are chatting in a chat room
named demo. We assume the name of this chat room is dif-
ferent from the others, otherwise there exists another unique
ID for each chat room. Obviously, NDN layer can inherit the
name of a chat room to develop a unique NDN name scope,
that is to say, all the messages in room demo can be named
with a prefix ccnx:/demo/. However, this prefix itself is not
sufficient to identify all the data generated in this chat room.
Messages may dynamically grow, for example, Alice may
share her trip photo, followed by her comments and trip tips,
and they have to be named as different messages. To differ-
entiate messages within the same chat room, we propose to
construct a NDN name using sequence number as a suffix,
e.g. ccnx:/demo/v1, ccnx:/demo/v2.

Sequencing is an effective measure to handle message dy-
namics in IM scenarios. With the help of sequence number
information, each message can be uniquely identified. More-
over, it is convenient to derive the next sequence number (an

incremental sequence number), which is desirable in name
discovery. However, this simple sequence number-based so-
lution may bring out a new design issue, i.e. name conflict,
inherent in multi-user access channels. Take an example, Al-
ice and Bob may send messages almost simultaneously and
they may potentially use the same sequence number (e.g.
ccnx:/demo/v1 ) for their new messages. In consequence,
it may break the name uniqueness and lead to one message
missing or unsynchronized message receiving at different
parties. Even worse is that it is extremely hard for the ap-
plication or NDN layer to detect and correct this mistake.
Such conflict may become more severe under bad network
connectivity. Consequently, we propose a user-based names-
pace to avoid name conflict among multiple parties.

The aforementioned name conflict comes from unorga-
nized name space administration. All the active users in a
chat room share the same namespace for all the messages
and thus lead to name conflicts without appropriate coordi-
nation. We assign a user-specific namespace to each par-
ticipant so as to avoid the above potential conflict. For ex-
ample, the above messages sent by Alice are re-named as
ccnx:/demo/alice/v1.

Combining sequence number and user-specific namespace,
we come out a unique name convention for all the messages,
i.e.,

[protocol]:/[roomID]/[UserID]/[SeqNum].

Obviously, given user namespace and sequence number, it is
easy to construct content name as a message publisher. On
the other hand, it raises design challenges to name discovery
in a distributed way. We develop our discovery mechanism
in the following section.

3.3 Name Discovery

Based on the above name convention mechanism, the ma-
jor job of name discovery is to learn who are active users and
what is the latest sequence number. Given user and sequence
number, it becomes simple to construct interest names and
receive messages from other parties. The core technique of
name discovery is to learn active users and latest sequence
number. We propose the way of broadcasting each one’s
name through interests.

In our proposed solution, NDNPurple pre-defines a name
space for queries, which is known to all participants, e.g.
“ccnx:/demo/user”. Each user who wants to receive in-
formation (here, active user or latest sequence number) can
announce it out to configure FIBs and attract interests. In
Figure 4, Alice announces the well-known prefix in the net-
work so that all routers and hosts know how to reach it. Al-
ice’s route propagation path is shown as solid arrows in the
figure. This method does not follow the traditional interest-
out-data-back model to learn active user. Instead, it takes
a more aggressive way that embeds user name into an inter-
est message and broadcasts to members that have announced
the aforementioned prefix route. We think this mechanism
is ok if the embedded information is reasonably short. Take



Figure 4: Prefix announcement and periodic in-
terests

an example of an active user query. The requester does not
send his/her query interest out, instead, he/she just listens to
information broadcasted from others. On the other side, ac-
tive users do not wait for an incoming query, instead, they
periodically claim “I am here”. For instance in Figure 4,
Bob sends an interest named “ccnx:/demo/user/bob” out
and notifies other users that he is still alive in the chat room
demo. Since all the users are configured to announce the
name “ccnx:/demo/user”, they are able to hear his alive
claim. Upon receiving an alive message, each receiver can
immediately update his/her active user list. Similarly, Bob
can broadcast his latest sequence number using the interest
“ccnx:/demo/latest/bob/[SeqNum]”.

Note that in the above mechanism, interest messages are
used to disseminate users’ names or sequence numbers, and
therefore would not pull data back. However, in the case of
a newly joined member, he/she needs to wait until its prefix
announcement reaches every other member and also every-
one else broadcasts their interest, before the new member
can build a complete user list. This process can possibly
introduce longer delay than expected and degrade user ex-
perience compared to the traditional server-based architec-
ture. As an optimization, after a member, say Carol, who’s
already in the chat room hears a new member Bob’s inter-
est, i.e. “ccnx:/demo/user/bob”, she can issue a response
with her current user list. Hence, Bob is able to accelerate
the user discovery process by utilizing Carol’s response.

3.4 Membership Management

The aforementioned design components–name convention
and name discovery–yield a solution to IM message deliv-
ery on top of NDN. In this section, we propose another de-
sign component to membership management. In any con-
ventional IM applications, it is a basic functionality to dis-
cover other users within a chat room and maintain an up-to-
date active user list. The current IM solution calls libpurple
API to connect with a well-known central server who plays
the role of membership management. On the NDN-based
IM side, the upper application should call NDNPurple APIs
to manage all the users in a server-less scenario enabled by

NDN technology.
The above mechanism of name discovery provides a so-

lution to learn active users in a distributed way. In this sec-
tion, we only need to consider how to maintain and manage
membership. We apply a soft-state membership manage-
ment, similar to neighborhood management in RIP routing
protocol [5]. Specifically, each user maintains a local active
user table (AUT), where each entry is associated with an ex-
piration timer. We reset the entry timer if we receive the cor-
responding active user message before timeout, otherwise
we remove this entry (this user is regarded to leave) after
timeout. The selection of timer is a classic design tradeoff
between message workload and management latency. We
use a small granularity (10s) to reduce response latency in
our implementation.

4. IMPLEMENTATION

To get NDNPurple running over NDN network for server-
less IM applications, there are two major challenges we have
to overcome. The first issue is how to modify libpurple,
which is based on socket programming, to support NDN that
is essentially an abstract layer above sockets. NDN uses a
data structure as an indicator for a data retrieval process in-
stead of a socket, so most of the functions bound with sock-
ets cannot be used. We developed a set of new NDN func-
tions for libpurple so that they fit the NDN network. An
important thing we need to claim is that we didn’t change
the interfaces of libpurple exposed to application layer and
therefore code of upper layers does not need to be changed.

The set of our developed NDN functions acts as a shim
layer between application and transport layers, as shown in
Figure 5. The other issue is how to make the IM message
protocol (XMPP [14]) designed for server-based IM applica-
tions operate in a server-less scenario. To make XMPP back-
ward compatible, we are not trying to disfigure majority of
libpurple code, which is quite prone to bugs given its com-
plicated state machine. Instead we propose a proxy-based
solution that allows XMPP to work as usual. The proxy
works as a virtual server to carefully interact with XMPP
client and masks the server-less situation from it. With both
new NDN APIs and the proxy, all the IM applications sup-
ported by libpurple can work in a server-less scenario with-
out any modification.

4.1 NDNPurple Functions

We have developed a set of new NDN functions in order
to shift libpurple to a new NDN-based library. They are
wrapped in the APIs of libpurple so that its supported IM
applications can run over NDN without any modification.
Within each host working over NDN network, a daemon, as
a software router, should be running to handle NDN events.
Then, we use the APIs that NDN provides to interact with
the daemon. There are three major tasks in our provided
functions.

First, libpurple would set up a connection to the NDN



Figure 5: Implementation Architecture

daemon, express initial interests and register required inter-
est filters while the application is initialized. Then Pur-

ple ccn connect function is called. Initialization includes
announcing the user identity which informs others of its ar-
rival and announcing prefix routes, i.e. registering interest
filers. The registered interest filters are used to tell the dae-
mon what kinds of interests the user wants to receive. Each
filter is hooked with a callback function, which will be called
once an interest arrives. We name the callback functiona
Purple ccn incoming interest.

Second, libpurple has to deal with outgoing interests and
incoming data. When an interest needs to be expressed, the
callback function Purple ccn incoming content has to be
registered, which will be called once the data for the inter-
est is available. After the callback function is triggered, the
Purple ccn read function will be invoked to pull available
data from the daemon.

Last, libpurple needs to cope with incoming interests and
outgoing data. The incoming interests are handled in the
registered function, Purple ccn incoming interest, where
other users’ alive information can be learned and some re-
quested information would be sent out to reply to the inter-
ests through Purple ccn write. This write function is used
to deliver data back to the NDN network. It is registered by
the Purple ccn input add function, and invoked when ap-
plication layer has a piece of data ready. These main NDN
functions we designed for libpurple and their functionality
are listed as the following:

1. Purple ccn connect : It sets up a connection to the
NDN daemon, expresses initial interests and registers
required interest filters.

2. Purple ccn write: It writes data into the NDN dae-
mon with a specified data name.

3. Purple ccn read : It reads data from the NDN daemon
with a specified data name.

4. Purple ccn input add : It is used to register a callback
function for receiving data from the application.

5. Purple ccn incoming interest : It is a callback func-
tion for receiving interests, which will be triggered once
an interest arrives in the NDN daemon.

6. Purple ccn incoming content : It is a callback func-
tion for receiving content, which will be triggered once
there is available data in the NDN daemon.

4.2 The proxy-based solution

The proxy works as a virtual server for the application
running over NDN network so that the client still considers
that at the opposite side it’s communicating with a server. In
order to keep the state machine of XMPP operating as usual,
the proxy should work as a server to initialize and authen-
ticate the client to lead it to the connected state, as shown
in Figure 5. After the virtual connection state establishes,
the proxy learns buddies list by collecting other clients’ in-
terests and produces a XML format packet for application
layer. Not only does the proxy generate correct responses to
react to the XMPP protocol but also it needs to communi-
cate with the proxies of other clients over NDN network on
behalf of its served client.

4.2.1 Interaction between the proxy and XMPP
Many control messages are required to initialize the ap-

plication and then keep it stay alive. So we observe what
messages are used between client and server to do initializa-
tion and status maintenance. Then, we make the proxy to
recognize these messages and give appropriate responses to
them.

Other than control messages, the proxy currently supports
two kinds of messages, buddies list and data content. To
get the buddies list, the proxy collects peers’ names through
their announced interest messages and builds a buddies list.
When it receives buddies’ interests, it will add new buddies
into the table or renew the timer of the existing buddies.
Each buddy entry is attached with a timer so that the off-line
buddy can be removed from the list when its interests have
not been heard for a certain time period (10s). The buddies
list would be periodically updated to the application.

In our system, there is no server and each data message
is prepared for all clients in the same chat room so that we
replace the original server id with the chat room id. When
a proxy replies data messages to NDN network, the receiver
id of the XMPP message format should be replaced with the
chat room id. In data messages that the proxy receives from
NDN network, the sender id of the XMPP message format
should be substituted by the chat room id, and the receiver id
should be substituted by its served client id. Therefore, the
application can handle data messages as usual and know that
the incoming messages are sent from the chat room.

4.2.2 Interaction between the proxy and the NDN
daemon



Figure 6: Buddy list

With our new developed NDN functions, the proxy can
communicate with others over NDN network through the
NDN daemon. It sets up three connections with the NDN
daemon using purple ccn connect: ccn signal, ccn read and
ccn write. Each client can periodically express its buddy in-
terest to inform others of its existence through the ccn signal
connection. Expressing interests to pull data can be done
through the ccn read connection. The ccn write connection
can be used to put data to NDN network. Additionally, the
proxy registers two callback functions for receiving inter-
ests and content: Purple ccn incoming interest and Pur-

ple ccn incoming content.
The two interest prefixes that the proxy periodically ex-

presses are ”ccnx://RoomID/AnotherUserID/SeqNum”

and ”ccnx://RoomID/SelfUserID”. The first is used for
pulling data message and controlled by the sequence num-
ber. The other one is sort of a keep-alive message used to
reset timer on other members’ buddy list. Thus the later in-
terest will not pull data back. Each client would register an
interest filter of the prefix ”ccnx://RoomID”, so that it can
receive existing users and newly joined ones’ keep-alive in-
terests.

4.3 Demonstration

We employ the Graphical User Interface (GUI) of Google
Chat in pidgin to demonstrate our implementation of ND-

NPurple APIs and the proxy. Figure 6 shows the window
of the chat room list. The original buddy list is replaced
with the list of chatrooms, because a basic unit of the con-
ference chat application is a chat room, rather than a buddy.
The client can choose which chat room it wants to join and
get each room’s information from its tooltip. The tooltip of
CS217B shows that Chiyu, Chunyi and Lucas are chatting
in the room. Figure 7 shows the Chiyu’s conversation win-

Figure 7: Chat window

dow. With the aid of proxy, the Google Chat program still
considers that it has a successful connection with a Google
server and can accordingly work as usual without code-wise
modification.

5. RELATED WORK

There is a rich literature regarding how to build a new
data centric Internet architecture. A fundamental question
in all the data-centric architecture designs is what to use as
data identifiers. In [8] Adjie-Winoto et al propose to as-
sign XML format meta-data to content and service. As a re-
sult, network routers perform content search through XML
attributes match. While XML attributes based matching is
flexible and expressive, CPU-intensive computation and rout-
ing scalability remain as open issues for global adoption.
NetInf [9] and ROFL [10] propose to use cryptographic-
based flat labels as content identifiers. Flat labels (often de-
rived from hashing of content) remain constant during end-
host mobility and are used to ensure content-level security.
However, these designs require a mapping infrastructure to
translate human-readable application names to flat labels,
and how to secure the mapping system itself remains an open
issue. Furthermore, flat labels cannot be aggregated as IP
addresses or NDN hierarchical names in order to scale the
routing system.

VoCCN [12] shows an example of how to construct NDN
name space based on SIP [6] message headers and how to
implement real time voice applications on NDN. VoCCN
develops a new voice application implementation to utilize
NDN, our work keeps the existing application’s interface un-
changed and only converted the transport substrate to use
NDN.

6. CONCLUSION

While NDN is an exciting new architecture whose design



embraces the evolving requirements of the Internet, an im-
portant step in its deployment is the adaptation of existing
applications to its architecture. In this work we have pre-
sented one of the first attempts to do this in a general way us-
ing libpurple. From this effort we have digested several key
lessons that we feel will greatly inform future porting efforts:
First, NDN requires each packet to have a unique name, yet
existing applications, such as libpurple, often do not have
unique names for every piece of data. Thus, deciding how
applications must name their data is critical; a good name
structure can greatly simplify the design. Second, in a mul-
ticast application, where more than one user may produce
data simultaneously, each user should be assigned a unique
name. This facilitates a design in which each packet can eas-
ily be identified by its user’s name plus a sequence number.
Finally, our experience was that embedding a pseudo-proxy
within the existing libpurple state machine made the port-
ing effort quite straightforward. We were, therefore, able to
avoid modifying the existing application code by injecting a
new NDN shim layer. This seemed to indicate that a general
approach to porting network applications from host-to-host
to NDN might be to embed pseudo-proxies.

This work represents a preliminary step towards the new
NDN architecture, with an initial focus on designing the
name space to meet the application’s functional needs. There-
fore we do not cover how content security is addressed in
NDN. According to [13], NDN already associates a crypto-
graphic key with each user name and uses that key to sign all
data he or she produces. Besides, a large number of research
issues remain to be addressed, not the least of which is the
routing system scalability. We plan to address this issue, to-
gether with data security, in our future efforts.

7. REFERENCES

[1] A Border Gateway Protocol 4 (BGP-4). In RFC 4271.

[2] Comparison of instant messaging protocols. In
http://en.wikipedia.org/wiki/Comparison of instant

messaging protocols.
[3] Google talk. In http://www.google.com/talk/.
[4] Libpurple. In

http://developer.pidgin.im/wiki/WhatIsLibpurple.
[5] RIP Version 2. In RFC 2453.
[6] SIP: Session Initiation Protocol. In RFC 3261.
[7] Skype P2P telephony explained. In

http://www.skype.com/intl/en-us/support/user-

guides/p2pexplained/.
[8] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and

J. Lilley. The design and implementation of an
intentional naming system.

[9] B. Ahlgren, M. D’Ambrosio, C. Dannewitz,
M. Marchisio, I. Marsh, and B. Ohlman. Design
considerations for a network of information. ReArch,
2008.

[10] M. Caesar, T. Condie, J. Kannan,
K. Lakshminarayanan, I. Stoica, and S. Shenker.
ROFL: Routing on Flat Labels. SIGCOMM, 2006.

[11] D. D. Clark. The design philosophy of the darpa
internet protocols. In in Proceedings of ACM

SIGCOMM (Computer Communications Review

Vol 18, No, 1988.
[12] V. Jacobson, D. K. Smetters, N. H. Briggs, M. F.

Plass, P. Stewart, J. D. Thornton, and R. L. Braynard.
VoCCN: voice-over content-centric networks. In
ReArch ’09: Proceedings of the 2009 workshop on

Re-architecting the internet, pages 1–6, New York,
NY, USA, 2009. ACM.

[13] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F.
Plass, N. H. Briggs, and R. L. Braynard. Networking
named content. In CONEXT, Rome, Italy., 2009.

[14] E. P. Saint-Andre. Extensible messaging and presence
protocol (XMPP): Core. In RFC 3920, 2004.


