
InFrame++: Achieve Simultaneous Screen-Human Viewing
and Hidden Screen-Camera Communication

Anran Wang ∗

Beihang University
wangar@act.buaa.edu.cn

Zhuoran Li ∗
The Ohio State University

li.5233 @osu.edu

Chunyi Peng
The Ohio State University

chunyi@cse.ohio-state.edu

Guobin Shen
Microsoft Research, China

jackysh@microsoft.com

Gan Fang
The Ohio State University

fang.254@osu.edu

Bing Zeng
University of Electronic Science and

Technology of China
eezeng@uestc.edu.cn

ABSTRACT
Recent efforts in visible light communication over screen-camera
links have exploited the display for data communication. Such
practices, albeit convenient, have led to contention between space
allocated for users and content reserved for devices, in addition
to their visual anti-aesthetics and distractedness. In this paper,
we propose INFRAME++, a system that enables concurrent, dual-
mode, f ull-frame communication for both users and devices. IN-
FRAME++ leverages the spatial-temporal flicker-fusion property of
human vision system and the fast frame rate of modern display. It
multiplexes data onto full-frame video contents through novel com-
plementary frame composition, hierarchical frame structure, and
CDMA-like modulation. It thus ensures opportunistic and unobtru-
sive screen-camera data communication without affecting the pri-
mary video-viewing experience for human users. Our prototype
and experiments have confirmed its effectiveness of delivering data
to devices in its visual communication with imperceptible video ar-
tifacts for viewers. INFRAME++ is able to achieve 150-240 kbps at
120FPS over a 24’ LCD monitor with one data frame per 12 display
frames. It supports up to 360kbps while data:video is 1:6.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—Data com-
munications; H.5.1 [Information Interface and Presentation]:
Multimedia Information Systems—Video; H.5.2 [Information In-
terface and Presentation]: User Interfaces—Screen design

Keywords
Screen-camera communication; Hidden visible communication; Dual-
mode visible communication; Full-frame video; InFrame++
∗The first two authors are co-primary student authors. The corre-
spondence faculty author is C. Peng.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MobiSys’15, May 18–22, 2015, Florence, Italy.
Copyright c© 2015 ACM 978-1-4503-3494-5/15/05 ...$15.00.
http://dx.doi.org/10.1145/2742647.2742652 .

1. INTRODUCTION
Recent years have been witnessing the rapid growth of electronic

visual displays deployed in the emerging cyber-physical world. In-
deed, we are surrounded by such devices in various form factors,
ranging from a phone screen, a tablet display, a computer moni-
tor, to a TV, an advertising electronic board and even larger multi-
screen displays. These visual displays have become a primary source
for information from the user’s standpoint. For example, video
playback has contributed to 79% of Internet traffic [1]. Under such
common usage scenarios, the main role of a screen is to convey in-
formation to human eyes. The display thus establishes the screen-
to-eye communication.

It is often highly desirable to further convey certain side informa-
tion to a user while she watches the display. A real-life example is
to refer the viewer to a movie webpage for additional information.
Another popular case is for vendors to present additional informa-
tion (e.g., product specification and sales) in the TV commercials.
With the growing prevalence of cameras, screen-to-camera visible
communication has rapidly emerged as a convenient, impromptu
communication channel [11,14,15,22,30]. Information is encoded
into visual patterns and shown on the screen. Camera-equipped
devices subsequently capture the screen and retrieve the data infor-
mation thereafter.

Unfortunately, such special visual patterns (e.g., Quick Response
(QR) codes) are not quite consumable, if at all, by humans who are
more comfortable with human-friendly contents such as texts, im-
ages and videos. When a display becomes the same source concur-
rently for both human-friendly primary content and camera-friendly
side information, the two contend for the display. Recognizing such
contention and the fact that delivering human-consumable content
is more primary purpose, current practices have all resorted to some
kind of compromise, either spatially or temporally. In the QR code
case, the code would take a small area and resides at a corner of the
entire screen (Figure 1a), or occupy the whole screen in turn after
human-friendly contents (Figure 1b). The former spatial compro-
mise, however, not only limits its information-carrying capability,
but also incurs extra work to properly capture codes (e.g., being
close enough to QR codes). Albeit small, the appearance of the
QR code is still deemed distractive, thus impairing user-viewing
experiences. The latter temporal compromise indeed yield a larger
display size and makes it less effort demanding in capture and also
possible to carry more bits. However, such practice is viable only
for interactive scenarios and on interactive devices.

181

(a) Spatial compromise

Frame one Next Frame

(b) Temporal compromise

Figure 1: Current practices of compromising the screen-to-eye
and screen-to-camera communications. (a) Small QR code lo-
cated at the corner (in the case of an ice hockey game); (b) Two
consecutive frames, one for each channel (while scanning QR
code at WeChat [3]).

In this work, we address the key challenge in visual communi-
cation systems: Can we completely eliminate the tension between
the screen-to-eye and screen-to-camera channels? If succeeded, we
can afford the users to enjoy normal full-frame viewing experience
(as though the side channel would not exist), while still being able
to simultaneously convey side information over the visual screen-
to-camera channel. The solution calls for a novel paradigm of dual-
mode, full-frame communication, which enables concurrent deliv-
ery of primary video content to users and additional information to
devices over screen-to-camera visual links without impairing user-
viewing experiences.

In this paper, we present the design and implementation of IN-
FRAME++, which offers a promising and definite solution to the
above challenge. Figure 2 illustrates the concept of INFRAME++.
In INFRAME++, composite contents are produced (in frames) for
the display by multiplexing the video content frames (intended for
human viewers) and the data (intended for devices, also in frames).
These composite frames can be rendered to human eyes without
affecting the viewing experience. The user thus watches the video
as usual without sensing the embedded data frames. In the mean-
time, the data carried by the composite frames can be captured and
decoded by the camera to retrieve the embedded side information.
To enable the above functions, INFRAME++ leverages the capabil-
ity discrepancy and distinctive features of the human vision system
and devices (display and camera), e.g., screens can display content
faster than human eyes perceive; cameras have shutter but human
eyes do not, etc.. Video and data carried by the composite frames
thus operate at different time scales. Video contents are perceived
at the slow pace due to physical limits of human eyes, whereas
data frames are displayed at the fast speed, which can be captured
and decoded only by the camera. In essence, INFRAME++ es-
tablishes two concurrent visual communication channels – the pri-
mary screen-to-eye channel for humans and the secondary screen-
to-camera channel for devices. Both channels originate from the
same screen, coexisting and counteracting against each other.

Specifically, we have two concrete goals for INFRAME++. First,
the information-carrying data stream over the screen-to-camera chan-
nel should not affect the user perception of the content delivered
over the primary channel. Second, we seek to achieve high data
rate over the secondary screen-to-camera channel, which is vital to
enabling new application scenarios for visual data communication
in the future. To this end, we have to effectively manage the in-
terference from the primary screen-to-eye channel. Note that the
visual content of the primary channel will inevitably interfere the
secondary channel. Even worse than the results disclosed in early
work, the screen-to-camera channel may suffer from severe dis-

“Sees”

“Captures”
Decodes

“ The farm sold
is at …...”

0110110….

Figure 2: Concept of INFRAME++: screen-to-eye for videos
and screen-to-camera for data communication over the full-
frame same visible channel simultaneously.

tortions such as frame rate mismatch, rolling shutter effect, poor
capture quality, etc..

For the first goal, we propose the novel concept of spatial-temporal
complementary frames (STCFs). STCFs fully exploit the spatial
and temporal low-pass filtering properties of human vision sys-
tem. Each of the complementary frames in STCFs contains a pair
of data frames, which have complementary contents and are dis-
played back-to-back [31]. Every data frame is further constructed
from spatially complementary visual patterns that possess alternat-
ing complementary cells (i.e., group of pixels). When data frames
are multiplexed to the original screen content and displayed at fast
frame rate, we can effectively suppress the visibility of data frames
and preserve normal viewing experiences. On the other hand, a
camera takes (temporal) snapshots of the multiplexed stream with
high spatial resolution. The snapshots exhibit obvious artifacts
introduced by complementary visual patterns, which can be pro-
cessed to extract the information bits. We further design smoothing
transitional frames so that STCFs can be morphed into data frames.

For the second goal, we devise a hierarchical data frame struc-
ture (consisting of Cells, Blocks and Segments) and a CDMA-like
modulation scheme. A Cell is the minimum logical unit making
up from neighboring pixels with the same value. A Block, con-
sisting of multiple Cells, is the basic coding unit. Information bits
are modulated in Blocks. A Segment is a group of Blocks, over
which certain error protection is exerted. These hierarchical units
allow for robust data extraction from the captured artifacts. To han-
dle other screen-to-camera channel distortions, we further design
special preambles that consist of regularly distributed special loca-
tors and alignment blocks, as well as reference symbols in special
visual patterns that help to learn dynamic channels.

We have implemented the INFRAME++ prototype and conducted
thorough evaluation including user studies. Our experiments con-
firm that INFRAME++ enables dual-mode full-frame visible com-
munication to both humans and devices simultaneously. Without
noticeable artifacts or flickers, INFRAME++ is able to yield up to
360 kbps (150-240kpbs in most test cases) of data rates for the
screen-to-camera communication, up to 30–60x improvement, com-
pared with our prior work [31].

In summary, we have made three main contributions in this work:

• We propose a novel dual-mode full-frame visible communica-
tion paradigm, in which the same display can stream high-rate
data to a user device while retaining normal viewing experiences.
• We introduce the spatial-temporal complementary frame concept

and verify its the feasibility through user studies. We further
address several practical challenges, and prototype and assess a
complete working system.
• We demonstrate its promise for high-rate data delivery by achiev-

ing 150-240 kbps rate (up to 360 kpbs), an order of magnitude
higher than early proposals.

182

We believe that, as more display devices are deployed in the emerg-
ing cyber-physical world, the new visual communication paradigm
of INFRAME++ will become more appealing for its superior user
experience and its high rate for the embedded data.

The rest of the paper is organized as follows. §2 introduces the
background on human vision system and modern cameras. §3 gives
an overview of INFRAME++. §4 and §5 describe our detailed de-
sign in screen-to-eye and screen-to-camera channels. §6 presents
the implementation and evaluation of INFRAME++. §7 discusses
the potential applications and open issues. §8 compares with re-
lated work, followed by the conclusion in §9.

2. BACKGROUND
Vision is the primary information acquisition means for human

beings. Human vision system (HVS) is highly advanced and com-
plicated. In this section, we present some related basic properties
of HVS, and for comparison purpose, also capabilities of displays
and cameras.

2.1 Human Vision System (HVS)
Human eyes are the core instrument in human vision system,

which reacts to light and thus obtains the perception of object shapes,
colors, depth and motion, etc.. The structure of an eye is similar to
that of a camera [4], in the sense that an eye also has a lens (crys-
talline lens) and a sensor plate (retina). The sensor units (receptor
cells) on the retina are greater at the center and lowest at the edges,
thereby creating central (also called foveal) and peripheral vision.
Central vision accounts for the high visual acuity capability, essen-
tial to capturing major visual details. The larger peripheral area is
dominated by highly-sensitive light sensors (rod cells) and thus it is
good at detecting motion, and becomes more effective in the dark.

While offering rich information from the physical world, our
naked eyes have inherent physical limits in resolution, both spa-
tial and temporal. In particular, our visual perception possesses
three optical features, namely center-surround response, low-pass
flicker fusion, and phantom array effect, that relate to the spatial
resolution, temporal resolution and motion sensitivity, respectively.

Center-surround response. Human eyes cannot discriminate
overly fine details, due to the physical limit of the minimum dis-
tance between adjacent sensing cells on the central retina. Typi-
cally, the excellent spatial resolution of human eyes is 0.07o, corre-
sponding at 1.2mm at 1 meter watching distance [28]. The spatial
resolution is also affected by the spatial contrast. The receptive
field of human eyes has different responses at center and surround-
ing. Small (or large) receptive fields are stimulated by high (or
low) spatial frequencies. Typically, our spatial perception follows a
bandpass (close to low-pass) characteristics: the largest frequency
is about 2-4 cycles per visual angle (equivalent to one cycle contrast
within 5mm at 1m watching distance) [28]. In short, human eyes
can not distinguish too tiny things, and finer details fuse and appear
as some kind of average. One example is the eyesight check: when
the fine details exceeds that of the eye, one will only see the rough
shape.

Low-pass flicker fusion. Time-variant fluctuations of light
intensity are not perceptible to human eyes when it is beyond a
certain frequency, termed critical flicker frequency (CFF for short
hereafter) [18, 27]. Instead, human eyes only perceive the average
luminance. The temporal behavior of human vision system can be
approximated as a linear low-pass filter at a high frequency ex-
ceeding the CFF. A common example is the viewing of a rotating
car wheel. When it rotates fast enough, semi-transparent perception
will result in. Note but the CFF is affected by many factors includ-

ing color contrasts, motion, luminance waveforms, and to name a
few. In typical scenarios, the CFF of human eyes is believed to be
about 40-50Hz according to vast vision research results [6, 10, 18].
For instance, flickers presented by a 60Hz CRT monitor are not
perceptible.

Phantom array effect. This describes another special prop-
erty of human eyes – sensitive to motion. While fast-moving ob-
jects zoom across view (either by object motion, or by eye motion
such as rolling eyes), flicker can be noticed even when the display
frequency is much higher [13]. For example, we can observe the
flashing of an LED flashing at a frequency far exceeding typical
CFF if the LED is moving in a dark environment, but we only see
a constantly lit LED if it is still. Unlike flicker fusion, the ori-
gin of phantom array effect is not fully understood. Recent studies
uncover that lower flicker amplitude, larger duty cycle and larger
beam size make it less visible [25, 29].

2.2 Modern Display and Camera
With rapid technology advancement in recent years, displays and

cameras are thriving rapidly. Most of off-the-shelf LCD displays,
especially those 3D capable ones, supports 120Hz or higher re-
fresh rate. For example, Eizo FG2421 24’ LCD monitor, which
is used in our work, supports 120 frames per second (FPS) and
even 240FPS (in turbo mode). Other monitors like LG 47LH55
even physically supports 240 FPS. Moreover, with emergence of
organic light-emitting diode (OLED) based displays, a much lower
response time (less than 0.01 ms) is supported compared with LCD,
indicating its ability to support a rather high refresh rate.

Cameras are also evolving dramatically. Special purpose high
resolution cameras can yield giga-pixel images and reach over 2000
FPS video capture frame rate. Even commodity smartphone cam-
eras can support high resolution images at a fast capture rate, which
exceeds what the retina is looking for. For example, Samsung
Galaxy S5 supports 16-mega pixel resolution and 120FPS capture
rate, while iPhone 6 accommodates 8-mega pixel resolution and up
to 240FPS capture rate.

2.3 A Comparison
One particular difference between an eye and a camera is that

the eye does not contain a shutter. As a result, there is no expo-
sure process while we see things, nor we see things in frames (or
snapshots). It also accounts for the flicker fusion property. In con-
trast, camera takes discrete snapshots, every detail on the snapshot
can be examined. Moreover, while human vision system is still
far advanced than a camera, per the specific metric of spatial and
temporal resolution, it is already well exceeded by the camera.

The distinctive properties of HVS and cameras, and their capa-
bility gap provide potential design room we can explore. Consid-
ering the fact that HVS has largely remained constant over long
time whereas display and camera technologies continue advancing
at fast paces, the capability gap, hence the design room, will grow
larger in future.

3. INFRAME++ OVERVIEW
Our goal is to enable full-frame, dual-mode visible communi-

cation that allows users to enjoy normal full-frame viewing expe-
riences while, at the same time, allowing side information being
streamed to camera-equipped devices. Compared with alternative
ways to deliver side information (e.g. using WiFi for receiving the
audio), it enjoys intrinsic synchronization between primary content
and side information, and the convenience of impromptus commu-
nication (i.e. avoidance of device pairing), among others.

183

Sender

Visual
Modulation

Data bits
{bj} Encoding

+ Framing

Original
Frames

{Vi}
{Dj}

{Bj}

Receiver

Anchor
+ Border

Demodulation + decode
(remove {Vi} interference)

Multiplex

Frame
+locator
detection

output

Figure 3: INFRAME++ architecture and operations.

Requirements and Basic Idea. To achieve the goal, we need to
establish concurrent screen-to-eye and screen-to-camera commu-
nication channels. Given that the fundamental purpose of a screen
is to show content to users, the screen-to-eye channel is more pri-
mary. Thus, a first requirement is to ensure unimpaired viewing ex-
perience, that is, full-frame viewing without any perceivable qual-
ity degradation. To serve as an effective side channel, a second
requirement is to achieve high data rate at the existence of the pri-
mary video content.

The two visible communication channels share the same source
– the screen, whereas to achieve the goal, we need to establish two
distinctive channels, one for human and one for device. Thus the
only possibility is to exploit the different capabilities of human vi-
sion system and the camera. As mentioned in previous section, hu-
man vision system has the low-pass filtering property in both spatial
and temporal domain but a camera can take discrete snapshots of
the screen content, we may come up with the design that embeds
high frequency artifacts. If these artifacts can be low-pass filtered
out but remain catchable by the camera, we can convey information
using the artifacts.

Challenges. Despite the ever increasing capability gap between
human vision system and the dispaly/camera, it is non-trivial to
realize the idea. There are two main challenges arisen from inher-
ently conflicting screen-to-eye and screen-to-camera channels.
◦ Retaining normal viewing with side channel. The requirement

not to affect the primary screen-to-eye channel imposes a rigid con-
straint on the secondary screen-to-camera channel. Although hu-
man eyes have a low temporal resolution, they are very sensitive
to flickers. We thus need to find an appropriate frame multiplexing
scheme to combine a data stream and arbitrary screen content, and
ensure multiplexing will not introduce any perceivable color dis-
tortion, artifacts and flickers. It is especially challenging when the
content in the screen-to-camera channel is dynamic.
◦ Enabling data communication with primary content. To serve

the primary video watching goal, the perceived luminance level is
mainly dominated by the original frames whereas the injected data
patterns only contribute to small “noise”. Since the original lumi-
nance level is distinct at different pixels in one frame, its dynamic
range usually overwhelm the noise made for data delivery. This is
a critical issue to design a data frame structure so that they can be
retrieved from the multiplexed frames without loss of its carrying
data. In the meanwhile, we have to address the constraints in the
traditional screen-to-camera communication, such as blurring and
rolling shutter effects in [11, 14, 30].

INFRAME++ design. As will be elaborated in subsequent sec-
tions, we overcome the first challenge through the key concept of
spatial-temporal complementary frames and the superior frame rate
of displays (§4). Information bits are carried with spatial comple-
mentary visual patterns that are assembled into temporal comple-

mentary frames. The resulting complementary frames are multi-
plexed with the original screen contents. When displayed at high
frame rate (e.g. 120FPS), complementary frames perceptually can-
cel each out and original screen contents retain. It thus ensures
normal viewing experiences. On the contrary, a camera takes (tem-
poral) snapshots and with high spatial resolution. The captured
multiplexed frame will have obvious artifacts, which can be pro-
cessed to extract information bits.

We address the second challenge through the design of a hierar-
chical data frame structure made up from Cells, Blocks and Seg-
ments, and a CDMA-like modulation scheme. Information bits
are modulated in Blocks that exhibit spatial complementary vi-
sual patterns. Error protection is applied among Blocks in a Seg-
ment. These designs allow robust extraction of data from captured
artifacts. To handle other screen-to-camera channel distortions,
we also design special preambles that consists of regularly dis-
tributed special locators, and further design synchronization sym-
bols in special visual patterns to help realign Cells and Blocks.

Architecture and Operations. Figure 3 illustrates the archi-
tecture of INFRAME++. It consists of encoding logic at the sender
and decoding logic at the receiver.

Given the original frames {Vi} and the input data bit stream
{bj}, INFRAME++ works as follows. Information bits {bj} are
first embedded into certain visual patterns {Bj} by the visual mod-
ulation module. In the subsequent encoding and frame module,
error protection is exerted and similarly modulated. The gener-
ated visual patterns are grouped into Segments and further formed
them into full-size data frames. Preambles and specially designed
borders are added subsequently. Finally, the data frames are mul-
tiplexed to the origin frames in some way and display them on the
screen.

At the receiver side, the process is essentially reversed. It first
detects the preamble and restores locator positions, via the loca-
tor detection module. It proceeds to detect the existence of visual
patterns, and demodulate them if exist, through a correlation-based
matching process. The extracted bits then go through the error cor-
rection process and give the original information bits. With great
efforts to hide data communication, INFRAME++ also ensures un-
obstructive human viewing experience as anticipated.

4. RESPECT USER VIEWING OVER PRI-
MARY SCREEN-TO-EYE CHANNEL

This central problem is how to embed information-carrying vi-
sual patterns into the original frames so that such changes remain
invisible to naked human eyes. Our solution is to use the spatial-
temporal complementary frames. In this section, we elaborate its
concept and design, and also present the handling of sharp switch
between dynamic data frames.

4.1 Spatial-temporal Complementary Frames
Spatial-temporal complementary frames (STCF) are a new de-

velopment from the (temporal) complementary frames we origi-
nally proposed in [31]. For presentation integrity, we also include
the basic definition of complementary frames here.

Let us first define complementary pixels. Two pixels p and p∗

complement each other with respect to the luminance level v if their
pixel values sum up to 2v, i.e., vp + vp∗ = 2v. Note that, in actual
data frame, the average luminance level is set to zero (v = 0) and
we have vp∗ = −vp, whereas in the illustrations we have set the
luminance value to mid-gray (v = 128) as it is not possible to show
a pixel with negative value.

184

Original
Frames Vi

Data frames
(changes) Dj

Displayed
frames

Vi+Dj
1/60 second

Vi -Dj

Display: 120FPS

(a) TCF structure

V1+D

V1− D V2−D

V2+D …

L
um
in
an
ce

V1 V2

L
um
in
an
ce

… …

Time

Low-pass filter (cut-off: 40-50Hz)

(b) Perception effects

Figure 4: Illustration of temporal complementary frames
(TCFs) (a) and their visual effects perceived by eyes (b) through
a low-pass filtering flicker fusion.

Frame

V – D

i.e., V+D*

… V+D

+20 0

+20 0
+20 0

+20 0

…

-20 0

-20 0
0

-20 0
-20

(a) Without spatial complements

0

-20

+20

+10

-10
…

+10

+10

-10
-10

+10

+10

-10
-10

…

+10

+10

-10
-10

+10
+10
-10

-10
+10

+10
-10

-10

Block
(2*2 cells)

(b) With spatial complements

Figure 5: Illustration of spatial complementary frames (SCFs):
(a) no spatial complements (only TCF is applied) and (b) spatial
complements is used with TCF (that is, STCF).

Temporal complementary frames (TCF). A pair of data frames
D andD∗ are called temporal complementary frames (complemen-
tary frames for short) with respect to the luminance level v if all
their pixels are complementary w.r.t v. It is easy to see that, after
the temporal low-pass flicker fusion of human vision system, two
complementary frames will yield average frames with luminance
level v. (Again, in practice, we will set v = 0 when multiplex-
ing with video content.) Note that, complementary frames always
appear in pairs and take effect with temporal fusion. Given one
data frame, it is easy to obtain its complementary frame. Figure 4
illustrates the basic idea of a complementary pattern design over
consecutive frames.

Spatial complementary frame (SCF). Based on the comple-
mentary pixel concept, a frame consisting of spatially alternating
complementary pixels (i.e. neighboring pixels are always comple-
mentary to each other) are called a spatial complementary frame.
Figure 5b illustrates one spatially complementary pattern, where
two neighboring pixels meet vp + v∗p = 0. Due to the spatial
low-pass filtering property of human eyes, a spatial complemen-
tary frame will be perceived as a grey frame with average lumi-
nance. We realize it is actually the exact principle of dithering used
in printing that can produce mid-tones with only black ink. When
adding a zero-mean spatial complementary frame to a video frame,
we will hardly see the difference.

Spatial-temporal complementary frames (STCF). Combin-
ing the two concepts above, we define spatial-temporal comple-
mentary frames as a pair of complementary frames each of which

(a) Frame V +D using STCF (b) Zoom-in view

Figure 6: Examples of STCF frame (a) and its zoom-in view
(b) using a normal sunset video frame.

is a spatial complementary frame itself. Clearly, STCFs can lever-
age both the spatial and temporal low-pass filtering properties of
human vision system. Compared with TCF, STCF would also be
able to mitigate the phantom array effect. Hence, STCFs are more
effective in suppressing the visibility of data frames when multi-
plexed to video content, as confirmed in the following feasibility
study.

4.2 STCF Frame Structure Design
Recall the very purpose of design STCF is to convey data to a

camera, therefore, we need to make sure enough artifacts (under the
assertion of unnoticeable to humans) can be captured by the cam-
era. Considering the possible blurring and geometric distortions
(either the display or the camera) of the screen-to-camera channel,
in INFRAME++, we make two changes.

First, we use a Cell as the basic operation unit (instead of the raw
physical pixel of the display or camera). A Cell consists of p ∗ p
physical pixels. All the element pixels of a Cell have (or assumed
to have) the same luminance value when forming (at the sender) or
handling (at the receiver) spatial-temporal complementary frames.
Clearly, the cell size defines the minimum spatial resolution in use.

Second, we introduce a Block as the basic information-carrying
unit. A Block consists c ∗ c (c is an even number) neighboring
complementary Cells, and exhibits certain visual pattern. In a sim-
plest case, we may use existence of element cells of a Block area
to convey one bit, as done in [31]. To pursue higher throughput, in
INFRAME++, we allow flexible composition of Blocks from Cells
while ensure Cell-level complementary within a Block (see §5).
Thus, Blocks will exhibit multiple visual patterns, and one Block
can carry multiple bits.

Figure 5a and 5b illustrate two consecutive frames of the origi-
nal complementary frame scheme in [31] and the proposed STCF.
For frame V + D, in the original scheme, some Blocks may con-
tain Cells organized in a chessboard pattern, with values δ = 20
and 0; and other Blocks may contain all zero Cells. In contrast,
in STCF, Blocks may contain Cells organized in different pattern,
but with values δ = ±10, and Cells are all complementary to their
neighbors in a Block, even without a temporarily complementary
frame. For the temporially complementary frame V − D, all the
adjustment values are reversed.

Figure 6 illustrates the visual effect of multiplexed frames when
SCTFs are adopted. Due to spatially complementary patterns, SCTFs
are less noticeable even when being presented in the static form of
an image, compared with our prior work [31]. One may argue that
the original scheme uses patterns of δ/0 Cells, and it is actually a
mean-shifted version of a spatial complementary pattern. We point
out that such a mean-shift (of STCF) has profound impact. With-
out it, the average luminance of a chessboard-patterned Block will
have a non-zero change, whereas a zero Block have a zero aver-
age. When multiplexed to video content, they will cause unequal

185

Pixel Cell Block Frame

Segment

(a) Spatial structure

Space

…

Time

Transitional Frames

?
…

Temporal structure

?

(b) Temporal structure
Figure 7: Structure of STCF in space and over time.

luminance changes that can only rely on the complementary frame
to mitigate. Worse even, the actual impact on human perception
will be dependent on the actual video content. For example, adding
the same delta to a bright or dark area will lead to different vi-
sual changes. On the contrary, the average of a Block in STCF is
always zero. Multiplexing STCF with video content will have min-
imum visual impact. An alternative way to read this benefit is that
we can use much larger δ in STCF if to achieve the same level of
invisibility of the original scheme. This is also helpful as it allows
more effective capture and detection of artifacts at the receiver.

Note that the introduction of Cells and Blocks makes it possi-
ble that the resulting data frame is not spatially complementary in
the strict sense as neighboring pixels may be of identical values.
Nevertheless, the resulting STCFs are still effective. They are sig-
nificantly better than the scheme of [31]. Such improvements and
the effectiveness of STCF have been validated through an extensive
study in § 6.

Figure 7 shows the overall frame structure of formal STCF. Fig-
ure 7a decomposes the hierarchical spatial structure. A frame is
made from intermediate logic units of Segments (for error protec-
tion purpose, see §5.3), Blocks, Cells, and the actual physical pix-
els. Figure 7b shows the temporal structure. Each data frame is
rendered as a pair complementary frames. However, it encounters
with a sharp change due to the transition between different data
frames. To alleviate that, in addition to the complementary frames
(the first two frames), we propose the transitional frames to ensure
smooth switch to a different data frame, as described below.

4.3 Smoothing Transitional Frames
STCF can transmit a data frame invisibly. Different data frames

will end up with different STCFs. We thus face with a critical chal-
lenge when transmitting dynamic data frames. This is concern-
ing how to switch between consecutive STCF pairs. If it sharply
switches from one to another (e.g., from V1 − D1 to V1 + D2),
strong flickers are noticed due to the low-pass filter property of hu-
man eyes. The abrupt switching is equivalent to a quick motion and
imposes severe vision interference.

To mitigate the effect, we propose smoothing transitional frames
to ensure gradual switch. We introduce a transition function Ω(t)
to gradually change the amplitude of one data frame in a transition
cycle τ . When their luminance amplitude needs to switch from
δj to δj+1 between two successive data frames Dj and Dj+1, the
luminance of each Cell (i.e. all physical pixels in the Cell) in the
t-th transition frame (t = 0, 1, . . . , τ − 1) turns into

Ω(t) =(1+cos(t))/2 1

0

0.905

0.655

0.345

0.095

(a) Ω(t)

Frames for Data Frame i Frames for Data Frame i+1

(b) Amplitude transition waveforms

Figure 8: An example of transition waveform when data frame
amplitude varies from δ to −δ (green and blue solid curve)
and its perception effect (purple dotted curve) after applying
an electronic low-pass filter. Here, τ = 4 and Ω(t) is half of
the square-root raised Cosine waveform. For simplicity, the
primary video frame V is not displayed, but the delta part for
data frames.

v +

 (−1)t[(δj − δj+1) · Ω(t) + δj+1], δj > δj+1

(−1)t[(δj+1 − δj) · Ω(t) + δj], δj < δj+1

(−1)tδj , δj = δj+1

(1)

Note that, if a Cell does not need to change, the amplitude will
remain constant, just like the original complementary frames. Ω(t)
is a waveform that decreases from 1 to 0. In our experiments, we
use the half the square-root raised Cosine waveform for Ω(t) after
comparing with linear and stair function forms. Parameters τ is
also critical to data communication. Through our user study, we
find that a small τ (≤ 4) is needed when STCF is adopted. This
greatly reduces the count of transition frames when the temporary
scheme is used where a minimum value is 10-14 in [31].

Figure 8 gives an illustrative example of a switch from δ to −δ.
That is, when τ = 4, Ω(t) = [0.905, 0.655, 0.345, 0.095]. By
applying the above equation, the amplitude coefficients for each
frame (including complementary frame pairs) are 0.81δ, −0.31δ,
−0.31δ, 0.81δ, in turn. Notice that there have adopted multiple
replica complementary frames out of one single data frame. Such
repeated transmissions are to cope with possible mismatches be-
tween the display refresh rate (e.g. 120FPS) and camera capture
rate (e.g. 30FPS). For example, a public display may send data
over a variety of cameras.

In essence, we generate multiple intermediate data frames, which
are multiplexed with video frames, to ensure imperceptible transi-
tion between two different data frames. Spatially, each data frame
adopts special patterns to alleviate their visual effects. Temporally,
we take two forms of smoothing. One is over two consecutive
frames that complement to each other, and the other is over mul-
tiple transition frames which gradually switches between different
data frames. Note that, the above temporal smoothing also helps to
mitigate the rolling shutter effect [24] as the corrupted data can be
recovered from other frames. We will address this problem in next
section.

5. BOOST DATA COMMUNICATION OVER
SCREEN-TO-CAMERA CHANNEL

With the presence of the primary screen-to-eye content, what
available at the receiver is some artifacts – a mixture of the orig-
inal video content plus the added data frame that have undergone
various screen-to-camera channel distortions such as blurring, ge-
ometrical distortion, imprecise positioning, frame rate mismatch,
rolling shutter effects, etc.. Despite the STCF design, the require-

186

ment not to affect the normal viewing experience dictates the am-
plitude of the data frame to be relatively small when compared to
the dynamic range of video content. This is in sharp comparison
with other screen-to-camera work where the “background” of their
codes are clean and large amplitude (e.g. black or white) is al-
lowed [11, 14, 22, 30]. It is also different from those work that
hide codes in static images [19,34,36] where the background does
not change, and those video/image watermarking and steganogra-
phy work [5, 9, 12, 17, 20, 26, 35] where the altered video/images
assumed available at the receiver without any errors (no screen-to-
camera channels). To achieve high throughput, it is imperative to
make good use of these artifacts. In this section, we present our
designs and special measures to achieve the goal.

5.1 CDMA-like Modulation
As aforementioned, Blocks can be formed from complemen-

tary Cells in different ways and exhibit as different visual patterns.
Thus, a Block may carry multiple bits. Assume K bits are mapped
into certain BlockDk[c, c], k ∈ {1, 2, . . . 2K}, and 2K is the num-
ber of unique Block type. Each Block has a size of c ∗ c Cells (c is
an even number). Modulation is concerning how to select (or form)
these Blocks. After multiplexing, the screen area corresponding to
the Block is displayed in the form of V [c, c] ± Dk[c, c]. On the
receiver side, it is captured as V ′[c, c] ± D′k[c, c]. Demodulation
is to infer which Block (i.e. visual pattern) is used at the specific
position of the captured frame.

With the interference of video content and possible channel dis-
tortions in mind, we devise a Code Division Multiple Access (CDMA)-
like modulation scheme to facilitate accurate and robust demodula-
tion at the receiver. For simplicity, we assume Dk[c, c] is an c ∗ c
matrix which is arranged by a code vector φk (each element is 1 or
-1), multiplied by δ. These codes satisfies two properties: the or-
thogonality between any two codes and the zero sum of each code.
That is, 〈φk, φj〉 = 0, k 6= j and

∑
(φk) = 0, where 〈, 〉 is an

operator of inner product.
By exploiting their orthogonality and the zero sum, we infer

the block type with the maximum inner product with the received
block. That is,

k̂ = arg max
k
〈Dk[c, c], V ′[c, c] +D′k[c, c]〉. (2)

This is because

〈Dj [c, c], V
′[c, c] +D′k[c, c]〉

= 〈Dj [c, c], V
′[c, c]〉+ 〈Dj [c, c], D

′
k[c, c]

=
∑
r

∑
l

(δj(r, l) · v′(r, l)) +
∑
r

∑
l

(δj(r, l) · δ′k(r, l))

≈ v′ · δ ·
∑

(φj) + δ2 · 〈φj , φk〉

=

{
0, if k 6= j
c2δ2, if k = j

(3)

The first part assumes that the luminance level of original video
is almost invariant in a small block1 and thus our demodulation
can work regardless of unknown V . The second part reaches its
maximum only when j = k, otherwise it approximates to zero.

Note our design is different from the typical use of CDMA,
where each bit is spread with one specific code (vector). Instead,
we select a set of orthogonal codes (the selection criteria given as
1This assumption holds for most cases as Block size is small (e.g.
12×12 in our implementation) especially on HD videos. If the
video indeed contains rich texture, error detection may result. This
is confirmed in our experiments and we handle such cases with
error protection.

Matrix size Subset

2*2

4*4

8*8

Table 1: Examples of the matrices used in INFRAME++. Black
indicates 1 while white indicates -1.

below) and map them into a bit sequence. For convenience, we as-
sume the Cell size c = 2n. We generate a set of orthogonal vectors
of size 2n+1 using Walsh functions [2] and arrange each into a ma-
trix. We then choose a subset as desired CDMA code that satisfies
the following constraints:
1. The length of contiguous 1 or -1 vertically or horizontally is no

more than a given number η.
2. Each matrix is unique subject to circular shifts. That is, a code

cannot be identical to a circular shift of any other matrices in the
subset.

3. Each matrix is unique subject to reverse operation (i.e. inter-
change 1 and −1). That is, a code cannot be the exact element-
wise opposite of any other matrices in the subset.

4. The absolute Hamming distance of any two different matrices in
the subset is 22n−1.

We define the absolute Hamming distance of matrix A and B as
follows.

DEFINITION 1. Let d(r, l) = h(cshift(A, r, l), B), where
h is the Hamming distance function, and cshift is the circular
shift matrix of A by r rows and l columns. The absolute Hamming
distance is the minimum value, minr,l{N/2 − |N/2 − d(r, l)|},
where N is the matrix size.

Each of above constraints has certain implications. The first con-
straint is to ensure invisibility. A code/matrix represents a visual
pattern. We discover that we will not perceive flickers if the con-
tinuous cell is small enough (see §6.1). So η should be set to an
appropriate number. The second constraint is to tolerate possible
imprecise Block locating (e.g. Block position shift) at the receiver,
which may cause a detected Block to contain partial contents from
two neighboring actual Blocks. The third constraint is due to the
complementary frame design, and it is not possible to know which
frame (e.g. V +D or V −D) is captured. We thus need to avoid op-
posite patterns within a frame. The last constraint ensures that the
chosen matrices are optimal in a sense that they are most different
from each other, since the value 22k−1 is the maximum absolute
Hamming distance of any two 2k ∗ 2k binary matrices. Hence, this
modulation scheme is resilient to errors caused by blurs or distor-
tions.

Modulation operation. In INFRAME++, we modulate each
block by the above scheme. Generally, we map K bits to a block
containing 2n∗2n cells. We set η = 2 and write a program to search
for the subset. Table 1 visualizes the qualified matrices when n and
K both are chosen from 1, 2 and 3, where black and white color
corresponding to element ‘1’ and ’-1’, respectively. The matrices
(i.e. codes) governs the modulation and its element indicates the
modifications we will apply to a Cell. If the matrix element is 1,

187

Figure 9: Illustration of frame locators and alignment Blocks
along border.

then the luminance level of the Cell (all the p ∗ p physical pixels)
increases by δ. Otherwise, it decreases by δ. The spatial coding
efficiency – i.e., how many bits are carried per Cell or pixel – can
be computed as K/c2 (per cell) or K/(cp)2 (per pixel). To ensure
high throughput, it should be tuned high while keeping the error
rate low.

Demodulation in INFRAME++. Basically, demodulation works
by comparing, and selecting the maximum, the inner-product of
the received Block and all the possible codes, as given in Equ(2).
However, the absolute value of the cross-correlation has to be used
to cater for the (temporal) complementary frames. In addition, we
take the extra measures to address some practical issues. First, the
captured Block size may be different from code matrices, we need
to match their sizes via down-sampling (mostly) or up-sampling.
Assume original Block size is cp ∗ cp (in physical pixels). For an
M ∗M captured Block, we need to resample it and restore a cp∗cp
Block for correlation matching. In practice, we may use the nearest
mapping strategy for computation efficiency. The (i, j)-th element
will take value of the ([i∗M

cp
], [j∗M

cp
])-th element of the captured

Block. Second, we perform a local search in a window of [-2,2]
pixels in both X and Y dimension around the predicted Block po-
sition to counteract possible block shifting caused by inaccurate
Block locating (see next). We thus obtain multiple inner products
and will pick the maximum one.

5.2 Robust Block Localization
Despite the CDMA-like modulation and the search process adopted

in correlation-based demodulation process, to achieve good perfor-
mance, a prerequisite condition is to accurately locate the Blocks,
as the search process only does local refinement. The Block locat-
ing method also needs to be robust to possible channel distortions.

Locator and alignment patterns. In INFRAME++, we follow
the practice of a standard QR code [16] design but adapt the design
to serve our needs. In particular, we adopt the standard locator of
a QR code for its proven robustness and ease of detection. A loca-
tor is a regular square with each border is arranged with 1:1:3:1:1
for black, white, black, white and black in turn, as shown at cor-
ners in Figure 9. We use four locators, one at each frame corner,
whereas the QR code needs only three [16]. While we can make
locators invisible in principle, we deliberately make them visible
in INFRAME++, for several considerations: 1) robust detection of
locators is crucial; 2) we need to make user aware of the existence
of the side screen-to-camera channel; 3) we can achieve fast locat-
ing by avoiding correlation-based detection; and 4) putting them at
corners is not distractive anyway.

We also adopt alignment patterns along the four borders of the
screen (whereas the QR code applies on the top and left borders
only). Unlike locators, the border alignment patterns are made in-
visible. We use the regular chessboard pattern that contains 6 × 6

Figure 10: The locating procedure of alignment Blocks. Green
points are estimated positions of alignment Blocks, and red
rectangles are final determined positions. White numbers are
variances of correlation values. The third Block in the left bor-
der and corresponding one in the right border are not clear due
to rolling shutter effect, thus leading to a low variance (0.3 and
0.5). Their positions are re-calculated by interpolation. Note
that locators and Blocks are enlarged for clearer visual.

alternating Cells (±δ), using the double width and height of a reg-
ular cell. For sake of clear presentation, we term them as alignment
Blocks. Clearly, alignment Blocks are also spatial complementary
patterns. In our design, alignment Blocks are evenly distributed
along the borders and take half of space, as shown in Figure 9.

Alignment Blocks are designated to handle potential geometrical
distortions, such as radial distortion of display, pincushion distor-
tion of camera, and perspective distortion from imperfect capture,
etc..Since they serve as references to real data Blocks, special care
is taken to ensure accurate identification of alignment Blocks. Note
that, like normal data Blocks, alignment Blocks are detected using
correlation matching and a local search process is also exerted. We
thus design the following logic to infer their positions. First, we
calculate their theoretical positions from the positions of frame lo-
cators. We then try to detect the alignment Block and record the in-
termediate correlation values obtained in the search process. If the
variance of those correlation values exceeds a threshold, we treat
the one with maximum correlation as the actual alignment Block;
otherwise, we treat it as a miss detection. Finally, the positions of
missing alignment Blocks are re-calculated through interpolation
using nearest successful neighbors. Figure 10 shows an example.
The rationale is that, if an alignment Block is indeed corrupted, the
search process will result in similar correlation values, hence no
clear winner and small variances.

Block locating. Ideally we can readily locate the data Blocks
using the positions of alignment Blocks. However, channel distor-
tions can be non-linear and non-uniform, e.g., pincushion distortion
from a camera. Simple linear locating method can thus lead to er-
roneous locating results. The locating schemes introduced in [30]
are also not applicable since it is difficult to differentiate locators
from the original video content. In INFRAME++, we locate a data
Block using the following algorithm (for Y coordinate), taking as
input the coordinates of frame locators and alignment Blocks on
the borders. The key idea is to consider possibly different distor-
tion ratio of the left border (left) and the right border (right). The
algorithm for determine the X coordinate is similar.

left =
borderleft[j].Y − cornerleft−top.Y

cornerleft−bottom.Y − cornerleft−top.Y

right =
borderleft[j].Y − cornerright−top.Y

cornerright−bottom.Y − cornerright−top.Y

188

……

Erroneous blocks

Errors around
the border

Errors at
some rows

Random errors

Figure 11: Illustration of the error distribution without error
protection mechanism where a CDMA-like modulation is ap-
plied only. The red points represent wrong blocks and the green
marks the correct blocks after demodulation. Note that the
middle parts of both are removed to save space.

……

…… ……

……
Locators

Alignment blocks

Reference blocks

Visual guard

Data blocks

Segments

Figure 12: Illustration of one INFRAME++ data frame layout.

rX =
bordertop[i].X − cornerleft−top.X

cornerright−top.X − cornerleft−top.X
rY = left ∗ (1− rX) + right ∗ rX

Y = bordertop[i].Y ∗ (1− rY) + borderbottom[i] ∗ rY

5.3 Error Resilience
We analyze the error distribution (see Figure 11 for an illustra-

tive example) and identify three common types of errors: 1) er-
rors around borders; 2) errors at specific rows; and 3) random er-
rors. They match well with observations in other related work. The
first is mainly caused by more severe blurring and distortion at bor-
ders [11]; the second results from the rolling shutter effect [14]; and
the last can arise from the interference from primary video content
and many other factors [15, 30]. We propose several techniques
to make INFRAME++ more resilient to errors. They induce extra
overhead or redundancy, which is a trade-off for reliability.

Visual guard. Instead of taking big efforts to recover data at
highly erroneous areas, we choose not to send data there. We thus
devise visual guard by leaving blank area around borders, as shown
in Figure 12. At the guard areas, the original video content is un-
touched. This provides a natural isolation (guard interval) between
data Blocks, border alignment Blocks and even background (out of
the screen). This measure wastes some resources (guard areas do
not carry bits) but the overhead is comparably small for the full-
screen data delivery.

Channel reference Blocks. Due to inherent rolling shutter ef-
fects, the screen-to-camera channel are selectively lossy. It is crit-
ical for us to self-learn and respond to the varying channel quality.
Borrowing the concept of reference symbol in wireless communi-
cations, we place channel reference Blocks (with known patterns)
at specific known positions. We insert them evenly into data Blocks
(for example, every x rows and y columns, as shown in Figure 12).
This allows us to estimate the error rate at specific rows (or areas)
from these reference Blocks. Once the error rate (|error(Ref)|

|Ref |) is
larger than some threshold (say, 0.3), we discard those rows (or ar-
eas) and treat them as an erasure. As data frames are repeatedly
sent with multiple complementary frames, we can fill up erasures
from subsequent frames, or through error protection coding. Note

that techniques [14] to combat rolling shutter effects complements
our design.

Error detection and coding. We apply channel coding to en-
hance its resilience to random errors. To this end, we introduce
one additional structural unit – Segment. A Segment consists of a
group of neighboring Blocks (see Figure 7(a)) and is the minimum
unit for error coding. Within a Segment, we apply simple but com-
mon error detection and/or correction code such as parity-check,
forward error coding (FEC) [33], and RS code [32]. Further fram-
ing optimizations [30] are permitted, e.g., to handle erasure. They
complement our design.

5.4 Lessons and Discussion
We have tried several techniques proposed in conventional screen-

to-camera communication to boost throughput of INFRAME++. Some
failed or offered limited help. We summarize several lessons we
have learned and discuss potential improvement.

First, individual color channels are hardly useful for INFRAME++.
It was expected to double or even triple data throughput if each
R,G,B color channel could carry data independently, as demon-
strated in [11]. We found three-fold reasons: 1) energy leakage and
cross-corruption among channels when being captured by a cam-
era; 2) impact of the primary video; and 3) only very small delta
amplitude can be used. The latter two become more an issue due to
the former phenomenon.

Second, we noticed that the data-carrying ability depends on the
video content. Certain dark and slow-moving portions are able
to carry more bits. This shows room for potential improvements
through video content adaptation. However, due to heavy compu-
tation overhead to analyze the video, this technique is not appealing
to real-time rendering. But it is possible to do it offline, especially
when the data is pre-defined and paired with the video. In this
work, we focus on a generic scheme. We leave the adaptive design
for future work.

Third, we admitted that the above scheme for resilience, includ-
ing visual guard, channel reference blocks, and error coding, indeed
lowers the achieved throughput (as shown in §6). The parameters
used serve as knotting points between the throughput and the er-
ror rate. They should be adapt to dynamic environments (camera
capability, visible channel quality, distance) and different commu-
nication requirements (tolerance to errors) as well. However, in this
work, we used a set of pre-configured parameters and they may not
achieve the best performance in all the test environment. We leave
the adaptive design as future work.

Fourth, INFRAME++ has two trigger manners during video watch-
ing. The first uses an automatic trigger where the video processing
will detect whether INFRAME++ is adopted in the video through
detecting of four locators. The second is a manual one where the
user clicks a button or opens an INFRAME++ receiver app after
knowing a INFRAME++-enabled video in advance. In this work,
we use the latter and all the videos are INFRAME++ enabled. The
automatic discovery yields better usability (free of human efforts)
but requires more resource for continuous processing. Energy ef-
ficiency and detection error handling are other questions that we
need to address in more practical scenarios.

6. IMPLEMENTATION & EVALUATION
We implement the prototype of INFRAME++ with about 5000

lines of code. It consists of a sender and a receiver. The sender
takes an original video stream and a data bitstream as its input, gen-
erates the multiplexed stream, and then plays back the video stream
at precisely controlled frame rate. The receiver takes the captured

189

Pure color (ex: gray) Football Golf Beach Sunset

Table 2: The screenshots of major test video clips.

frames as its input, detects the existence of visual patterns, and de-
codes the recovered, possible corrupted frames into the output data.
For real-time rendering, the sender is mainly implemented in GPU.
Specifically, we use C# to write most logical part of the program,
but also use the DirectCompute [21] techniques in DirectX 11 to
realize the multiplexing and rendering in parallel in GPU. As a re-
sult, it supports real-time playback under 120FPS frame rate in all
of our experimental settings. Currently, the receiver works in an
offline mode. We use the smartphone camera to capture the video
frames and run processing afterwards.

We evaluate INFRAME++ in two aspects. First, we conduct a
user study to validate whether our design ensures normal screen-
to-human viewing without quality degradation or interference. Sec-
ond, we assess its data communication performance (i.e., through-
put, bit error rate and processing speed).

Experimental Settings. We use an Eizo FG2421 24’ LCD
monitor, which supports 1920×1080 spatial resolution and 120FPS
frame rate. In our experiments, we set the brightness as 100%. On
the receiver side, we use three phone models (Lumia 1020, Sam-
sung Galaxy S5 and Note 3) to capture the display. The video-
capturing resolution and frame rate are set to be 1920×1080 and
30FPS, respectively. We use a pseudo-random data generator with
a pre-set seed to generate the input data stream. All experiments are
conducted in typical indoor office settings, at the default watching
distance 60cm (a desktop width). We have conducted an extensive
study to assess the impacts of various design choices and environ-
ments conditions, including luminance contrast range δ, cell size
c, count of transitional frames τ , CDMA block scheme, and data
frame rate, as well as scenario settings such as video sources and
watching distance.

6.1 Subjective Perception Assessment
We conduct a user study to evaluate the subjective perception

quality and identify a good set of design parameters for INFRAME++.
We invited 15 volunteering participants (college students and com-
pany employees) in USA and China, 6 female and 9 male, aged
between 21 to 36, with half of them wearing glasses. Among the
participants, there were a designer and a video expert, who are
more sensitive to video quality. We showed original and revised
videos side by side, and asked them to rate the flicker (video qual-
ity change) with scores 0 to 4, where 0 indicates “no difference
at all,” and 1 to 4 signifies “almost unnoticeable,” “merely notice-
able,” “evident flicker,” and “strong flicker or artifact,” respectively.
In our user study, 0 and 1 denote satisfactory scores. In some tests
where the observation is highly consistent among testers and an-
ticipated (e.g., testing with a smaller δ = 10 when invisibility at a
larger δ >20 is validated), the participant scale varies from 6 to 15.

Video sources. We first test with a variety of video sources to
examine whether our scheme can be widely applicable. We select
12 video clips with different characteristics on brightness, contrast,
texture and motion. Table 2 shows the screenshots of five repre-
sentative video clips. We employ the pure colored video with dif-

0

1

2

3

4

G
ray(50)

G
ray(100)

G
ray(150)

G
ray(200)

Football

G
olf

Car race

Beach

Elephant

Sunset

Sunrise

Lattice

F
lic

k
e

r
p

e
rc

e
p

ti
o

n
 (

0
-4

) TCF[31] (δ = 20)
STCF (δ = 20)

TCF[31] (δ = 50)
STCF (δ = 50)

Figure 13: Flicker perception (avg, min, max) in tests with var-
ious background videos/images.

ferent brightness where their RGBs vary from (50, 50, 50) to (200,
200, 200) (from dark to light). The pure colored video is adopted
for its ease to detect any visual artifact. Other clips are manually
classified into several categories: (1) contrast: strong (sunset, sun-
rise, beach), mild (golf, car race, elephant) and weak/no (football,
lattice); (2) motion: fast (football, golf, car race), mild (beach, sun-
set), slow/static(elephant, lattice); and (3) regular texture (lattice).

Figure 13 show the perceived flicker scores using STCF, com-
pared with TCF [31]. We use a Cell of 3 ∗ 3 pixels and a Block
of 4 ∗ 4 Cells, that is, 12 ∗ 12 pixels. We test with two luminance
adjustment ranges (δ = 20, 50). That is, the amplitude in STCF is
±δ/2 whereas the one in TCF is δ or 0. More options are evalu-
ated in the following tests. We make three observations. First, it
is viable to alter different video frames without noticeable flickers.
When STCF is adopted, most scores are 0 even when δ is as large as
50. Second, the visual perception slightly changes under different
brightness, motion and contrast characteristics. Generally speak-
ing, it is easier to notice flickers in a brighter, faster-moving video
with stronger contrast. Third, the adoption of spatial complemen-
tary patterns greatly alleviates flickers than the pure temporal one.
This allows INFRAME++ a larger choice room to chase for good
data communication performance. By default, we choose gray and
sunset as the source videos.

Luminance adjustment range δ. Figure 14a present the av-
eraged flicker scores as δ varies from 10 to 70. For clarity, we
provide the max-min score in the STCF (gray) case. As expected,
the smaller the adjustment, the fewer flickers. Even when δ goes up
to 50, the resulting visual quality change is still mostly imperceiv-
able for both schemes. However, STCF is much more robust, with
fewer flickers under the same condition. Considering invisibility is
a subtle and subjective perception (the score is split when δ ≥ 40),
and the changes should be significant enough to be captured. We
believe that δ ∈ (20, 40) is a safe choice.

Cell size and distance. Figure 14b shows the perceived flicker
with regards to various cell sizes when δ = 20, at a watching dis-

190

0

1

2

3

4

 10 20 30 40 50 60 70

F
lic

k
e

r
p

e
rc

e
p

ti
o

n
 (

0
-4

)

TCF (Gray)
STCF (Gray)

TCF (Sunset)
STCF (Sunset)

(a) Flicker vs. adjustment δ

0

1

2

3

4

1*1 3*3 5*5 7*7 9*9

F
li

ck
er

 p
er

ce
p
ti

o
n

 (
0

-4
)

TCF(Gray)
STCF(Gray)

TCF(Sunset)
STCF(Sunset)

(b) Flicker vs. cell size c

0
1
2
3
4

0 2 4 6 8 10 12 14

F
lic

k
e

r
p

e
rc

e
p

ti
o

n
 (

0
-4

)

TCF(δ = 20)
STCFl(δ = 20)

TCF(δ = 50)
STCF(δ = 50)

(c) Flicker vs. transition count τ

Figure 14: Perception degradation (flickers) versus design options of adjustment range δ, cell size c and transitional frame count τ .

 0

 1

 2

 3

 4

40 60 100 150 200

F
lic

k
e

r
p

e
rc

e
p

ti
o

n
 (

0
-4

)

Distance (cm)

3 * 3
5 * 5
7 * 7
9 * 9

Figure 15: Flicker vs. distance when STCF is used for a gray
background video.

Factor Invisibility Data Choice
contrast range δ ↑ ↓ (< 60) ↑ 20 – 40
cell size c ↑ ↓ (< 7 ∗ 7) ↑ 3 ∗ 3
transition τ ↑ ↑ (< 4) ↓ 4
distance ↑ ↑ ↓ N/A

Table 3: Summary of factor impact and design choice for IN-
FRAME++.

tance of 60cm. Clearly, the smaller size, the fewer flickers. STCF
allows up to 7 ∗ 7 without noticeable flickers, at a 60cm distance.
In this case, the user is more sensitive to the pure color (gray) be-
cause the contrast is more obvious. We further test with different
watching distance. It is prone to more flickers at a closer distance.
When the distance is larger than 150cm, no flickers are noticed. All
these match with our common understanding of spatial resolution.
However, we want to point out, while it become harder for us to
see it, so does the camera. This will be observed in the following
evaluation of data communication.

Transitional frame count τ . Figure 14c studies the impact
of temporal smoothing cycle τ . Longer cycles tend to reduce the
perceived flickers. It is clearly seen that STCF has made significant
improvement over TCF. INFRAME++ needs at most 4 transition
frames (2 are OK) to handle dynamic data while INFRAME [31]
needs at least 10 frames even when δ = 20.

Summary. Our assessment validates that INFRAME++ is able
to achieve our first goal of no impaired viewing experience. Ta-
ble 3 summarizes the parameter impact. All match with our expec-
tation. Basically, a smaller δ, a smaller cell c, and a larger τ tend to
hide changes. Considering the requirements for data communica-
tion and invisibility robustness, we select design parameters given
in Table 3. Here, we set the cell size 3 ∗ 3 because the good choice
for invisibility should be no larger than 7 ∗ 7 and CDMA-like mod-

ulation may need to concatenate η same cells. When we set η = 2,
it is safe to use a 3 ∗ 3 cell, though a larger cell is still allowed in
some cases.

6.2 Data Communication
We run experiments to evaluate the performance of each design

module and its factor impact. We divide INFRAME++ into three
module sets: (1) Basic, which includes only visual modulation
(§5.1) and block localization(§5.2). They are needed to satisfy the
minimum requirements for data communication. With them, we
are able to retrieve data bits directly from the captured patterns, but
it may be prone to a high error rate, without any enhancement from
the error protection measures (§5.3); (2) Basic+Guard+Reference,
also marked as “w/ GR” , covers two more modules to handle er-
rors caused by distortions over screen-to-camera channels. Both
are used to manually erase the errors which occurs with known pat-
tens (e.g., at the border or at several rows). As a result, it likely re-
duce the error rate but also reduce the available throughput. (3) Ba-
sic+Guard+Reference+Code, short for “w/ GRC”, is a full-version
INFRAME++, including all other modules such as channel coding.
We deliberately treat channel coding as an independent module be-
cause we just apply the well-established technique. Its function is
well known to make an tradeoff between redundancy and reliability.
We first use Basic INFRAME++ to test the performance of demod-
ulation and block location. We then compare with w/ GR to as-
sess the performance impact of virtual guard and channel reference
block. Finally, we run comprehensive experiments. We run exper-
iments using the following default setting unless explicitly speci-
fied. We use the pure gray color and sunset as our default video
sources. In each test, we offline generate 120 multiplexed frames
from 30FPS source video clips and 10FPS data frames (randomly
generated), and play for 1 second on a 120FPS monitor. That is,
each data frame has 12 replica (including its complements), where
4 out of them are transitional frames (τ = 4). Other parameters
learnt from the user study is δ = 40 and c = 3. The smartphone
captures the screen at a distance of 60cm, using ISO 200 at the rear
camera. We run experiments 9 runs and show the median results.

CDMA code design. The visual modulation module has two
key parameters: the code size (matrix size) and the size of the code
block set, which determines the number of bits carried in one block.
We choose the first 2, 4, 8 (if applicable) codes using a matrix of
size 2×2, 4×4, or 8×8 in Table 1. Specifically, given a 3×3 Cell,
each Block has 6×6, 12×12, 24×24 pixels, respectively. Figure 16
shows their BER and raw throughput. Note that raw throughput
(throughput hereafter) is not the achievable one in practice, due
to the overhead caused by errors. It counts all correctly received
bits and it can be simply calculated as the product of the source
rate and (1-BER) if no erasure happens. But it can be regarded as

191

 0

 100

 200

 300

 400

10 12 15 20

T
h
ro

u
g
h
p
u
t
(K

b
p
s
)

Data frame rate (FPS)

S5 (Basic)
Note3 (Basic)
Lumia (Basic)

(w/ GR)
(w/ GR)
(w/ GR)

(a) Data frame rate

 0

 100

 200

 300

40 60 100 150 200 250 300

T
h
ro

u
g
h
p
u
t
(K

b
p
s
)

Distance (cm)

S5 (Basic)
Note3 (Basic)
Lumia (Basic)

(w/ GF)
(w/ GF)
(w/ GF)

(b) Watching distance (3 × 3 cell)

 0

 20

 40

 60

100 150 200 250 300 400 500

T
h
ro

u
g
h
p
u
t
(K

b
p
s
)

Distance (cm)

S5 (Basic)
S5 (w/ GF)

(c) Watching distance (6 × 6 cell)

Figure 18: Throughput w.r.t. different design parameters or settings: (a) data frame rate, (b) distance (a small 3×3 cell), (c) distance
(using a larger size cell).

 0

 0.1

 0.2

 0.3

 0.4

6*6
2 codes

12*12
2 codes

12*12
4 codes

24*24
4 codes

24*24
8 codes

 0

 100

 200

 300

 400

B
E

R

T
h

ro
u

g
h

p
u

t
(K

b
p

s
)

Basic: Gray
Sunset

Gray (thput)
Sunset (thput)

w/ GR: Gray
Sunset

Gray
Sunset

Figure 16: Raw BER (bars) and throughput (lines) under var-
ious modulation designs in Basic mode and w/ GR mode where
the modules of visual guard and channel reference are em-
ployed.

an indicator of the potential (upper bound) of achievable through-
put, and is often used to evaluate screen-to-camera communication.
We present the results using Lumia 1020 and the ones using other
phones (S5 and Note3) are similar.

We have three observations. First, the larger block size can help
to reduce BER when no measures of visual guard and channel ref-
erence are employed. The 6×6 block suffers from the highest error
rate, as large as 30%. That is because only a 2× 2 CDMA code is
used and its correlation fails to reliably distinguish itself from the
noise of primary video and inevitable distortions. As the block size
grows, the orthogonal property is fully utilized. Its raw BER thus
reduces to 10% (12×12 block) and 3–4% (24×24 block). Given
the same block size, the one with fewer codes performs slightly
better. This contributes to fewer block competitors. Second, with
the error handling of visual guard and channel reference, the BER
greatly reduces, especially when its raw error rate is slightly large.
Especially, for a 12 × 12 Block, it reduces from 10-15% to 1-7%.
It implies that many error happen at the border or are caused by
rolling shutter effects. In fact, we also take a photo, not a video to
capture the screen. We observe that the error rate is much lower,
which also indicates that the rolling shutter effect is a major con-
tributor to errors. Third, the impact on throughput is multi-facets.
For 12 × 12 and 24×24 blocks, the throughput almost linearly in-
creases w.r.t. the size of block set (i.e. the code number). It is easy
to understand. CDMA codes are orthogonal and it can tolerate the
existence with other codes. Though the 24×24 case has a lower
error rate than the 12×12 one, its spatial efficiency (determining

 0

 0.1

 0.2

 0.3

 0.4

20 30 40
 0

 40

 80

 120

 160

 200

B
E

R

T
h

ro
u

g
h

p
u

t
(K

b
p

s
)

Luminance amplitude (δ)

D=60 (Basic)
D=60 (w/GR)

D=150 (Basic)
D=150 (w/GR)

D=60 (Basic)
D=60 (w/GR)

D=150 (Basic)
D=150 (w/GR)

Figure 17: BER and throughput vs. δ.

throughput) decreases due to more spaces to carry an unit bit. For
instance, the 24×24 occupies 4x area but only doubles the through-
put. As a consequence, the 12×12 outperforms 24×24 and other
larger block design. The exception exhibits between 12×12 and
6×6 blocks. Ideally, the 6×6 has higher raw throughput but is hard
to utilize due to a large error rate. So in the following experiments,
we mainly use 12×12 Block with 4 codes (i.e., 2 bit/block) as our
default scheme. When we use the only one modulation scheme, the
error rate and its throughput can be inferred. So we only plot the
throughput due to space limit.

Luminance adjustment range. Figure 17 shows the results
when δ varies from 20 to 40. We present only the sunset result
because it is more challenging than the gray one. Basically, as δ
increases, the throughput increases. At a near distance (60cm), no
significant improvement is observed (about 20kbps gap). At a far-
ther distance (150cm), a larger δ is of more help. Here we present
the result for S5 because its performance degrades more at 150cm
(see Figure 18b). This matches with our understanding. It also
discloses that INFRAME++ offers a quite flexible room to fulfill
its function. The gap between the basic and the w/GF implies a
high erasure rate. We checked the captured videos and did observe
strong rolling shutter effects. While INFRAME++ can detect the
error through the reference block, it still requires extra mechanism
to handle and recover from it. This can refer to recent work done
by [14].

Data frame rate. Given a 120FPS fresh rate and a data frame
rate µ, each data frame will have 120/µ replicas, out of which τ =
4 frames are transitional frames. Figure 18a shows the throughput
when the data frame rate increases from 10 to 20, that is, from

192

 0

 0.1

 0.2

 0.3

FPS = 20 FPS = 10 D = 150

B
E

R

Basic
w/ Guard

w/ Reference
w/ RS Code(7,3)

(a) BER under three settings (Sunset)

 0

 100

 200

 300

 400

FPS = 20 FPS = 10 D = 150

T
h
ro

u
g
h
p
u
t
(K

b
p
s
) Basic

w/ Guard
w/ Reference

w/ RS Code(7,3)

(b) Throughput under three settings (Sunset)

 0

 100

 200

 300

 400

GrayFootball Golf BeachSunset

T
h
ro

u
g
h
p
u
t
(K

b
p
s
) Basic

w/ Guard
w/ Reference

w/ RS Code(7,3)

(c) Throughput for various sources

Figure 19: BER and throughput after each module in INFRAME++.

12 replicas to 6 replicas (minimum). Here, we only present the
result for the sunset video, and the gray one has about 10–20Kbps
improvement. We observe that the data rate steadily increases w.r.t
µ. It first implies that the camera is not a bottleneck, and it is
able to capture data frames even it moves faster. Theoretically, it
can support 360Kbps (Basic) and it still able to support as high
as 270Kbps after the erasure made by visual guard and reference
blocks. This demonstrates a significant improvement as high as
30–45x improvement than our prior work [31]. This is thanks to
the adoption of STCF which allows a smaller number of transitional
frame and a larger δ. The CDMA design which carries more bits in
one block, also contributes to the throughput improvement.

Capture distance and phone models. Figure 18b shows the
throughput at different capturing distance. Basically, the nearer,
the better. But we also notice there is an exception. For Note 3,
when the capture distance reduces from 60cm to 40cm, more dis-
tortion occurs and thus hurts INFRAME++. We also notice that
INFRAME++ fails when the distance is larger than one threshold
(here, 2m for S5 and Note3, 3m for Lumia). We checked the cap-
tured videos and indeed observed that there were no patterns in the
one captured by S5 and Note 3 and blurred patterns in Lumia. This
matches with our expectation. Constrained by the requirement of
unimpaired viewing even when being watched in vicinity, we con-
figure the parameters, such as a 3× 3 cell size; However, they can
not work well at a far distance. In fact, a larger distance can allow a
more flexible parameter choice (e.g. a larger δ and c), which can be
leveraged to boost INFRAME++ without interfering video viewing.
We further test with a larger cell size (6× 6, not 3× 3). Figure 18c
shows the throughput for S5 with the watching distance up to 5 me-
ters. The results are similar for Lumia (better than S5) and Note 3
(worse than S5). The current setting can ensure unobstructive view-
ing experience between 1m and 5m. Clearly, the working distance
is extended as the cell size increases. Note the overall throughput
is decreased as a result of a smaller block density (declines by 4
fold). This is constrained by the physical size of the display. Un-
der the current display and camera settings, when the distance goes
beyond 3 meters, the error rate is pretty high, as large as 20-40%.
This calls for a more robust scheme for communication.

Design modules. We now examine the role of each design mod-
ules. On top of the basic INFRAME++, we in turn enable the visual
guard, channel reference blocks and channel coding. We use RS
code (7,3) in this case. Figure 19a and Figure 19b show the BER
as well as its throughput under three settings (1) default, (2) data
frame rate = 20 and the other same as default, and (3) distance
is 150 cm and the other is the same as default. We only present
the results for S5 when the sunset video is used. Figure 19b shows
the throughput results for different video sources using δ = 40,

PC1 PC2 Mac Pro
Pure gray 136FPS 242 FPS 250FPS

720p video 131FPS 235 FPS 185FPS

Table 4: The processing time for video/image encoding and ren-
dering at three senders.

Threads PC1 PC2 Requirement (10FPS)
single 981ms 908.7ms 100msmultiple 269ms 202.7 ms

Table 5: The receiver’s processing time for video decoding.

D = 60cm and 10 FPS data frame. Clearly, the results are similar
across video sources and the sunset video is slightly worse. We can
see that all the error protection mechanisms are effective in reduc-
ing the error rate. However their cost is different. The channel
coding depends on redundancy and thus decreases the throughput
most. In most cases, Guard and reference block can efficiently re-
duce error rate while maintaining a graceful degrade on through-
put. Under the default setting, all video sources can achieve about
200Kbps without any extra add-on feature (Basic) and eventually
can achieve about 70-85kbps after all the error handling mecha-
nisms are applied.

Encoding and Decoding Speed. We finally examine the pro-
cessing speed which is vital to real-time rendering and communi-
cation. We first measure the time to encode data frames, multiplex
and render them in the screen. We use the default scheme: 12×12
block with 4 codecs, on the 1920×1080 resolution screen. We test
with three machines: (1) PC1 with an Intel Core-i5 dual-core CPU,
8GB main memory and an AMD Radeon HD8490 video card; (2)
PC2 with an Intel Xeon e5-1620 four-core CPU, 8GB main mem-
ory and an AMD FirePro V3900 video card; (3) Macbook Pro using
an Intel Core-i5 dual-core CPU, 8GB main memory and Intel Iris
integrated video card. Table 4 shows their processing speeds after
they are stabilized. It is clear that the sender is able to support real-
time operations since the processing speed is larger than 120FPS.
This is attributed to the DirectCompute technique in GPU. How-
ever, the current processing time at the receiver is a little bit slower
than the real-time requirement (Table 5). For 10FPS data frame rate
(one new data frame is embedded every 100ms), it takes 200ms or
260ms to decode it, using multiple (4x) threads. The current re-
ceiver has not been optimized by GPU and thus it supports offline
processing with a several seconds delay. We notice that similar
GPU optimization is applicable. We are working on improving the
decoding speed.

193

7. POTENTIAL APPLICATIONS
INFRAME++ is able to provide accompanying data communi-

cation without requiring any infrastructure (e.g., Wireless, Mobile
Networks). It offers a user-friendly approach to fetch information
from an electronic display (e.g., TV, ad board). We present two
potential applications empowered by INFRAME++.

Enhanced Video Ad (Ad++). It offers an enhanced video ad-
vertising by providing metadata to the potential customers who are
interested. The target scenario is to employ INFRAME++ on adver-
tising electronic boards at the shopping malls or out of the build-
ings. It works as follows. At the screen corner, there is a small
visible icon which indicates whether INFRAME++ is enabled or
not. If so, the target user either use Google Glass or his phone cam-
era to capture what he may be interested in, but not directly covered
in the visible ad. Compare with the existing ad, it has several ad-
vantages. First of all, it still ensures the original, attractive video
ad to most users. Data delivery is almost imperceptible to users
and can be done on demand. For those who are really interested in
the goods and want to know more, this offers a convenient chan-
nel to fetch extra information. Second, without being constrained
by the screen size, it is able to carry on much richer information.
The existing ad usually highlights several keywords (e.g., price,
phone number), while ad++ allows to carry several KB or more.
Third, data dissemination adopts a digital form (bytes and texts)
and thus it is ready for automatic processing, mining and archiving
which are machine-friendly and user-friendly (no or litter human
efforts). For instance, the user does not need to recognize and re-
member the seller’s telephone number and manually type it into
the phone. Instead, once the number is retrieved from the captured
video, it can be automatically saved or prompted to the user for a
call. Fourth, this scheme is infrastructure-free. This combats alter-
native solutions such as WiFi, Bluetooth, NFC which requires that
the source (display) is equipped with extra hardware. Certainly,
reliability of INFRAME++ should be greatly enhanced before its
commercial adoption.

Watching Authentication. The co-channel delivery enforces
a close association between human viewing activity and embed-
ded data. Retrieving specific data from this video likely implies
that the users indeed is watching this video. This intrinsic watch-
ing authentication provides one natural form to attract or allure
real consumer attention, as well as a convenient and secure way
to deliver some confidential or target information. For example,
coupons or deals can be delivered through screen-to-camera links
in INFRAME++. Many manufacturers hope to disseminate coupons
to their customers only as a reward of watching their ads. If the
coupon is embedded in the video, it will force the customers to
watch the real videos. Otherwise, someone may play tricks to re-
turn to the ad page after the ad video ends, or through a simple click
or a link after the video.

8. RELATED WORK
In this section, we compare INFRAME++ with the literature along

three dimensions.

Unobtrusive screen-to-camera communication. Several re-
cent studies seek to establish non-obtrusive screen-to-camera com-
munications over static images, including VRCode [34], IVC [7],
visual MIMO [36], and HiLight [19]. Specifically, VRCode deliv-
ers only static (tag) content using a hue-based barcode design [34].
[7, 36] hide data upon two consecutive frames (an original image
and the one with embedded messages) where data is embedded in
pyramid decomposition [36] and brightness change [7]. HiLight

conveys data bits through the pixel transparency change within a
time window [19]. Different from their work, we work on the
dynamic video content with time-varying visual background, thus
facing new challenges. In our solution, we leverage capability
discrepancy between users and devices, as well as human vision
characteristics when designing INFRAME++. Through the novel
use of STCF, CDMA-like modulation and error protection, IN-
FRAME++ has not only addressed more practical system issues,
but also achieved higher data rate (360kbps with an 30-60x growth
of our prior work [31]).

Conventional screen-to-camera communications. They focus
on data communications while exclusively occupying the (entire or
part of) the screen [11, 14, 15, 22, 30]. They thus differ from our
primary goal of establishing dual-mode, concurrent visual chan-
nels for data communication and video viewing. Nevertheless,
their proposed techniques, which address challenges inherent in
screen-to-camera channels such as rolling shutter effect [14], dy-
namic capture quality [15], error handling [30], can be applicable
to INFRAME++.

Watermarking and Steganography. Watermarking and steganog-
raphy also embed data into signals (e.g., images or videos) in a
covert manner [8, 23, 37]. The main approach to data information
hiding is to make the altered signals as close to the original ones
as possible. For example, a common technique is to manipulate
only the LSB (least significant bit) of pixels either in a determinis-
tic fashion [5, 17, 20, 35] or in a randomized manner [9, 12, 26].
Watermarking is designed primarily for authenticity verification
or integrity checking, whereas stealthiness is of less interest [37].
INFRAME++ differs from these two topics in both its goals and
the target scenario. We seek to enable imperceptible data com-
munications, rather than data hiding or authentication. Therefore,
INFRAME++ must address real-world degradations over screen-
camera channels while they do not.

9. CONCLUSION AND FUTURE WORK
In this paper, we describe INFRAME++, a system that enables

simultaneous full-frame video-viewing experiences for users and
screen-camera communications for devices, through multiplexing
original video frames and data frames and rendering them on the
same display. The proposed design exploits the flicker-fusion prop-
erty of the human vision system and the superior capability of mod-
ern displays and cameras. Our prototype and evaluation have con-
firmed the viability of INFRAME++.

We believe that INFRAME++ explores a new paradigm for vi-
sual data communication. It retains the normal viewing quality for
users while enabling high-rate visual communication to devices.
From the comparative standpoint, it circumvents the distractive and
hard-to-use downsides in the current barcode design. As the capa-
bility discrepancy between users and devices continues to expand,
we envision the steady rise of opportunistic communications over
the device-to-human visual channels. It offers a new venue for vi-
sual data communication to devices in the emerging cyber-physical
world.

ACKNOWLEDGMENTS
We greatly appreciate our shepherd, Dr. Prabal Dutta, and the
anonymous reviewers for their insightful comments and construc-
tive feedback. We also thank Jiaqi Xu, Ouyang Zhang and all other
participants in the user study. This work is supported in part by the
National Science Foundation under Grants No. CNS-1421933 and
CNS-1421440.

194

10. REFERENCES
[1] Cisco Visual Networking Index: Forecast and Methodology,

2013–2018. http://tinyurl.com/mev32z8.
[2] Walsh function. http:

//en.wikipedia.org/wiki/Walsh_function.
[3] Wechat.
[4] D. A. Atchison, G. Smith, and G. Smith. Optics of the human

eye. Butterworth-Heinemann Oxford, UK:, 2000.
[5] R. Balaji and G. Naveen. Secure data transmission using

video steganography. In IEEE International Conference on
Electro/Information Technology (EIT), 2011.

[6] G. Brindley, J. Du Croz, and W. Rushton. The flicker fusion
frequency of the blue-sensitive mechanism of colour vision.
The Journal of physiology, 183(2):497–500, 1966.

[7] R. Carvalho, C.-H. Chu, and L.-J. Chen. IVC: Imperceptible
video communication. 2014. Demo.

[8] A. Cheddad, J. Condell, K. Curran, and P. McKevitt. Digital
image steganography: Survey and analysis of current
methods. Signal Processing, 90(3):727–752, 2010.

[9] J. Fridrich and M. Goljan. Digital image steganography
using stochastic modulation. In Electronic Imaging, pages
191–202, 2003.

[10] D. G. Green. Sinusoidal flicker characteristics of the
color-sensitive mechanisms of the eye. Vision research,
9(5):591–601, 1969.

[11] T. Hao, R. Zhou, and G. Xing. Cobra: Color barcode
streaming for smartphone systems. In MobiSys, 2012.

[12] J. He, J. Huang, and G. Qiu. A new approach to estimating
hidden message length in stochastic modulation
steganography. In Digital Watermarking, pages 1–14.
Springer, 2005.

[13] W. A. Hershberger and J. S. Jordan. The phantom array: a
perisaccadic illusion of visual direction. The Psychological
Record, 48(1):2, 2012.

[14] W. Hu, H. Gu, and Q. Pu. Lightsync: Unsynchronized visual
communication over screen-camera links. In MobiCom,
2013.

[15] W. Hu, J. Mao, Z. Huang, Y. Xue, J. She, K. Bian, and
G. Shen. Strata: Layered Coding for Scalable Visual
Communication. In MobiCom, 2014.

[16] I18004:2000. Automatic identification and data capture
techniques - Bar code symbology - QR Code.

[17] R. Kavitha and A. Murugan. Lossless steganography on avi
file using swapping algorithm. In Conference on
Computational Intelligence and Multimedia Applications,
volume 4, 2007.

[18] D. Kelly. Flicker. In Visual psychophysics, pages 273–302,
1972.

[19] T. Li, C. An, A. Campbell, and X. Zhoun. Hilight: Hiding
bits in pixel translucency changes. In ACM Workshop on
Visible Light Communication Systems (VLCS), 2014.

[20] X. Liao, Q.-y. Wen, and J. Zhang. A steganographic method
for digital images with four-pixel differencing and modified
lsb substitution. Journal of Visual Communication and Image
Representation, 22(1):1–8, 2011.

[21] NVIDIA. Directcompute. https:
//developer.nvidia.com/directcompute.

[22] S. D. Perli, N. Ahmed, and D. Katabi. Pixnet:
interference-free wireless links using lcd-camera pairs. In
MobiCom, 2010.

[23] F. A. P. Petitcolas, R. J. Anderson, and M. G. Kuhn.
Information hiding – a survey. Proceedings of the IEEE,
87(7):1062 –1078, July 1999.

[24] N. Rajagopal, P. Lazik, and A. Rowe. Visual light landmarks
for mobile devices. In ISPN, 2014.

[25] J. Roberts and A. Wilkins. Flicker can be perceived during
saccades at frequencies in excess of 1 khz. Lighting Research
and Technology, 45(1):124–132, 2013.

[26] T. Sharp. An implementation of key-based digital signal
steganography. In Information hiding, pages 13–26.
Springer, 2001.

[27] E. Simonson and J. Brožek. Flicker fusion frequency:
background and applications. Physiological reviews, 1952.

[28] R. D. Valois and K. D. Valois. Spatial Vision. Oxford
University Press, 1988.

[29] I. Vogels and I. Hernando. Effect of eye movements on
perception of temporally modulated light.
http://2012.experiencinglight.nl/doc/28.pdf.

[30] A. Wang, S. Ma, C. Hu, J. Huai, C. Peng, and G. Shen.
Enhancing Reliability to Boost the Throughput over
Screen-camera Links. In MobiCom, 2014.

[31] A. Wang, C. Peng, O. Zhang, G. Shen, and B. Zeng.
InFrame: Multiflexing Full-Frame Visible Communication
Channel for Humans and Devices. In HotNets-XIII, 2014.

[32] S. B. Wicker. Reed-Solomon Codes and Their Applications.
1994.

[33] wikipedia. Forward error correction.
[34] G. Woo, A. Lippman, and R. Raskar. Vrcodes: Unobtrusive

and active visual codes for interaction by exploiting rolling
shutter. In IEEE International Symposium on Mixed and
Augmented Reality (ISMAR), 2012.

[35] H.-C. Wu, N.-I. Wu, C.-S. Tsai, and M.-S. Hwang. Image
steganographic scheme based on pixel-value differencing
and lsb replacement methods. IEE Proceedings-Vision,
Image and Signal Processing, 152(5):611–615, 2005.

[36] W. Yuan, K. Dana, A. Ashok, M. Gruteser, and
N. Mandayam. Dynamic and invisible messaging for visual
mimo. In IEEE Workshop on Applications of Computer
Vision (WACV), 2012.

[37] Y. Zhang. Digital watermarking technology: A review. In
Future Computer and Communication (FCC), 2009.

195

http://tinyurl.com/mev32z8
http://en.wikipedia.org/wiki/Walsh_function
http://en.wikipedia.org/wiki/Walsh_function
https://developer.nvidia.com/directcompute
https://developer.nvidia.com/directcompute

	Introduction
	Background
	Human Vision System (HVS)
	Modern Display and Camera
	A Comparison

	InFrame++ Overview
	Respect User Viewing over Primary Screen-to-Eye Channel
	Spatial-temporal Complementary Frames
	STCF Frame Structure Design
	Smoothing Transitional Frames

	Boost Data Communication Over Screen-to-Camera Channel
	CDMA-like Modulation
	Robust Block Localization
	Error Resilience
	Lessons and Discussion

	Implementation & Evaluation
	Subjective Perception Assessment
	Data Communication

	Potential Applications
	Related Work
	Conclusion and future work
	References

