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Abstract

Carrier aggregation (CA) is an important component tech-
nology in 5G and beyond. It aggregates multiple spectrum
fragments to serve a mobile device. However, the current
CA suffers under both high mobility and increased spectrum
space. The limitations are rooted in its sequential, cell-by-cell
operations. In this work, we propose CA++, which departs
from the current paradigm and explores a group-based de-
sign scheme. We thus propose new algorithms that enable
concurrent channel inference by measuring one or few cells
but inferring all, while minimizing measurement cost via set
cover approximations. Our evaluations have confirmed the
effectiveness of CA++. Our solution can also be adapted to
fit in the current 5G OFDM PHY and the 3GPP framework.

CCS Concepts

• Networks → Mobile networks; Network resources

allocation; Network measurement; Network mobility.

Keywords

Cellular Network, Carrier Aggregation, Cell Measurement,
Delay Doppler Domain, CA++
ACM Reference Format:

Qianru Li, Zhehui Zhang, Yanbing Liu, Zhaowei Tan, Chunyi Peng,
Songwu Lu. 2023. CA++: Enhancing Carrier Aggregation Beyond
5G. In The 29th Annual International Conference on Mobile Comput-

ing and Networking (ACM MobiCom ’23), October 2–6, 2023, Madrid,

Spain. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3570361.3592500

1 Introduction

Carrier aggregation (CA) is essential to user experience in 5G
and beyond. It combines multiple component carriers (used
interchangeably with “cells” in this paper), each operating on
a frequency channel, to serve a mobile device. As a result, it
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aggregates multiple contiguous or non-contiguous frequency
spectrum resources, thereby boosting data throughput over
wider spectrum. It is a valuable instrument to utilize precious
radio spectrum and boost peak data rates, particularly when
5G is expanding the spectrum space into both mmWave (say,
> 24GHz) and new sub-6GHz bands (say, < 6GHz) [12, 16].
In a nutshell, the current CA mandated by 3GPP uses a

cell-based procedure. It adds a sequence of qualified cells
– primary cell (PCell) first, followed by several secondary
cells (SCells)) – after evaluating their cell quality on a super
set of candidates. The effectiveness of CA relies on two fac-
tors: (1) accurate channel quality assessment on each added
cell; (2) exploration of a large super set from which PCell
and SCells are selected. Ideally, the larger the super set, the
better selection of cells; the more accurate the cell channel
quality assessment, the more gain the CA. However, an ex-
ceedingly large super set incurs excessive cell measurements,
thus prolonging the CA decision process and degrading the
achievable throughput.
We have thus identified two limitations with the current

CA, particularly under mobility and with spectrum expan-
sion into the mmWave bands. First, sequential cell measure-
ments prior to selecting cells incurs costs in proportion to
the number of candidate cells, thus reducing cell connection
time and degrading efficiency upon mobility. On one hand,
a small set of candidate cells may lead to the exclusion of
better cells. On the other hand, the absence of per-cell mea-
surements results in inaccurate channel estimation. Second,
the cell-based aggregation also suffers under mobility. The
cell-by-cell addition leads to longer time for CA to complete.
If the user roams at high speed, CA might not finish adding
all qualified cells. Moreover, since the PCell must be added
before all SCells, improper PCell selection may yield a bad set
of SCells. The fundamental problem is that, CA should take a
panoramic view and select cells on a group basis; otherwise,
it may miss better cell combinations.
In this work, we propose CA++, which takes a new per-

spective on CA and overcomes both limitations. CA++ re-
defines cell-based operations in the legacy CA. It examines
and aggregates a group of cells as a whole, rather than on
an individual cell basis. It further parallelizes operations by
using few cell measurements to concurrently infer all cells.
CA++ works well under both low/moderate mobility (say,
walking/driving) and high mobility (e.g., high-speed train).
It remains effective over a widespan of radio spectrum.
The key innovations of CA++ are two new algorithms
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that enable concurrent channel quality estimations and min-
imize the number of cells to measure (§5). These two algo-
rithms operate at two levels. The low-level algorithm uses
a single-cell measurement from a given cell tower to infer
channels for all other co-located cells. Specifically, it models
the channel in the delay-Doppler (DD) domain, which makes
cross-channel inference accurate under mobility. This model
leverages Doppler shifts (more precisely, fractional Doppler
shifts), which are not explicitly tailored to time. The high-
level algorithm decides what cells to measure, if they are
located at different cell towers. We formulate the minimiza-
tion of cell measurements as the set cover problem, and solve
it via greedy approximations. With both algorithms in place,
we further adapt the cell-based procedure to group-based
operations within thegeneral 3GPP framework.
We implement CA++ on an SDR-based 5G testbed, and

evaluate it with real-world experiments and trace-driven
emulations. We assess the concurrent channel inference al-
gorithm over a widespan of radio spectrum in two ranges:
2.45GHz - 5.55GHz for sub-6G channels and 58GHz - 62GHz
for mmWave bands. The empirical validation shows that,
CA++ achieves an SNR inference error of 0.37 dB – 1.03 dB
at low mobility (∼10 km/h) and 0.39 dB – 0.79 dB at high
mobility (>200 km/h). CA++ outperforms all state-of-the-
art schemes and reduces the error by more than 63%. To
gauge the effectiveness of CA++ under real-world cell de-
ployment, we run trace-driven emulations with five datasets
collected from three US operators plus on high-speed trains
in China [37]. With concurrent channel inference, CA++ re-
duces measurement time and prolongs the connection time
with new CA cells, by the median value of 190 ms–765 ms
for different operators. The median throughput grows from
35.4 Mbps–49.0 Mbps to 72.7 Mbps–84.3 Mbps, while follow-
ing the original policies. CA++ outperforms the legacy CA
under a variety of policies, despite the policy impacts.
Release. Datasets and codes are available at [1].

2 Background on 5G CA

CA in 5G. CA has been introduced to better utilize the
increased spectrum since 4G LTE-Advanced [8]. As shown
in Figure 1, CA aggregates multiple cells and their frequency
channels to serve a mobile device. In a cellular network, a
cell is the basic unit to offer radio access, each running over
one frequency channel (also called a component carrier). It
physically resides in a cell tower, which deploys many cells
running over different frequency channels [4]. Given dense
cell deployment in 5G [14, 25], a location is typically covered
by many (several tens of) cells and several cell towers.
CA works with a set of serving cells, rather than an in-

dividual cell. Specifically, the cell set in CA consists of a
primary cell (PCell) and several secondary cells (SCells). The
PCell is responsible for radio resource control signaling upon
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Figure 1: Carrier aggregation under mobility.

mobility, while the SCells (and the PCell) are all used for data
packet delivery. Note that all SCells and the PCell are colo-
cated in the same cell tower in current 5G releases [9]1.
CA under mobility. Figure 1 illustrates the procedure
to switch to a new cell set for CA. To find the cell set, the
network selects each cell separately using the standardized
procedure of cell selection handover [7] (described next). It
selects the PCell first, and then adds a new SCell in each
round until the entire set of SCells is done.
Each cell selection procedure has four steps: 1 config-

ure, 2 measure, 3 report, and 4 decide. The network first
configures the device on how to measure cells and when to
report the obtained measurements. The device then switches
to configured cells’ operating frequencies and conducts mea-
surements. If the candidates are on multiple frequency chan-
nels, the device probes each one by one. When any reporting
criterion ([3, 7]) (e.g., radio quality greater than a threshold)
is met, the device reports the measurements. Once a deci-
sion is made, the network instructs the device to switch to
the selected cell. The device is served by the new cell there-
after. In this paper, we consider usage scenarios under both
low/moderate mobility (say, walking/driving speed) and high
mobility (e.g., high-speed train).
Features of CA. From the CA operation and its associated
cell selection procedure, we observe several features: (1) CA
redefines the single-cell-based selection to become cell-set-
based. (2) To add each new cell, the measurement and report
on the new cell must be done prior to cell switching. The
number of measurements/reports increases in proportion
to the number of selected cells. (3) CA is characterized by
sequential operations. It adds a new cell (PCell or SCell) one
by one. (4) PCell is prioritized over SCells in that all SCells
will be dropped once the PCell is not used.

3 Design Issues for CA

We describe two identified issues with the current (legacy)
CA operations and illustrate them via a real-world example.
Issue 1: Sequential cell measurement. The first issue
is that, current CA takes sequential operations on measuring
1This requirement is relaxed in future 5G releases (say, with Advanced RAN
Coordination [17]) and briefly discussed in §10.
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the candidate cells, as well as reporting their measurements.
This causes problems considering both expanded spectrum
space and high mobility. Note that, the sequential measure-
ment is well justified, since the device cannotmeasure several
cells/channels simultaneously.
As more cells are available in 5G and beyond, measuring

all cells over the wider frequency spectrum takes more time.
Note that, the entire measurement duration increases in pro-
portion to the number of candidates 𝑛𝑐 , i.e., 𝑇𝑚𝑒𝑎𝑠 ∝ 𝑂 (𝑛𝑐 ).
Moreover, stable radio quality measurements are typically
obtained by assessing reference signals per frequency; they
take tens to hundreds of milliseconds. Our experiments show
that, the median measurement time per frequency channel is
294 ms with AT&T. Sequential measurement thus becomes
unacceptable, given tens of candidate cells to measure in re-
cent 5G deployment [19, 25]. Consequently, the current CA
only evaluates a small set of candidate cells under mobility.

Sequential measurements also impede prompt and correct
selection of CA cells under high mobility. Note that measure-
ments of the candidate cells cannot complete simultaneously.
Results from those early-measured cells may become obso-
lete as later measurements are yet to come. Consequently,
the network may not select the proper cells at runtime.

The impact of mobility on higher-frequency channels (say,
those mmWave ones) is more severe. Radio channels remain
statistically coherent within channel coherence time [34]:
𝑇𝑐 ∝ 1

𝑓𝑚
= 𝑐

𝑣 ·𝑓 , where 𝑓𝑚 is the maximum Doppler shift,
decided by the speed of light 𝑐 , velocity 𝑣 , and frequency 𝑓 .
From 2.4 GHz to 39 GHz, higher-frequency channels vary
16× faster at the same velocity, thus making measurement
less reliable. Faster measurements are needed to not miss
good cells on higher frequency channels.
Issue 2: Sequential, cell-by-cell aggregation. The sec-
ond issue is cell-by-cell aggregation, which suffers from two
downsides under mobility. First, cell-by-cell addition leads
to longer time for CA to complete. If the user roams at high
speed, CA may only select a subset of candidates and might
not complete adding all qualified cells. Second, given the
order of adding the PCell first and adding SCells later, im-
proper PCell selection may lead to a bad set of SCells. The
fundamental problem is that, CA cannot select cells on a
group basis by considering the PCell and SCells together.
An Illustrative Example. We use a real-world instance
with AT&T 5G networks to illustrate the above issues.

In Trace 1, the phone is looking for its new cell set. To
start, it is configured to search PCell candidates on four 4G
channels. Each channel is denoted by F with a unique chan-
nel number specified by 3GPP [8, 10]. The phone performs
sequential measurements for about 1.3 seconds until finding
the first good cell on channel F9820 (centered on 2355 MHz).
Note that the “good” cell is determined by the policy below,

20:19:31.945 Configure measurement on frequency
channel F5110, F850, F9820, F66486.

20:19:32.054 Measure cell #478 on F5110, RSRQ=-15dB
20:19:32.405 Measure cell #462 on F66486, RSRQ=-16dB.
20:19:33.045 Measure cell #61 on F9820, RSRQ=-9dB.
20:19:33.365 Measure cell #244 on F66936, RSRQ=-8dB.
20:19:33.685 Report cell #61 on F9820.
20:19:33.738 Select cell #61 on F9820 as PCell.
20:19:33.738-20:19:37.222 Search 4G SCell(s) on

frequency channel F850,F5110,F66486,F66661,F66936;
Finally add SCell #370 on F66661.

20:19:33.886-20:19:37.222 Search 5G SCell(s) on
mmWave channels F2253331,F2251665,F2254997, and
sub-6G channel F174270; Finally add SCell #561 on
F174270 (5G sub-6G).

Trace 1: An illustrative example observed in AT&T.
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Table 1: Legacy CA selection v.s. best candidate.

which specifies the criterion to trigger a measurement report
via event A3 [3, 7] (more policies in Table 5):{
𝑅𝑆𝑅𝑄𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 > 𝑅𝑆𝑅𝑄𝑠𝑒𝑟𝑣𝑖𝑛𝑔 + 3𝑑𝐵, for intra-freq cells
𝑅𝑆𝑅𝑄𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 > 𝑅𝑆𝑅𝑄𝑠𝑒𝑟𝑣𝑖𝑛𝑔 + 5𝑑𝐵, for inter-freq cells

An intra-freq (inter-freq) candidate cell runs over the same
(different) channel of the serving one (here, F5110). The first
two measurements over F5110 and F66486 do not meet the re-
porting policy (𝑅𝑆𝑅𝑄𝑠𝑒𝑟𝑣𝑖𝑛𝑔 = -18dB, Table 1). Upon receiving
themeasurement report of cell #61 over F9820 (𝑅𝑆𝑅𝑄𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒

= -9dB), the network selects it as the new PCell. Afterwards,
it takes 3.5 seconds to measure channels on 4G, 5G sub-6G
and 5GmmWave bands; Finally, another 4G cell and a 5G sub-
6G cell are added as SCells. This cell set achieves data speed
of about 15.7 – 54.3Mbps. However, our analysis shows that
there exists a better PCell option on channel F850 (1955MHz).
Along with other SCells including 5G mmWave cells, this
new cell set achieves data speed of 148.0 – 216.7 Mbps (using
cell #306 over F850 as the new PCell, Table 1). Due to sequen-
tial measurements (Issue 1), this cell is missed, as the network
immediately selects the first good cell to avoid connection
loss. Moreover, SCells are added by the new PCell, which
does not equally consider all available cells, but a subset of
cells (Issue 2). As a result, the network does not assess all
available cells and makes a worse choice.
We notice that, CA performance is also affected by the

operator policies, specifying which cells are preferred, how
many are to be aggregated at most, and what are the minimal
RSRP/RSRQ thresholds to be considered for CA, to name a
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few. Next, we use the same example to illustrate policy
impacts on CA and show that addressing the identified two
issues can boost CA performance with various policies.
Table 1 summarizes the results with these two policy

changes. For simplicity, we list statistical throughput per
PCell over extensive speedtest experiments at the same loca-
tion (methodology in §8.1). We tune the policy parameters
to impact whether a candidate PCell is reported (here, A3
thresholds). Legacy CA follows the same order to perform
sequential measurements while the best CA makes the deci-
sion by getting the measurements of all qualified cells, which
are determined by the reporting policies.
First, we reduce A3 thresholds (here, by 2dB) and thus

include more candidates. In this case, legacy CA would pick
another cell over F5110 as the PCell and reach a slightly better
cell set (46.6–65.6Mbps). However, it still misses the best
cellset which uses cell #306 over F850 as the PCell because
of sequential measurements and aggregation (Issue 1 and
Issue 2). Second, we increase A3 thresholds (by 2dB), which
shrinks the candidate pool. In this case, the legacy CA retains
the same selection. However, the best CA choice changes
under this policy because cell #306 over F850 is not qualified
for reporting; It chooses another cellset using a PCell over
F66936. The performance headroom is reduced due to this
policy change. From the above example, we can see that
tuning policies may improve or reduce CA performance at
certain locations. Indeed, policy tuning may offer another
dimension for design. However, it cannot fully address the
performance issues caused by sequential CA operations.

In this work, we focus on the technical solution to sequen-
tial CA operations, under the current policy constraints. We
seek to devise new algorithms that will work with existing
policies. We consider the impacts of polices in our evaluation,
using the original policies, as well as policy variations (§8.4).

4 Overview of CA++

Goals and challenges. CA++ seeks to achieve two goals
by addressing three technical challenges.

The first goal is concurrent channel estimation for all cells
in the super set upon mobility. Ideally, the super set includes
every candidate cell the CA seeks to evaluate and select from.
Note that, these cells can be deployed on multiple cell towers
in the spatial proximity of the mobile device.

To achieve the above goal, we address two issues:
• Given multiple, colocated cells on a single cell tower,

how to measure or infer channel quality of all the cells quickly?

• Given the super set of cells on multiple towers, how to

minimize the measurements cost to cover all the cells?

The second goal is concurrent cell aggregation. We seek to
consider all to-be-aggregated cells together, thus departing
from the current paradigm of cell-by-cell exploration and
addition. To this end, we must address the third issue:

Cells to measure/infer
                 …

Feedback 
(§6.2)

Concurrent 
channel 

inference (§5)

Decision 
(§6.3)

Measurement 
(§6.1)

Fu
lfil
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Group-based CA Management (§6)
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Once-for-all measurement (§5.1-5.3)

Figure 2: Overview of our solution CA++.

• How to enable group-based, rather than cell-by-cell, ag-

gregation within the 3GPP framework?
Solution. CA++ uses three components (shown in Fig-
ure 2), which work in concert to address all three issues:
• New algorithm for concurrent channel inference via

once-for-all measurement. Our algorithm accurately
models the shared multipaths between the device and cell
tower, and infers colocated cells from a single measurement.
It works well under mobility and with wide spectrum span.
• New algorithm for minimal cell measurement via

set cover problem abstraction. CA++ embraces cells on
different towers, and minimizes the incurred measurement
cost. It abstracts this issue into a classic set cover problem
and provides efficient approximations.
•Group-basedmanagement on aggregated cells. Given
the two algorithms, CA++ further adapts to the current CA
procedure and enables group-based cell aggregation within
the 3GPP CA framework. It covers the entire process of mea-
surement, feedback/report, and decision making.
Figure 2 illustrates how different modules work together

in CA++. Concurrent channel inference runs two algorithms,
which infer co-located cells per tower from onemeasurement
and cover all towers. Both algorithms work with the group-
basedmeasurementmodulewithin the 3GPP framework. The
obtained inference results are sent via group-based feedback,
which subsequently triggers group-based decision for CA.

The three components are next elaborated in §5 and §6.

5 Algorithms for Concurrent Channel

Inference: Measure Few, Yet Infer All

We design two new algorithms for concurrent channel in-
ference with minimal cell-level measurements. The first
algorithm exploits the channel representation in the DD do-
main to infer all cells colocated on the same tower using a
single cell measurement (§5.1–§5.3). The second algorithm
describes our set cover abstraction on cell measurements to
different towers (§5.4). Its approximation scheme tends to
minimize cell-level measurements upon mobility.

5.1 Limitations of Time-frequency Domain

Channels model in the time-frequency (TF) domain involves
Doppler shift tailored to time and it is hard to accurately infer
the channel quality under mobility. The wireless channel in
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the TF domain is represented asℎ(𝑡, 𝑓 ) = ∑𝑃
𝑖=1 𝑎𝑖𝑒

𝑗2𝜋 (𝑡𝜐𝑖−𝑓 𝜏𝑖 ) ,
where 𝑃 is the total number of propagation paths, and the 𝑖-
th path has path attenuation 𝑎𝑖 , delay 𝜏𝑖 , and Doppler shift 𝜐𝑖
upon mobility. It is clear from the above expression that the
channel at time 𝑡 is coupled with Doppler shift𝜐 on each path.
We cannot separate those paths and extract each Doppler
shift. Consequently, the time-frequency channel cannot be
accurately estimated under mobility.

Prior efforts simplifyℎ(𝑡, 𝑓 ) as ℎ̂(𝑡, 𝑓 ) = ∑𝑃
𝑖=1 𝑎𝑖𝑒

− 𝑗2𝜋 𝑑𝑖
_
+𝑗Φ𝑖 ,

where 𝑑𝑖 is the distance, _ is the wavelength, and Φ𝑖 is the
phase shift. Both OptML [13] and R2F2 [35] assume a static
setting on channel estimation; the phase shift is assumed
to be invariant across different frequency channels. This as-
sumption does not hold under high mobility, where Φ𝑖 would
vary along with the cell’s frequency.

5.2 Inference in Delay-Doppler Domain

We switch to the DD domain because the channel represen-
tation explicitly models the Doppler shifts under mobility.
Moreover, the multi-path parameters can be readily mapped
from one frequency to another. The DD channel directly
models those multiple propagation paths [32]:

ℎ(𝜐, 𝜏) =
𝑃∑︁
𝑖=1

𝑎𝑖𝛿 (𝜐 − 𝜐𝑖 )𝛿 (𝜏 − 𝜏𝑖 ), (1)

where 𝑃 is the total number of propagation paths. The 𝑖-th
path is characterized by its path attenuation 𝑎𝑖 , delay 𝜏𝑖 and
Doppler shift 𝜐𝑖 . 𝛿 (·) is the Dirac delta function.

In theDDdomain,themulti-path parameters {(𝑎𝑖 , 𝜐𝑖 , 𝜏𝑖 )}𝑃𝑖=1
are not coupled with time. They can be converted across dif-
ferent frequencies. Path attenuation and delay are invariant
of frequency; The Doppler shift is derived from the frequency
and an invariant coefficient, i.e., 𝑣

𝑐
𝑓 , where 𝑣, 𝑐, 𝑓 are the mov-

ing speed, the speed of light and frequency, respectively.
Infer channels in the delay-Doppler domain. Here is
the conceptual procedure: We measure the channel response
ℎ𝐴 from a cell on frequency 𝑓𝐴, retrieve the multipath profile,
and map it to the profile of another cell on frequency 𝑓𝐵 .
In practice, discrete signal symbols are transmitted over

the wireless channel. Therefore, the channel response is a
matrix spread on a grid with Doppler span 𝑁Δ𝜐 and delay
span 𝑀Δ𝜏 . The DD grid is associated to another 𝑁 × 𝑀

grid in TF domain, with quantization steps: Δ𝜐 = 1
𝑁Δ𝑡 and

Δ𝜏 = 1
𝑀Δ𝑓 , where Δ𝑡 is the symbol duration and Δ𝑓 is the

sub-carrier spacing (Figure 3). Applying the channel response
matrix to original symbols 𝑥𝐷𝐷 [𝑘, 𝑙], 𝑘 = 0, · · · , 𝑁 − 1, 𝑙 =
0, · · · , 𝑀 − 1 generates 𝑦𝐷𝐷 [𝑘, 𝑙] at the receiver:

𝑦𝐷𝐷 [𝑘, 𝑙] =
1

𝑁𝑀

𝑁∑︁
𝑘 ′=0

𝑀∑︁
𝑙 ′=0

H[𝑘 ′, 𝑙 ′]𝑥𝐷𝐷 [𝑘 ′ − 𝑘, 𝑙 ′ − 𝑙] (2)

The channel response matrix can be derived from the multi-
path profile [21, 32]:
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Figure 3: Concurrent channel inference in delay-

Doppler domain (DD embedded into OFDM).

H[𝑘, 𝑙] = ℎ𝑤 (𝑘Δ𝜐, 𝑙Δ𝜏) =
𝑃∑︁
𝑖=1

𝑎𝑖𝑒
− 𝑗2𝜋𝜐𝑖𝜏𝑖G(𝑘Δ𝜐,𝜐𝑖 )F (𝑙Δ𝜏, 𝜏𝑖 )

G(𝜐,𝜐𝑖 ) ≜
𝑁−1∑︁
𝑘 ′=0

𝑒− 𝑗2𝜋 (𝜐−𝜐𝑖 )𝑘
′𝑇 , F (𝜏, 𝜏𝑖 ) ≜

𝑀−1∑︁
𝑙 ′=0

𝑒 𝑗2𝜋 (𝜏−𝜏𝑖 )𝑙
′Δ𝑓 .

From the measured channel response, we can retrieve the
multi-path parameters of the cell on 𝑓𝐴, say {(𝑎𝐴𝑖 , 𝜐𝐴𝑖 , 𝜏𝐴𝑖 )}𝑃𝑖=1 .
For the channel for cell on 𝑓𝐵 , we can derive its multi-path
parameters, with 𝜐𝐵𝑖 = 𝜐𝐵𝑖

𝑓𝐵
𝑓𝐴

and 𝑎𝐴𝑖 , 𝜏
𝐴
𝑖 being invariant.

A new challenge: wider radio spectrum. The recent al-
gorithm REM [26] also exploits the DD domain. However, its
accuracy declines when being applied over a wider spectrum
(say, 5G and beyond). This is stemmed from its assumption
that each path’s delay and Doppler are exactly integer multi-
ples of the quantization steps on the DD grid. Equivalently,
each path is located on the discrete DD grid with integer
coordinates ^𝑖 =

𝜐𝑖
Δ𝜐 , 𝑙𝑖 =

𝜏𝑖
Δ𝜏 (Figure 3). It is the key to its

path decoupling via singular value decomposition (SVD).
However, the above assumption for REM does not hold

over the mmWave bands. Instead, we must consider frac-
tional Doppler for more accurate inference. The Doppler
quantization step (Δ𝜐 = 1

𝑁Δ𝑡 ) runs large, thus being coarse-
grained at high frequencies. Note that the quantization step
of Doppler Δ𝜐 = 1

𝑁Δ𝑡 depends on the grid duration 𝑁Δ𝑡 . In
a typical 5G setting with 𝑓𝑐 = 38 GHz, 𝑁Δ𝑡 = 5 ms2, the
resolution with integer Doppler Δ𝜐 = 200 Hz is pretty low,
equivalent to 5.7 km/h in terms of moving speed difference.

5.3 Path Decoupling over Wide Spectrum

We next show how to accurately retrieve the multipath pro-
file over a wide spectrum. To make it work precisely with
mmWave channels, the key is path decoupling under frac-
tional Doppler shifts. CA++ uses the delay factor to decouple
those paths in the delay-Doppler domain.
Decouple multiple paths by delay. We decouple multi-
ple propagation paths based on a critical observation: Paths
are separated along the delay index.

Specifically, each path has a distinct, integer delay coordi-
nate (i.e. 𝑙𝑖 = 𝜏𝑖

Δ𝜏 ). This holds true in reality for two reasons.
2Based on the duration of reference signal in 5G (i.e. SSB burst set) [11].
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(a) The paths in a single cell are sparse compared to the
range for delays. Given limited reflectors, the number of
propagation paths is much smaller than the range of delay
coordinates (typically over 200), i.e. 𝑃 ≪ 𝑀 . (b) The delay
quantization step is fine-grained (Δ𝜏). A mmWave cell with
100 MHz channel-width has a delay step of 10 ns. It cor-
responds to 3 m of difference in path length. Such a fine
resolution makes path decoupling feasible in most scenar-
ios. Measurement studies [30, 36] have shown that outdoor
paths are separated by over 100ns under high mobility. With
indoor setting, propagation paths which get closer can be
merged and characterized by one set of parameters. Our in-
door experiments (§8.2) confirmed that the algorithm works
well and outperforms the prior work.

Given the insight, we next derive the mathematical form
for decoupling. Denote the channel response matrix with𝑀

vectors, i.e., H = [®h1, ®h2, . . . , ®h𝑀 ]. The 𝑖-th path with delay
coordinate 𝑙𝑖 is only associated with its vector ®h𝑙𝑖 . We thus
decouple the multiple paths by taking the corresponding
vectors. Theorem 5.1 describes this one-to-one mapping (see
proof sketch in §A in [29]).
Theorem 5.1 (Path decoupling). Given any two paths

with distinct delays (i.e., 𝑙𝑖 ≠ 𝑙 𝑗 ,∀𝑖 ≠ 𝑗 ). For any vector
®h𝑙 , the

following holds true: (i) If there exists a path 𝑖 such that 𝑙 = 𝑙𝑖 ,

the 𝑘-th (0 ≤ 𝑘 ≤ 𝑁 − 1) element of the vector is given by:

®h𝑙,𝑘 = 𝑀𝑎𝑖𝑒
− 𝑗2𝜋𝜐𝑖𝜏𝑖G(𝑘Δ𝜐,𝜐𝑖 ); (ii) Otherwise, we have ®h𝑙 = 0.

Extract parameters for each path. With separated paths,
we extract each path’s parameters from the corresponding
vector in the channel response matrix. From Theorem 5.1,
the 𝑖-th propagation path with delay coordinate 𝑙𝑖 is associ-
ated with ®h𝑙𝑖 . Therefore, we have 𝑁 relations between each
element in the vector and the path parameters {𝑎𝑖 , ^𝑖 , 𝑙𝑖 }:

®h𝑙𝑖 ,𝑘 = 𝑀𝑎𝑖𝑒
− 𝑗2𝜋𝜐𝑖𝜏𝑖 𝑘 − 𝑒

− 𝑗2𝜋 (𝑘−^𝑖 )

𝑘 − 𝑒− 𝑗 2𝜋𝑁 (𝑘−^𝑖 )
, 𝑘 = 0, . . . , 𝑁 − 1. (3)

We solve these equations to retrieve the 𝑖-th path’s param-
eters from vector ®h𝑙𝑖 . Note that we already know the index of
path delay (say 𝑙𝑖 ) through path decoupling. For the Doppler
shift, we divide ®h𝑙𝑖 ,0 by ®h𝑙𝑖 ,𝑁2 and obtain:

^𝑖 =
𝑁

𝜋

©«𝑥𝜋 ± arg cot
������ ®h𝑙𝑖 ,0®h𝑙𝑖 ,𝑁2

������ª®¬ , (4)

where 𝑥 is an integer. Given the range 0 < ^𝑖 < 𝑁 , (4) has two
possible values in that range. We further locate the correct

one by checking it satisfies
���sin 𝜋

𝑁
cot 𝜋^∗𝑖

𝑁
− cos 𝜋

𝑁

��� = ���� ®h𝑙𝑖 ,0®h𝑙𝑖 ,1
����.

Finally, we derive path attenuation 𝑎𝑖 = 1
𝑀2𝑁 2

√︃∑𝑁−1
𝑘=0 |®h𝑙𝑖 ,𝑘 |2.

The above algorithmic operations apply to both static and
mobile scenarios. In static cases, the Doppler shift^𝑖 becomes
zero. We derive ^𝑖 = 0 by checking ®h𝑙𝑖 ,𝑘 = 0, for 𝑘 ≠ 0.

Algorithm 1. Here is the full algorithm for channel infer-
ence. Initially, we obtain the channel response matrix H𝐴 of
cell C𝐴 on frequency 𝑓𝐴 through measurement. Our goal is
to infer the channel matrix H𝐵 of its co-located cell C𝐵 on
frequency 𝑓𝐵 and estimate its radio quality. Based on Theo-
rem 5.1 (path decoupling), each vector with non-zero values
in the original channel matrix reveals one propagation path
(Line 2). We separate paths by taking the non-zero vectors
and deriving the parameters (Lines 3-7). Next, we project the
shared parameters onto C𝐵 on frequency 𝑓𝐵 . Path attenua-
tion and delay (𝑎𝑖 , 𝜏𝑖 ) remain invariant with frequency. The
Doppler shift 𝜐𝑖,𝐵 is in proportion to the frequency; it is equal
to 𝜐𝑖,𝐴

𝑓𝐵
𝑓𝐴

(Line 6). With parameters for all paths extracted
and mapped to frequency 𝑓𝐵 , we reconstruct the channel
matrix H𝐵 (Line 8). Finally, we infer the radio quality (here,
SNR, RSRP and RSRQ) for C𝐵 (Line 9).

Algorithm 1 OneTower: Once-for-all measurement
Input: Cell C𝐴’s channel matrix H𝐴, frequency 𝑓𝐴, delay-

Doppler grid 𝑁𝐴, 𝑀𝐴,Δ𝜐𝐴,Δ𝜏𝐴; Co-located Cell C𝐵 ’s fre-
quency 𝑓𝐵 , grid setting 𝑁𝐵, 𝑀𝐵,Δ𝜐𝐵,Δ𝜏𝐵

Output: C𝐵 ’s radio quality
1: 𝑖 = 1, P = ∅;
2: for each column vector with non-zero values in H𝐴 do

3: 𝑙𝑖 ← the index of the vector; 𝜏𝑖 ← 𝑙𝑖Δ𝜏𝐴;
4: Derive ^𝑖 based on (4); 𝜐𝑖,𝐴 ← ^𝑖Δ𝜐𝐴;
5: Derive 𝑎𝑖 from ®h𝑙𝑖 ,𝑘 ;
6: 𝜐𝑖,𝐵 ← 𝜐𝑖,𝐴

𝑓𝐵
𝑓𝐴
;

7: P← P ∪ {(𝑎𝑖 , 𝜐𝑖,𝐵, 𝜏𝑖 )}, 𝑖 ← 𝑖 + 1;
8: Compute HB based on (3) and path parameters in P, and

the grid setting 𝑁𝐵, 𝑀𝐵,Δ𝜐𝐵,Δ𝜏𝐵 ;
9: Compute SNR/RSRP/RSRQ of C𝐵 ;

Complexity. The algorithm has polynomial computation
complexity of 𝑂 (𝑁𝑀𝑃). The overhead stems from channel
matrix reconstruction for the cell to infer, which dominates
the cost of retrieving shared multipaths (𝑂 (𝑃)). Our algo-
rithm is faster than those solutions in the time-frequency
domain [35], which are based on non-convex optimizations.
It also outperforms the recent DD-domain algorithm [26] by
reducing the processing cost by a factor of max(𝑁,𝑀 )

𝑃
.

Note that the frequency gap between sub-6GHz andmmWave
channels may result in unpredictable discrepancy in phys-
ical propagation conditions. Therefore, channel inference
is operated separately on two frequency ranges (here, 2.5
– 6GHz for sub-6G, and 58 –62 GHz for mmWave). This is
consistent with the real-world deployment, where cells in
different frequency ranges reside on different towers.

5.4 Inference for All Cell Towers

Algorithm 1 (§5.3) accelerates channel inference among cells
on the same tower. Given that multiple towers are deployed
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in the neighborhood of the mobile device, we thus need to
decide on what to measure and what to infer.

We seek to minimize the number of frequency channels to
measure, thus speeding up CA++. Note that when the device
measures a frequency channel, it acquires measurements
for all cells on the same frequency channel. We illustrate
the design issue with another real-world instance. At one
location, we have observed two 5G cell towers, CT-A and CT-
B. CT-A carries 4 cells on the mmWave frequency channels,
denoted as F1 - F4. CT-B has 8 mmWave cells: 4 of them on
the same 4 frequencies as CT-A; the other 4 are denoted as
F5 - F8. By measuring only one frequency channel shared by
both towers, say F1, the device can measure the cells over F1
on both towers and infer all other cells using Algorithm 1.
Set Cover Abstraction. We abstract the above issue as
an equivalent set cover problem, where we aim to minimize
the frequency channels to physically measure. The measured
and inferred frequencies shall cover all cells on every tower
in the neighborhood of the mobile device. The formulation
can be formally described as:
Proposition 5.1. To find the minimum number of fre-

quency channels to measure is equivalent to the following

set cover problem. A universal set S = {𝐶𝑇1,𝐶𝑇2, . . . ,𝐶𝑇𝑄 }
represents 𝑄 neighbor cell towers. Cell tower 𝑖 carries 𝑘𝑖 fre-

quency channels. There are 𝑐 unique frequency channels; each

frequency 𝑓𝑗 can be represented by a non-empty subset S𝑗 ⊂ S
including towers that carry the frequency. We have max

1≤𝑖≤𝑄
𝑘𝑖 ≤

𝑐 ≤ ∑𝑄

𝑖=1 𝑘𝑖 . Moreover, 𝐶𝑇𝑖 occurs 𝑘𝑖 times among all subsets.

Hence, minimizing the number of frequencies to measure is

equivalent to a set cover problem, i.e., to find the minimal index

sets I ⊂ {1, 2, . . . , 𝑐} s.t. ⋃𝑖∈𝐼 S𝑖 = S.
Algorithm 2. We approximate the optimal solution to the
NP-hard set cover problem and develop Algorithm 2 over
greedy optimizations. The algorithm incurs low overhead,
with time complexity of 𝑂 (𝑘𝑄2). For its effectiveness, Theo-
rem 5.2 offers the upper bound on the number of measured
frequency channels (the full proof in the Appendix of [29]).
Algorithm 2 AllTowers: Minimizing cost of measure
Input: A universal set S = {𝐶𝑇1,𝐶𝑇2, . . . ,𝐶𝑇𝑄 }, subsets
{S1, S2, . . . , S𝑐 }

Output: Index set I representing selected subsets
1: I← ∅,X← S
2: while X ≠ ∅ do
3: Let 𝑖 be the index maximizing | X ∩ S𝑖 |
4: I← I ∪ {𝑖},X← X \ S𝑖
Theorem 5.2. Assume 𝑄 cell towers, cell tower 𝐶𝑇𝑖 carries

𝑘𝑖 channels, and 𝑐 distinct frequencies (max𝑖 𝑘𝑖 ≤ 𝑐 ≤ ∑
𝑖 𝑘𝑖 )

in total. The number of channels AllTowers measures ≤

min

{⌊
𝑙𝑜𝑔

(
𝑄 −max1≤ 𝑗≤𝑐 |S𝑗 |

)
𝑙𝑜𝑔 𝑐

𝑐−𝑘𝑚

⌋
+ 2, 𝑄

}
, where𝑘𝑚 = min

1≤𝑖≤𝑄
𝑘𝑖 .
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Figure 4: Frequencies to measure (Legend for 𝑄,𝑘).

Figure 4 compares the upper bound of measured frequen-
cies by AllTowers with the legacy per-frequency cell mea-
surement. We use three parameters to characterize the de-
ployment of cell towers and frequencies:𝑄,𝑘, 𝑐 as the number
of cell towers, the average number of frequency channels car-
ried by a tower, and the total number of frequency channels
nearby. The legacy scheme measures 𝑐 frequency channels to
obtain the global view, invariant with𝑄,𝑘 . We consider prac-
tical settings of 𝑄 = 3, 6 and 𝑘 = 4, 6, 8 based on empirical
data. AllTowers reduces the measurement time by a factor
of 2.3× - 11.5×. The efficiency depends on whether the tow-
ers have more similarities (small 𝑐) or more heterogeneities
(large 𝑐) in deployed frequency channels. For example, mea-
suring a frequency channel shared by all towers (highest
similarity) would cover all cells. In an extreme case of high-
est heterogeneity, towers do not share frequency channels.
The device has to measure one frequency per tower. The
measurement is still accelerated by a factor 𝑘 , as 𝑐

𝑄
= 𝑘 .

6 Group-Based CA Management

We next present our group-based operations within the 3GPP
CA framework. To make full use of our algorithms in §5,
we further adapt the cell-based procedures of measurement,
feedback and decision making to group-based operations.

6.1 Group-Based Measurement

We first enable group-based measurements within 5G PHY.
As shown in Algorithm 1, a single cell measurement is used
to infer the entire group of cells residing on the same tower.
We next address two issues: (1) How to multiplex reference
signals in the standardized OFDM PHY? (2) How to cope
with heterogeneity among co-located cells inside a group?
Embedding OTFS signals over OFDM. To perform mea-
surement in DD domain, we need to use OTFS, a DD modu-
lation scheme [20], for reference signals. We achieve this by
embedding OTFS signals over the current OFDM-based PHY.
5G NR uses two types of reference signals for cell measure-
ments: SSB blocks and CSI-RS blocks [11]. Signals from dif-
ferent cells are allocated on orthogonal OFDM grids (i.e., dif-
ferent time slots or subcarriers). CA++ places OTFS symbols
at the same locations as SSB burst and dynamic CSI-RS grids.
In Figure 3, a 4x2 grid for Cell 1 is scheduled for SSB. CA++
transforms OTFS signals into that 4x2 OFDM grid. We thus
obtain OTFS measurements via the OTFS overlay on top of
existing OFDM grids. The transformation between OTFS and
OFDM is realized with ISFFT/SFFT. We further transform
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Type Group-based event

Select group (G-P) Neighbor eligible as PCell, 𝑄𝑛 > \𝐺1
(G-S) Neighbor eligible as SCell, 𝑄𝑛 > \𝐺2

SCell update (U) SCell worse than threshold, 𝑄𝑠 < \𝑈

Table 2: Group-based criteria.

the measurements into standard-compliant SNR/RSRP/RSRQ
metrics on radio signal level and quality [11]. RSRP and RSRQ
are used for cell selection in the current practice [14].
Note that, the OTFS scheme is used for reference signals

only, whereas OFDM is still used for other data types (e.g.,
packet delivery). We thus reduce the prohibitive cost of com-
pletely revamping the OFDM based modulation at PHY.
Tackling heterogeneity inside a group. In our group-
based measurement, cells in the same group might use het-
erogeneous OFDM PHY configurations (i.e., numerology and
subgrid size). We cope with such heterogeneity by extracting
multi-path profiles in the delay-Doppler domain that are
agnostic to the PHY configurations.
The first diversity is numerologies (i.e., symbol duration

Δ𝑡 and sub-carrier Δ𝑓 3). Consequently, the transformation
to the DD domain also carries diverse numerology (Δ𝜏,Δ𝜐).
Figure 3 illustrates an example of inferring Cell-2 based on
Cell-1 while they use distinct numerologies. We first esti-
mate Cell-2’s multi-path parameters based on parameters
retrieved from Cell-1. We then map those parameters to the
coordinates on the OTFS grid with Cell-2’s numerology.

The second diversity is that, cells in the same group might
use different subgrid sizes due to different scheduling of refer-
ence signals. With fractional Doppler covered, our inference
algorithm (see Algorithm 1) can tolerate flexible choices of
grid size (i.e., 𝑁,𝑀). As shown in Figure 3, Cell-2 has a small
𝑁 and thus a large Doppler step; The propagation path can
still be represented with fractional Doppler coordinates.

6.2 Group-Based Feedback

We further devise a group-based feedback scheme within the
3GPP framework. The 5G specifications organize measure-
ment reports by cells’ frequencies; this is designated for the
legacy single-cell operation. Since CA involves cells operated
on different frequency channels, the current practice would
incur isolated reports; thus it avoids evaluation and addition
of PCell and SCells together. We propose group-based feed-
back to stay aligned with group-based cell aggregation and
reduce the signaling overhead.
Feedback to change PCell and SCell(s) together. We
devise group-based, hierarchical criteria of sending reports
(Table 2). Our criteria are structured with the minimum re-
quirement to become PCell and SCell, denoted as conditions
G-P(rimary) and G-S(econdary), respectively. A group of
cells on the same tower is reported if and only if one or more
35G currently supports 4 numerologies, with 15kHz, 30kHz, 60kHz, 120kHz
as subcarrier spacing Δ𝑓 (extended to 960kHz in recent releases [7]).

cells meet the PCell criterion; the report also includes all
cells which meet SCell criterion.
Feedback to update SCell(s) only. We further support
reports to update SCell(s) w/o changing the current PCell,
denoted as criterion U . It is triggered when any SCell be-
comes weaker than a threshold. The report also includes
candidates whose channel quality is above a threshold, from
the same tower as the current PCell. Unlike the legacy CA,
CA++ could generate such reports without physically mea-
suring any candidate; all colocated cells on the same tower
can be inferred with Algorithm 1.
6.3 Group-Based Decision

CA++ have also cleared roadblocks to make group-based
decisions. With accurate radio quality reports on the cells,
the network can assess each group as a whole and select
the PCell and SCells concurrently. Here CA++ adopts a
straightforward selection strategy to maximize the aggre-
gated channel-width. In reality, operators have the freedom
to use any selection logic they prefer. However, it is an inde-
pendent topic beyond the scope of this work. Instead, CA++
focuses on the algorithmic aspects for concurrent selection
of the PCell and SCells based on accurate channel infer-
ence under mobility and over wide spectrum (sub-6GHz and
mmWave bands). It works in parallel with any decision logic.

7 Implementation

We have implemented CA++ with USRP, acting at both sides
of a cell tower and a mobile device. The prototype is built
on an open-source 5G/4G testbed Flora [24]. It incurs minor
changes to the device and infrastructure after integration.
Network side. Our implementation at the network fol-
lows the standardized cell selection for CA. The key change
is to perform each operation on the entire cell set, rather
than a single cell. It involves changes in a few steps. First, we
implemented Algorithm 2 to decide which cells to measure
and which to infer among all cells. Second, we added the
group-based criteria to trigger reports. The new form is a set
of standardized criteria for single cells (e.g., A1-A6 in [7]).
Finally, we implemented group-based selection. The current
version used the basic scheme that prefers the largest aggre-
gated channel-width. For PHY transmission, we change only
reference signals (using OTFS) over Flora. Specifically, we
revise a subgrid of OFDM symbols over 12 subcarriers and
14 reference symbols for OTFS-based measurements.
Mobile device. We made two updates at the device. First,
we implemented Algorithm 1. In order to mitigate false-
positive paths caused by interferences and noises, we elimi-
nate the weak paths that yield attenuation 30 dB lower than
the strongest one. Second, we report measurements on the
cell-set basis in concert with the group-based operations.
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Figure 5: Experimental settings.

8 Evaluation

Using the methodology (§8.1), we assess each component, i.e.,
inference accuracy (§8.2), effectiveness of group-based man-
agement (§8.3), followed by its overall performance (§8.4).

8.1 Methodology

Our evaluation uses both testbed-based experiments and
trace-driven emulations. We gauge the accuracy and effi-
ciency of concurrent channel inference with the SDR testbed
under real-world channels. We further quantify the through-
put boost by CA++ and its efficiency using real-world traces.
Testbed and experiment settings. Figures 5a and 5b
show our testbed setup. The testbed supports both sub-6G
and mmWave bands. The cell tower uses USRP X300 for
sub-6G, and operates with the 60GHz HMC6350 TX fron-
tend [15] for mmWave. USRP N210 acts as the sub-6G client
device; USRP X300, together with HMC6350 RX frontend
and horn antennas, serves as the mmWave client. The US-
RPs run baseband processing and feed signals to sub-6G and
mmWave frontends. They are connected to the server run-
ning Ubuntu 18.04 (Intel i7-9700k CPU with 32G RAM) for
baseband signal generation. We use the testbed to conduct
indoor (at 14 locations in a 10.2 m × 11.2 m lab, Figure 5c)
and outdoor experiments (Figure 5d), in both static settings
and low-mobility (≤ 10km/h) scenarios.
Trace-driven emulation. Since CA++ is not deployed by
mobile carriers, we use large-scale datasets collected from
operational networks to perform trace-driven emulations. Ef-
fectively, we conduct a “what-if” study with two steps. First,
we run walking/driving tests with file downloading tasks on
phones. Cell deployment, throughput and signal strengths
are all recorded. Meanwhile, we extract logs on CA opera-
tions using MobileInsight [27]. Second, for each CA instance,
we assess all available cell combinations and remake the
choice on a group basis by exploiting historical data at the
given location. Since we could not measure RSRP/RSRQ and
throughput for any unselected cell set at runtime, we use the
median values measured in the historical runs. This approxi-
mates the cell conditions and performance in case the device
connects to them. Table 3 shows the five datasets used for
emulations: (1-4) A-C1, V-C1, T-C1 and A-C2: We run tests
with three major operators (A, V and T short for AT&T, Veri-
zon, and T-Mobile, respectively) in one US Midwest city (C1),
and with A in one large city (C2). A and V support 5G over
both sub-6G and mmWave bands in the test areas, whereas
T supports only sub-6G. Since we need sufficient data on cell

Dataset A-C1 V-C1 T-C1 A-C2 HST [37]
Date Apr 2021 - March 2022 Nov 2018
Region 1.65×1.85 km2 1.2×1.0 1,300-km
Speed (km/h) driving: 10-40 (mostly); walking: <5 300 - 350
RAT 5G + 4G (T supports 5G over sub-6G only) 4G
Max# CA CH 6 5 5 7 3
# CA groups 5,681 2,037 492 3,031 534
Max CA CW 430 MHz 140 MHz 135 MHz 445 MHz 50 MHz

Summary of 5G cells

# sub-6G cells 62 21 55 38 N/A# mmWave cells 372 100 0 39
# sub-6G CH 3 1 3 2 N/A# mmWave CH 16 4 0 9
sub-6G freq. 826–2116 885 626–2608 826–2116 N/AmmWave freq. 38.6–39.527.9–28.3 0 38.6–39.5
sub-6G CW 5 10 15–100 5 N/AmmWave CW 100 100 N/A 100

Summary of 4G cells

# cells 1,719 1,228 878 1,490 1,910
# Channel 20 40 12 18 8
Freq. (MHz) 709–5824701–5825701–2539 709–5824 1740–2155
CW (MHz) 5/15/10/20 MHz

Table 3: Datasets. CH: Channel. CW: Channel-Width.

Sub-6G freq. are in MHz. MmWave freq. are in GHz.

deployment and CA usage, we run extensive experiments
to scan the test regions (over 5,700 km and 400 hrs in total).
We keep downloading files (500MB each from Google Cloud)
to measure the downlink throughput. (5) 4G-HST: We use
a public dataset [37] collected on High-Speed-Train (HST)
commuting between Shanghai and Beijing, China. 5G was
not deployed on HST yet.

8.2 Concurrent Channel Inference

We use the SDR testbed to assess concurrent channel infer-
ence under a variety of experimental settings on frequency
bands, mobility, locations in both indoor scenarios (in a lab
space of Figure 5c with its floor plan in Figure ??) and out-
door scenarios (at the top level of a parking structure of
Figure 5d). We compare CA++ with prior schemes in the
delay-Doppler domain (REM [26]) and in the time-frequency
domain (OptML [13] and R2F2 [35]). Both OptML and R2F2
require to configure the number of paths for high accuracy.
We use their optimal configurations in our tests.
Inference accuracy under mobility. We first assess the
inference accuracy under both low and highmobility. We run
low mobility experiments using a mobile cart that carries the
client devices and moves at the speed of about 10 km/h. We
emulate high mobility in outdoor scenarios. We extract the
propagation model from the low-mobility traces and replay
these traces with themobility settings collected from the HST
dataset (i.e., 150 km/h – 300 km/h). The propagation paths are
extracted by fitting the channel responses with the optimal
Doppler shifts {(𝜐𝑖 )}𝑃𝑖=1. To replay the propagation paths
under high mobility, we scale the Doppler shifts according to
the moving speed 𝑣 , i.e., 𝜐𝑖 = 𝑣

𝑐
𝑓 . We use the scaled Doppler

shift to evaluate CA++ under high mobility. This scaling
follows the practice in 3GPP channel models (e.g., [5]).
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Figure 6: SNR inference errors under low mobility.
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Figure 7: SNR inference errors under high mobility.

We consider two frequency ranges: (1) sub-6GHz (i.e.,
measuring over 2.45 GHz to infer four unlicensed sub-6G
channels at 2.55 GHz/3.65 GHz/5.45 GHz/5.55 GHz) and (2)
mmWave (i.e., measuring over 58 GHz to infer 62 GHz). We
assess the inference accuracy in terms of SNR/RSRP/RSRQ
errors. The results are similar (see next); we only present
SNR results in Figures 6 and 7, due to space limit.
CA++ outperforms all the state-of-arts under low mobil-

ity. For inference within sub-6G, it yields a median error of
about 1 dB ([0.91 dB, 1.03 dB]) when measuring 2.45 GHz. In
contrast, REM incurs a median error of about 3 dB ([2.66 dB,
3.21 dB]), while OptML and R2F2 perform much worse with
the median errors > 6dB. CA++ outperforms over mmWave
as well. Its error even goes down to 0.37 dB, much lower
than 2.03 dB, 1.92 dB, and 4.60 dB by REM, OptML and
R2F2. All schemes perform better over mmWave, because the
measurement-inference frequency gap becomes relatively
smaller (4GHz over 58-62 GHz versus >1 GHz over 2.45-
5.55GHz except in the 2.55 GHz case). CA++ performs much
better, because its delay granularity increases with the center
frequency. We use the median error unless specified.
CA++ outperforms other approaches even more under

high mobility. Compared to low mobility, the error is smaller
over sub-6G (1dB→ 0.4 dB) and slightly larger overmmWave
(0.37 dB→ 0.64 dB). REM, OptML and R2F2 all performworse
over mmWave under high mobility. For sub-6G bands, the
inference errors grow to 3.94 dB–4.16 dB (REM), 6.3 dB–10.2
dB (OptML) and 8.53 dB–11.0 dB (R2F2). CA++ performs
better under fast mobility, because the Doppler shifts for di-
verse paths become more significant. All three prior schemes
cannot provide accurate estimation, as they fail to capture
or precisely model time-varying Doppler.
We note that, high accuracy gain tends to diminish over

mmWave (ultra-high frequencies). It confirms the fact that
radio signal over ultra-high frequencies fades much faster
than over low frequencies. Nevertheless, CA++ achieves high
inference accuracy (all below 1 dB). Since OptML and R2F2
perform much worse than CA++ and REM, we only show
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Figure 8: SNR/RSRP/RSRQ errors under low mobility.
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Figure 9: Impacts of measured frequencies.

the empirical comparisons with REM next.
SNR versus RSRP/RSRQ. Figure 8 plots the inference er-
rors under low mobility (outdoor). Results under high mobil-
ity are similar and omitted. In Figure 8a, we combine all sam-
ples when inferring each of four sub-6GHz channels using
the measurements over 2.45 GHz. RSRP measurements are
within [-140dBm, -45 dBm], and RSRQs are mostly in [-20 dB,
-4.5 dB]. The reported RSRP (RSRQ) values are quantized with
a resolution of 1 dBm (0.5dB) [6, 7].CA++ consistently outper-
forms REM, regardless of the radio quality metric. Compared
with REM, CA++ reduces the median error from 3 dB/dBm
to below 1 dB/dBm over sub-6G. Its RSRP/RSRQ errors even
go to zero (partly due to quantization) over mmWave.
Effectiveness over various frequencies. CA++ remains
effective regardless of measured frequencies. Figure 9 shows
the results when measuring 5.55 GHz (sub-6G) and 62 GHz
(mmWave) under lowmobility (outdoor). In fact, we run tests
with all five sub-6GHz channels, and omit the results using
three other sub-6GHz channels because they are consistent.
CA++ outperforms REM by about 2 dB, reducing the SNR
errors from 2.16 dB/2.89 dB to 0.5 dB/0.86 dB (min/max). This
also applies to mmWave (from 62 GHz to 58 GHz).
Robustness to various settings. CA++ is robust to var-
ious numerology settings. . We test with various subcar-
rier spacing Δ𝑓 : 15kHz - 30kHz, 15kHz - 60kHz, 15kHz -
120kHz, and 60kHz - 120kHz under high mobility (the plot
is omitted). CA++ contains the median error within 1dB for
cross-numerology channel inference.
We also gauge the inference accuracy under weaker sig-

nals and stronger noises, where SNR degrades from 30dB to
14dB, as we move the client away from the cell tower (from
3 m to about 6 m). In case of measuring 2.45 GHz to infer
other sub-6GHz channels, CA++ increases its inference error
by <0.5 dB, whereas REM increases by > 1dB (Figures are
omitted). This is because CA++ is more robust in inferring
path attenuation under noises. We also test CA++ in indoor
experiments under low-mobility (walking) or static settings
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Min Max Mean

R2F2 2,464 59,294 3,548
OptML 211 285 238
REM 2.0 131.1 51.7
CA++ 0.6 44.1 8.2

Table 4: Inference time (ms).
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Figure 10: Measurement acceleration by CA++.

(where the cells are placed at the blue icon and the clients are
placed at the rest locations marked in Figure 5c). CA++’s in-
ference accuracy is comparable in these indoor experiments
(the plots are omitted).
Efficiency. We compare the efficiency of all four schemes
by measuring the time needed for channel inference. CA++ is
much more efficient than all the other approaches, at least 3x
faster in all the experiments. Table 4 shows the time needed in
one setting (sub-6G inference, low mobility, outdoor). CA++
takes 8.2 ms on average, compared with 51.7 ms by REM,
238 ms by OptML, and 3548 ms by R2F2. CA++ and REM
outperform those OFDM-based algorithms by at least an
order of magnitude, as they do not rely on optimization
with many iterations. Compared with REM, CA++ reduces
its execution time by decoupling sparse propagation paths
and performing concurrent inference. It is even faster than
measuring one 5G frequency (>40/80 ms).

8.3 Group-based CA Management

We use two micro-benchmarks to assess its effectiveness.
Measurement acceleration. We first gauge how much
the group-based operation speeds up measurements. We
compare CA++ with the legacy mechanism, using the aver-
age time to detect a cell eligible as PCell/SCell. We define
cells’ eligibility based on whether the cell is ever used at
the location. For the legacy scheme, we use results from real
traces. For CA++, we estimate the time to measure all eligible
cells in the same location using Algorithm 2.

Figure 10 shows the measurement accelerations by CA++.
Under low/moderate mobility, CA++ decreases the median
measurement time from 307 ms to 18 ms for AT&T in C1.
CA++ achieves 399 ms→ 35 ms for AT&T in C2, 417 ms→
114 ms for Verizon, and 132 ms→ 42 ms for T-Mobile. The
acceleration is thus by 15.4× (4.7×), 7.0× (1.9×), 5.0× (2.0×),
and 3.0× (1.5×) at the median (p90) rate. On the high-speed
rail under 4G, legacy CA and CA++ spend 405 ms and 89 ms,
with a 4.4× speed-up in 50% cases.

Comparing different datasets, we note that CA++ further
accelerates measurements as more frequency channels are
deployed. It yields faster measurements for AT&T 5G than
Verizon 5G, T-Mobile 5G, and 4G on HST in China. This is
because AT&T 5G has deployedmore frequencies than others
(Table 3). A single measurement covers more colocated cells
on different channels. Our design thus yields more benefits
with expanding spectrum resources in 5G and beyond.

Measurement acceleration results in faster selection of
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Figure 11: Benefits of group-based operations in CA++.

the serving cell set, thus increasing the effective connection
time. Figure 11a shows that, the median connection time
improvement (CA++ over legacy) is 190.5 ms – 765.0 ms for
5G operators, and 369.3 ms on 4G high-speed trains. It thus
benefits all usage scenarios. In static/low-mobility settings,
mobile users spend more time on stable connections. Under
extreme mobility (say, high-speed trains), the network offers
seamless service by lowering the risk of lost connectivity.
Signaling efficiency. We examine the efficiency of group-
based feedback in terms of signaling overhead. We compare
the number of reports needed to include all eligible cells
under legacy CA and CA++. Figure 11b confirms that CA++
reduces the signaling overhead. Under low/moderate mobil-
ity and with AT&T 5G in C1(or C2), the legacy CA incurs
the median value of 7 (or 2) reports, while CA++ reduces the
median to 3 (or 1). For Verizon 5G, T-Mobile 5G and China
Unicom 4G (on HST), CA++ reduces the number of reports in
13.2%, 66.2%, and 31.0% of cases, respectively. This is because
fewer frequency channels are deployed on each tower by
these operators. The median reduction factor is no smaller
than two for all operators. CA++ becomes more efficient
with denser cell deployment over more frequency channels.

8.4 Overall Improvement by CA++

We use trace-driven emulations to assess the overall im-
provement by CA++. Since the device never knows runtime
performance of those un-selected cell sets, we use historical
data to profile performance of the cell sets available. We per-
form a “what-if” study to compare the CA options enabled
by CA++ and selected by the legacy (current) practice. Note
that this assessment is only feasible for our 5G datasets; The
public 4G-HST dataset lacks sufficient speedtests. We first
assess CA++ with the existing policies and then evaluate it
with policy changes (Table 5). CA++ turns out to boost both
the aggregated channel-width (Figure 13) and throughput
(Figure 14) in all the cases, following the original policies
in place. We use A-C1 to showcase the improvement per
location in Figure 12 (all test locations along main roads).
We see that the gains of CA++ are impacted by policies but
largely hold with most policy changes (Figure 15).
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Figure 12: Overall throughput improvement (Mbps)

observed in A-C1 in the tested region.
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Figure 13: CDFs of the aggregated channel-width (CW).
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Figure 14: CDFs of median throughput in each region.

Aggregated channel-width. CA++ is assumed to only
aggregate cells that are observed to work collectively in real
traces. This premise complies with device capacity and net-
work policies.CA++ greatly enlarges the aggregated channel-
width. For AT&T, 74.7% (46.5%) of cases in C1 (C2) have
the aggregated channel width over 400MHz, compared with
27.3% (6.0%) before. City C1 sees more enhancements than
C2, because more 5G frequency channels and cells, particu-
larly mmWave ones, are deployed in C1 (Table 3). We observe
that Verizon and T-Mobile add no more than one 5G cell in
most cases, and their aggregated channel widths are up to
140MHz and 135MHz, respectively.CA++ is effective inmak-
ing more spectrum resources in use. With Verizon, CA++ can
reach the largest channel-width (140 MHz) in 66.7% of cases,
while the legacy one reaches 6.2% only. With T-Mobile, CA++
increases the percentage with >100MHz from 46.9% to 89.4%;
The gain is smaller because the legacy practice in T-Mobile
does better by using wider spectrum at more locations.
Throughput boost. In our what-if study, CA++ makes
new decision on the serving cell set by prioritizing mmWave
cells (sub-6G cells for T-Mobile) for wider spectrum when-
ever they are available. Figure 14 compares the results for all
three operators. With AT&T in C1(C2), CA++ increases the
median throughput from 35.4 Mbps (29.1 Mbps) to 83.7 Mbps
(54.0 Mbps) out of all tested locations. The median through-
put rises from 43.3 Mbps to 84.3 Mbps (Verzion), and from
49.0 Mbps to 72.7 Mbps (T-Mobile). Throughput gains are
higher in AT&T and Verizon because their legacy CA per-
forms worse over 5G (particularly over mmWave). T-Mobile
5G sidesteps mmWave, and supports sub-6Ghz bands [2].
Impact by policies. We further assess the impacts of

Policy Cell type Policy

Change

A V T

A2

PCell

Monitor inter-freq. when 𝑅𝑆𝑆𝑠 < Θ𝐴2 -2(Q) -10(P) -10(P)

A3 Report cell if 𝑅𝑆𝑆𝑐 > 𝑅𝑆𝑆𝑠 + Θ𝐴3
-2(Q) -2(Q) -5(P)
+2(Q) +2(Q) +5(P)

A5 Report cell is 𝑅𝑆𝑆𝑠 < Θ1
𝐴5,𝑅𝑆𝑆𝑐 > Θ2

𝐴5
– -10(P) -10(P)
– +10(P) +30(P)

A1 4G SCell Report cell if 𝑅𝑆𝑆𝑐 > Θ𝐴1 +2(Q) +10(P) +30(P)
B1 5G SCell Report cell if 𝑅𝑆𝑆𝑐 > Θ𝐵1 +10(P) +10(P) +20(P)

Agg-5G 5G SCell Allow aggregation with 5G cells Allow 5G→ No 5G

Table 5: Policy changes (Q: RSRQ, P:RSRP).

policies on CA++, by changing six policies listed in Table 5.
All the policies are used in operational mobile networks. The
first five policies are regulated in [7] and retrieved from the
signaling messages sent to mobile phones. The last one is
observed from the long-term historical data. In particular,
A2,A3 and A5 are used for PCell selection: A2 specifies when
to measure inter-freq channels (otherwise only intra-freq
channels). A3 and A5, in different forms, determine when
to report a candidate cell. Used for SCell selection, A1 and
B1 include the condition for 4G and 5G, respectively. The
last policy Agg-5G mandates whether the serving PCell can
aggregate with 5G cells or not. To evaluate the policy im-
pacts on CA++, we apply one policy change at a time, while
keeping others unchanged. Table 5 lists detailed changes for
all three US operators. For threshold-based policies, we apply
a relative difference to all cells, since their original values
may vary. For the policy about aggregation with 5G cells, we
disable such aggregation in any case.
Figure 15 plots the throughput gains by CA++ under dif-

ferent policy changes. We make three observations: First,
CA++ outperforms the legacy CA with most tested pol-
icy changes. However, there is one exception: CA++ has
lower/comparable throughput (nomore than 5.2Mbps) when
aggregation with 5G cell is disabled. This is because this pol-
icy greatly limits the power of CA. CA++ even performs
slightly worse because it simply adopts a coarse-grained ap-
proach that chooses the group with the largest aggregate
channel-width. It works well with 5G cells (in particular
over mmWave bands) but does not yield any gain if the
aggregation of 5G cells is disabled. We believe that CA++
can be further enhanced by explicitly considering the met-
ric of achieved throughput. Second, CA++ achieves more
improvements when changed policies allow for a larger can-
didate pool. Reduced thresholds (e.g., increasing thresholds
in A3/A5/A1/B1) would bring more candidate cells, thus
making more headroom for improvement. Given the increas-
ing number of cells being used by CA in upcoming 5G/6G
releases, the potentials of CA++ will grow. Third, policy
impacts on the legacy CA are relatively smaller (absolute up-
and-down within 19.4 Mbps). This illustrates the important
of addressing sequential operations in the legacy CA, which
plays a more decisive role than policies in determining what
cells are considered for aggregation. The gains of CA++ are



CA++: Enhancing Carrier Aggregation Beyond 5G ACM Mobicom ’23, October 2–6, 2023, Madrid, Spain

O A2- A3- A3+A1+B1+No5G
0

100

200

Policy change

T
h
p
u
t
(M

b
p
s) Legacy CA++

(a) A-C1

O A2- A3- A3+A1+B1+No5G
0

50

100

Policy change

Legacy CA++

(b) A-C2

O A2- A3- A3+ A5- A5+A1+B1+No5G
0

100

200

Policy change

Legacy CA++

(c) V-C1

O A2- A3- A3+ A5- A5+A1+B1+No5G
0

50

100

150

Policy change

Legacy CA++

(d) T-C1

Figure 15: Legacy v.s. CA++ under policy change (+/- means to increase/reduce the policy parameter.)

impacted by policies which changes all cells available for
aggregation. It is important to design better policies to work
with CA or CA++ but it is an orthogonal problem beyond
the scope of this paper.

9 Related Work

Several recent studies seek to improve CA using the stan-
dardized mechanisms in 4G/5G [14, 18, 23, 25, 28]. [14, 25]
focus on better cell selections for CA with either network or
device-centric solutions. Other prior efforts [18, 23, 28] use
resource scheduling or joint carrier selection to maximize
utilization. CA++ takes a new perspective. We unveil the
fundamental limitations in the sequential, cell-by-cell proce-
dure of the current CA. We explore a group-based paradigm
for CA to accommodate the expanding spectrum space (say,
mmWave bands) and high mobility scenarios.
Our solution approach also differs. The main innovation

is two new algorithms to both enable concurrent channel in-
ference and minimize the cell-level measurement cost, thus
measuring few yet inferring all. To this end, we draw in-
sights from recent studies on OTFS based modulation in the
delay-Doppler domain [21, 22]. However, we go beyond its
usage on wireless communications, and exploit the compact,
frequency-independent multi-path representations to make
accurate channel inference. Furthermore, our algorithm ex-
plicitly characterizes fractional Doppler shift, to embrace the
expanded spectrum space (into mmWave bands) in 5G and
beyond. In contrast, prior algorithms [13, 26, 35] cannot han-
dle the wide frequency spectrum well, since none considered
the fractional Doppler effect. Finally, we focus on CA over
multiple cells and renovate the group-based management for
CA, while [26, 38] studied the single-cell setting and resolved
the policy conflicts by modifying the related configurations.

10 Discussion

We discuss several issues related to CA++.
Dual connectivity and multi-connectivity (DC/MC).

5G NR is rolling out DC [31] and MC [33], which aggre-
gate cells from two or more towers. CA++ is conceptually
applicable to DC/MC as well. The component on minimal
cell-level measurement can stay as it is. We can further adapt
CA++ to select cells from multiple cell towers.
Decision making for CA. The decision process to de-
termine which CA group to select remains a separate topic;

it can serve as a plug and play component in CA++. In the fu-
ture, wemay explore other decision criteriawith performance-
related factors (e.g., latency/reliability/availability etc.).
Phased array. In this paper, we evaluatedCA++with horn
antennas, which are different from the phased arrays used
in real deployments. Due to the physical constraints of our
testbed, we are unable to assess CA++with the phased arrays
which have imperfect beams, sidelobes, and more multipath
effects. In principle, co-located cells adopt different antenna
phases and angles, which might impact concurrent channel
inference. We leave the extension as our future work.
Other RAN technologies. Besides CA, there are many
important RAN innovations such as CoMP and vRAN. The
cloudification of RAN facilitates the deployment of CA++:
different cell towers can exchange deployment information
andmeasurements via the high-speed backhaul network, and
thus Algorithm 2 can quickly respond to real-time updates.
Easy deployment. CA++ needs upgrades at both client
and network side in operational logic and algorithms only.
We do not change protocols or network infrastructure. CA++
is thus a practical solution for the deployed systems.

11 Conclusion

CA is a promising technology in 5G and beyond. It combines
fragmented radio spectrum to boost performance. However,
current CA design suffers with expanding spectrum space
(say, new sub-6GHz and mmWave bands) and high mobility.
The fundamental problem is that, the legacy CA uses a se-
quential, cell-by-cell procedure. It cannot evaluate the radio
quality of all cells concurrently and make prompt selections.

We thus devise CA++ to embrace both increased spectrum
and high mobility. The principle is to enable group-based
feedback and selection. The enabler is two novel algorithms.
One characterizes channels in the delay-Doppler domain and
admits and calibrates fractional Doppler shifts, thus enabling
accurate and concurrent channel inference for all nearby
cells. The second algorithm minimizes the cell measurement
cost via a new set cover abstraction and its greedy approx-
imation. Our overall solution also fits in the legacy OFDM
based 5G PHY and the general 3GPP framework.
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