
Experience: A Five-Year Retrospective of MobileInsight∗

Yuanjie Li⇤, Chunyi Peng†, Zhehui Zhang‡, Zhaowei Tan‡, Haotian Deng†, Jinghao Zhao‡,
Qianru Li‡, Yunqi Guo‡, Kai Ling†, Boyan Ding‡, Hewu Li⇤}, Songwu Lu‡

⇤ Tsinghua University † Purdue University ‡ University of California, Los Angeles } BNRist

ABSTRACT
This paper reports our �ve-year lessons of developing and using
MobileInsight, an open-source community tool to enable software-
de�ned full-stack, runtime mobile network analytics inside our
phones. We present how MobileInsight evolves from a simple mon-
itor to a community toolset with cross-layer analytics, energy-
e�cient real-time user-plane analytics, and extensible user-friendly
analytics at the control and user planes. These features are enabled
by various novel techniques, including cross-layer state machine
tracking, missing data inference, and domain-speci�c cross-layer
sampling. Their powerfulness is exempli�ed with a 5-year longitu-
dinal study of operational mobile network latency using a 6.4TB
dataset with 6.1 billion over-the-air messages. We further share
lessons and insights of using MobileInsight by the community, as
well as our visions of MobileInsight’s past, present, and future.

CCS CONCEPTS
• Networks → Mobile networks; Network monitoring; Net-
work performance analysis; Network measurement.

KEYWORDS
Mobile network, cellular network, mobile data science and analysis,
MobileInsight
ACM Reference Format:
Yuanjie Li et.al.. 2021. Experience: A Five-Year Retrospective of MobileIn-
sight. In The 27th Annual International Conference On Mobile Computing And
Networking (ACM MobiCom ’21), October 25–29, 2021, New Orleans, LA, USA.
ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3447993.3448138

1 INTRODUCTION
The mobile network has been a critical global infrastructure for
decades. Together with the wired Internet, it o�ers ubiquitous wire-
less network access and wide-area seamless mobility. The 4G LTE
and upcoming 5G have successfully served billions of users today,
and will enable trillions of Internet-of-Things in the foreseen future.
∗Chunyi Peng and Hewu Li are the corresponding authors. Yuanjie Li and Hewu Li
are with the Institute for Network Sciences and Cyberspace, Tsinghua University.
Hewu Li is also with the Beijing National Research Center for Information Science
and Technology (BNRist). More information about MobileInsight is available online at
http://www.mobileinsight.net.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
ACM MobiCom ’21, October 25–29, 2021, New Orleans, LA, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8342-4/21/10. . . $15.00
https://doi.org/10.1145/3447993.3448138

Despite its great success, the mobile network remains a complex
“black box” for its users. To enable “anywhere, anytime” network
services, it incorporates various wireless communication, mobility
management, data transfer, and security functions on the control
plane and user plane. These functions work together to enable
network services, and involve complex interactions in a distributed
environment. Moreover, themobile network inherits the “smart core,
dumb terminal” design philosophy from the telephony network:
Most functions are placed inside the infrastructure, leaving limited
visibility to the end devices. Such opaqueness prevents devices from
understanding what goes on, why it happens, and how to deal with
it. Furthermore, operators are reticent to share their insights from
the infrastructure side. So it is hard for researchers and developers
to understand and exploit the operational mobile network.

To open up the “black box” mobile network operations to de-
vices, we started the MobileInsight project in 2015. Our goal was
to build an open-source community software tool that enables
software-de�ned full-stack, runtimemobile network monitoring and
analytics inside our commodity phones. This tool should enable
open access to operational mobile network data and o�er exten-
sible in-device analytics for runtime network behaviors. It should
facilitate researchers and developers to readily and accurately un-
derstand and exploit the mobile network, without relying on the
netwrok infrastructure or operators.

We released the �rst version of MobileInsight to the commu-
nity in 2016 [13, 53]. Since then, MobileInsight has evolved from
a simple in-device network monitor to an enabler of device-based
network analytics, diagnosis, and customization. We are thrilled to
see numerous real uses with MobileInsight, such as performance
boosting, energy analysis, con�guration diagnosis, security threat
detection, to name a few (see representative studies in Table 3).
We continuously re�ne its design based on user feedback, extend
it with advanced features, use it to build large-scale operational
datasets, and repeatedly validate its value in diverse scenarios.

This paper is a retrospective of our experiences in building
and using MobileInsight over the past �ve years. We revisit the
(un)successful lessons from MobileInsight as a community tool.
Rather than focusing on MobileInsight’s speci�c issues, we use
MobileInsight as an example to address three general questions:

(1) How can an in-device software tool help analyze the “black-
box” mobile network, and enable various new applications
that existing solutions cannot?

(2) Looking back, what design choices did the original MobileIn-
sight design make right, and what did not?

(3) What are the potentials and limitations of device-based, data-
driven mobile intelligence and customization?

The rest of the paper will answer these questions from both the
developers’ and users’ perspectives. We explain why it is hard to
enable in-device mobile network analytics in §2. Then in §3, we

ACM MobiCom ’21, October 25–29, 2021, New Orleans, LA, USA Yuanjie Li et.al.

Modem chipset

Telephony Service

Mobile Apps

Physical Layer ҁPHY҂

IP
TCP/UDP

Packet Data Convergence (PDCP)
Radio Res Ctrl (RRC)
Mobility Mngt (MM)
Session Mngt (SM)

HTTP, FTP, …

Mobile Apps

H
ar

dw
ar

e
So

ftw
ar

e

Internet

AT
commands

Radio Interface

Sys calls

APIs

Radio Link Control (RLC)
Medium Access Control (MAC)

PHY
MAC
RLC

MM
SMCore

Network

PDCP
RRC

Control-plane protocols User-plane protocols

Figure 1: 4G/5Gmobile network architecture, protocol stack,
and traditional information �ow in the device.

overview MobileInsight’s goals, initial design with limitations, and
its evolutions and milestones thereafter. In §4, we elaborate on
how MobileInsight evolves from a simple monitor to an advanced
software tool with cross-layer analytics, energy-e�cient real-time
user-plane analytics, and user-friendly and extensible KPI analytics.
In §5, we exemplify the powerfulness of these features with a 5-year
longitudinal study for operational network latency, and review the
experiences of using MobileInsight by the community. We compare
MobileInsight with related work in §6, and summarize our visions
of MobileInsight’s past, present, and future in §7.

In summary, this work has three main contributions:
(1) We report our experiences of developing MobileInsight in

the past �ve years. We show how MobileInsight evolves
to a community tool with advanced network analytics. We
review our positive and negative lessons of development;

(2) We summarize the quantitative bene�ts and lessons of using
MobileInsight in diverse scenarios by the community, and
demonstrate the potentials and limitations of device-based
mobile network intelligence with MobileInsight;

(3) We exemplify MobileInsight’s powerfulness with a 5-year
longitudinal study of mobile network latency using a 6.4TB
dataset with 6.1 billion over-the-air messages, and show how
MobileInsight unveils various insights of the operational
networks for the community, and by the community.

The source code of MobileInsight is public available and updated
at [13, 17] and the dataset is released at [16].

2 WHY IS IN-DEVICE ANALYTICS HARD?
The mobile network is a complex “black box” for devices. This limits
the devices’ ability to understand and utilize the network. It is not
easy to enable in-device network analytics due to two challenges.
Complex network architecture: The 4G/5G mobile network
consists of a radio access network with base stations, and a core
network (Figure 1). Similar to Internet, the mobile network also
de�nes its control/user planes and a layered protocol stack on the
device and network sides. However, it has more functions to accom-
modate than Internet and is thus more complex. At its control plane,
the mobile network de�nes signaling protocols to facilitate radio
resource control (RRC), wide-area mobility management (MM), and
tra�c session management (SM) for QoS/billing. At its user plane,
themobile network de�neswireless channel structures at PHY layer,
tra�c scheduling/multiplexing/error control at MAC (Medium Ac-
cess Control) layer, data segmentation and reliable in-order delivery
at RLC (Radio Link Control) layer, and data ciphering and integrity

Modem chipset

In-device, full-stack runtime monitor

PHY MAC RLC

…

User plane

PDCP RRC MM SM

Control plane

User + Control planes

Radio AccessibilityEnergyMobility

Mobile Apps

Initial modules New modules

H
ardw

are
Softw

are

2015

2016

2017

2018

2019

2020

Diagnostic mode interfaces

Protocol
analyzers

Cross-layer
analyzers

User-friendly
KPI analyzers

§3.1

§4.1

§4.2

§4.3

DEV USE

v2.0

U
se

d
by

 th
e

co
m

m
un

ity
 (

§5
.2

)

v6.0

C
as

e
st

ud
y:

 E
2E

 la
te

nc
y

(§
5.

1)

MobileInsight

Figure 2: The evolution and milestones of MobileInsight.

protection at PDCP (Packet Data Convergence Protocol) layer. To
enable ubiquitous network services, these protocols work together
with complex interplays in a distributed environment.
Limited in-device access to network information: Figure 1
shows the device-side mobile network protocols are realized inside
the chipset. They are mostly invisible to the OS kernel and user-
space apps. Only basic network information, such as data/voice
status and radio signal strength, is accessible to the OS via radio
interface layer (RIL). For user-space apps, the OS exposes a subset
of RIL to APIs, such as TelephonyManager in Android [3, 12].

3 OVERVIEW OF MOBILEINSIGHT
The goal of MobileInsight is to build a community software tool
for full-stack, runtime mobile network monitoring and analytics in
commodity mobile devices. Speci�cally, it should enable

(1) In-device, full-stack runtimemonitor of over-the-airmes-
sages between device and network;

(2) Real-time deep analytics of mobile network status, con-
�gurations, policies, and data transfers in devices;

(3) Open and extensible platform for community to customize
analytics and accommodate emergent features (e.g., 5G/IoT).

This section reviews MobileInsight’s initial design and limitations,
and summarizes its evolution milestones from 2016 to 2020.

3.1 Initial Design
Figure 2 illustrates the evolution of MobileInsight. At its initial
phase, our objective was to quickly build basic blocks while retain-
ing its long-term extensibility [53]. We intentionally kept MobileIn-
sight simple and open with two modules:
• In-device, full-stack runtimemonitor: For the �rst time, Mo-
bileInsight exposed runtime over-the-air messages from the chipset
to user-space. Table 2 summarizes these messages. They carry rich
information of mobile network protocols’ states, con�gurations,
and operation logic that legacy APIs did not expose. To collect
them, MobileInsight exploits the diagnostic mode, a second channel
between the hardware chipset and software. The diagnostic mode
uses a virtual interface (e.g., /dev/diag for Qualcomm chipsets,
summarized in Table 1) to expose in-chipset messages to the USB
port. It is available in major OSes and chipsets from Qualcomm,
MediaTek, Samsung, and Huawei. To this end, MobileInsight emu-
lates an external logger inside the device, pulls the binary raw logs
from virtual interfaces, parses their metadata headers and message
contents, and feeds them to protocol analyzers.

Experience: A Five-Year Retrospective of MobileInsight ACM MobiCom ’21, October 25–29, 2021, New Orleans, LA, USA

Table 1: Virtual interfaces for the diagnostic mode.
Mobile OS OS Version Chipset Virtual interface Open driver
Android 4.4–11.0 Qualcomm /dev/diag [2]
Android 4.4–11.0 MediaTek /dev/ccci_md_log_ctrl [1]
Android 4.4–11.0 Intel XMM /dev/mdmTrace [11]
iOS 9–14 Apple A6 /private/var/logs/Baseband [4]

• Protocol analyzers: The initial MobileInsight focused on the
analysis of individual control-plane signaling protocol. Given raw
messages, MobileInsight infers each protocol’s states, triggering
conditions for state transitions, and taken actions. Moreover, it
infers certain protocol operation logic that uses operator-de�ned
policies and con�gurations. MobileInsight abstracts each protocol
analytics as an analyzer class with open APIs. Users can customize
their own analytics on top of MobileInsight’s built-in analyzers.

3.2 Why is Initial MobileInsight Not Enough?
We publicly released the initial MobileInsight in 2016. From user
feedback and our own experiences, we realized the initial MobileIn-
sight has not yet achieved all its aforementioned goals:
(1) In-device, full-stack runtime monitor: This feature has
been successful since MobileInsight’s �rst release, with positive
user feedback and high satisfaction. Our �rst release only supported
Qualcomm chipsets. Later we supported MediaTek chipsets, and
more messages from new standards (from 3GPP Release 7 to Release
15). To support new chipsets and OSes, we �rst verify whether they
have provided similar diagnostic ports. If yes, we can follow the
similar way in the initial design (§3.1) to enable in-device monitor.
As summarized in Table 1, we have validated that similar diagnostic
ports are indeed available for Qualcomm, MediaTek, Huawei, and
Intel chipsets. We have also validated that similar in-device monitor
can be realized in iOS (although jailbreak is needed). In the past �ve
years, we have explored new virtual interfaces to enable MobileIn-
sight at more device models (with new chipsets and OS versions)
and continuously upgraded MobileInsight accordingly to support
new 3GPP standards (up to Release 15). Our experience is that Mo-
bileInsight is extensible to future 3GPP standards and device models,
given its successful extension to new standards, chipsets, and mo-
bile OS versions in the last years. We only need to acquire latest
commodity phones for testing and exploit diagnostic ports’ driver
codes as the ground truth. Moreover, the monitor-analyzer design
is �exible for long-term extension across devices: the monitor can
be extended independently due to device-speci�c characteristics,
while most analyzers can be reused across the devices.
(2) Real-time deep mobile network analytics: The initial Mo-
bileInsight mainly analyzed individual signaling protocols in the
control plane. This is not enough for two reasons. First, many
usage scenarios involve multiple protocols across layers in a dis-
tributed environment. It has been widely reported [54, 71, 73] that,
even if each individual protocol behaves well, the interactions be-
tween protocols can still be problematic in reality. Understanding
these interplays calls for cross-layer, vertical analytics (§4.1). Sec-
ond, the user-plane analytics was largely missing, especially for
the link/physical-layer analytics below the TCP/IP stack. Without
it, many issues in runtime data transfer remained mysterious for
devices. However, di�erent from the control-plane analytics, the
user plane one faces an explosive growth of over-the-air messages.
This poses challenges on energy-e�cient, real-time analytics (§4.2).

Table 2: Available over-the-air messages in MobileInsight.
Message types

C
on

tr
ol

pl
an

e

SM Default or dedicated session setup, modi�cation and release; PDN
connectivity setup, modi�cation and release.

MM Attach/detach; Authentication request, response, and failure; Secu-
rity mode control; Service request; Paging; Identi�cation request
and response.

RRC Radio connection setup, release, re-establishment and recon�gura-
tion; System info blocks; Handover command; Measurement control
and report; Radio capability query; Paging; Security model com-
mand.

U
se
r
pl
an

e

PDCP Uplink and downlink control/data packets; Ciphering, integrity
check, and compression con�guration.

RLC Uplink and downlink control/data segments, sequence number, and
acknowledgment; Scheduling, retransmission and timer con�gura-
tion; Tra�c delivery statistics.

MAC Uplink and downlink transport blocks, and positive/negative ac-
knowledgment; Uplink scheduling request; Uplink bu�er status
report; Uplink random access trigger and attempt; Retransmission
con�guration.

PHY Radio band indicator; DL/UL radio resource allocation; Channel
estimation (signal strengths, CQI, PMI, RI, path loss); Modulation
and coding scheme; Block error rate; Physical data rate; Cell search,
measurement and selection; Uplink transmission power control;
Downlink reception power control (DRX); Random access status.

(3) Open and extensible platform: The initial MobileInsight
indeed o�ered open APIs for �ne-grained protocol analytics, cus-
tomizable data collection, and extensible plugins. However, accord-
ing to numerous technical inquiries and feedback from the com-
munity, they were not friendly to new users due to their nature of
low-level semantics. Using these APIs requires deep understanding
of mobile network and its complex operations, which is di�cult for
most users. This limits MobileInsight’s wide adoption (§4.3).

3.3 Five-year Milestones
To address these limitations, we have progressively enhanced Mo-
bileInsight since its �rst public release in 2016. These re�nements
follow MobileInsight’s simple framework in §3.1. Now the latest
MobileInsight (v6.0, released in December 2020) has 60,409 lines of
code (33,001 lines of C++ and 27,408 lines of Python). Figure 2 shows
MobileInsight’s evolution roadmap and milestones in the past �ve
years, from both the developers’ and primary users’ perspectives.
• Developers’ milestones: MobileInsight evolves as follows:

� 2015–2016: Basic in-device monitor (§3.1). We built the alpha
MobileInsight for the in-device full-stack monitoring.

� 2016–2017: Control-plane protocol analytics (§3.1).With runtime
over-the-air messages, we enabled basic analytics of each individ-
ual signaling protocol, including the protocol state tracking and
operation logic inference.

� 2017–2018: Cross-layer vertical analytics (§4.1).We added cross-
layer analytics on top of individual protocol’s analytics. We started
from control-plane analytics, and later extended it to user plane
and interplay across control/user planes.

� 2018–2019: Energy-e�cient runtime user-plane analytics (§4.2).
We devised cross-layer sampling with missing data inference (§4.1)
for energy-e�cient, real-time user-plane analytics.

� 2019–2020: User-friendly, extensible analytics (§4.3). To broaden
the adoption, we followed the user feedback to extendMobileInsight
with user-friendly, extensible KPI analyzers to streamline its usage.
• Users’ milestones: Since 2016, MobileInsight has attracted
global uses from 350+ academia and industry institutes (Figure 3).

ACM MobiCom ’21, October 25–29, 2021, New Orleans, LA, USA Yuanjie Li et.al.
Table 3: Representative use cases of MobileInsight in diverse scenarios. C1-C4 are MobileInsight’s components: C1: control-
plane analytics, C2: user-plane analytics, C3: cross-layer analytics and C4: KPI analytics.

Cat. MobileInsight’s use cases Protocols C1 C2 C3 C4 Lessons of using MobileInsight
(§3) (§4.2) (§4.1) (§4.3)

Performance

Link capacity prediction for
TCP [32, 33], Web [76], We-
bRTC [48], & 360°video [75]

PHY, TCP,
APP

⇥ X ⇥ X MobileInsight helps the device infer base sta-
tions’ “black-box” uplink/downlink radio sched-
uling policies for performance optimization.

Handover policy inference
[71, 79] for performance anal-
ysis and boost

RRC ⇥ X X X MobileInsight facilitates the device to infer the
“black-box” infrastructure-side handover poli-
cies for performance analysis and boost.

Control-plane acceleration
for low-latency access [54]

RRC, MM,
SM

X ⇥ X X MobileInsight unveils that device-side state
replica helps accelerate network-side signaling.

Latency reduction for VR
[71], edge [83], remote sens-
ing [72] and driving [57]

PHY, MAC,
RLC, RRC,
APP

X X X X MobileInsight facilitates the application-driven
customization of uplink data transfer that the
infrastructure cannot.

Multi-carrier network access
(e.g., Google Fi [50, 52])

RRC, MM,
SM

X ⇥ X X MobileInsight empowers the device to proac-
tively select the carrier networks, which cannot
be achieved by each individual operator.

A 5-year longitudinal study
for the evolution of mobile
network latency (§5.1)

PHY,
MAC, RLC,
PDCP,
RRC, NAS

X X X X By crowdsourcing MobileInsight traces from de-
vices, the community can analyze the long-term
evolution of the operational network perfor-
mance in diverse network and device contexts.

Reliability

Miscon�guration analysis for
mobility management [36]

RRC ⇥ X ⇥ ⇥ MobileInsight lets the device gain visibility of
�ne-grained mobile network con�gurations.

Policy con�icts in among mo-
bile network carriers [49, 81]

RRC, MM X ⇥ X ⇥ A device with MobileInsight can unveil policy
con�icts that each individual operator cannot.

Reliable handover for high-
speed trains [56, 74]

PHY, RRC,
MM

X X X X MobileInsight demysti�es various handover
failures, and enables device-based masking of
failure-induced disruptions at higher layers.

Energy Modem energy drain analysis
[35]

RRC X ⇥ ⇥ X MobileInsight helps the device quantify the �ne-
grained energy costs due to network operations.

Security

Control-plane security threat
analysis via user-side semi-
automated testing [45]

RRC, MM,
SM

X ⇥ ⇥ ⇥ MobileInsight facilitates the security analysis
for operational mobile networks by exposing
the real cross-layer signaling messages.

Voice call spoo�ng defense
[37]

SM, APP X ⇥ ⇥ ⇥ MobileInsight makes it possible for the victim
callee to proactively detect the call spoo�ng.

Location privacy leakage [42,
47]

MAC, RRC X X X ⇥ MobileInsight not only bene�ts benign users,
but also empowers attackers of curiosity.

(a) By geographical areas

Academia 54.9%
Industry 21.7%
Unknown 23.4%
Total 100%

(b) By institutes

Figure 3: Global usage of MobileInsight.
We are thrilled to see numerous new device-based designs of mobile
network intelligence with MobileInsight, including but not lim-
ited to data speed boosting [32, 54, 74], energy saving [35], failure
and miscon�guration diagnosis [36, 81], security threat detection
[37, 41], and emergent scenarios such as VR/AR [71], 360� video
[75], high-speed trains [56, 74], and many more. Table 3 shows
representative use cases of MobileInsight by the community. We
will elaborate on the lessons of using MobileInsight in §5.

4 EVOLUTION OF MOBILEINSIGHT
We next elaborate on the lessons from MobileInsight’s evolution.

4.1 Cross-layer Vertical Analytics
The initial MobileInsight only tracked the states and operation logic
of each individual protocol (§3.1). Starting in 2017, we enhanced
MobileInsight with cross-layer, vertical analytics.
Taxonomy of cross-layer interactions: In the mobile network,
cross-layer interactions are a norm rather than an exception. To
enable ubiquitous services, multiple protocols across layers must be
involved in a distributed environment. Unfortunately, various stud-
ies [44, 45, 54, 71, 73] and uses of MobileInsight in Table 3 indicate
that, even if each individual protocol behaves well, the interactions
between protocols can still be unreliable, slow or insecure in reality.
In general, there are three classes of cross-layer interactions:

� Control-plane interactions: To facilitate data transfer, the sig-
naling protocols (in RRC, MM, and SM) collaboratively establish
and maintain the session between a device and network. Figure 4a
exempli�es how signaling protocols work together. To access the
data service, the control plane should �rst create a data session
between a device and network. This involves the RRC protocol

Experience: A Five-Year Retrospective of MobileInsight ACM MobiCom ’21, October 25–29, 2021, New Orleans, LA, USA

Data

RRC

MM

SM
Cross-layer state mappingState transition

Idle

CRX

Long-DRX

Short-DRX

Data Timeout

Timeout

Connected

Connection setup
Connection release

Inactive

Connection release

Connection lost
Connection re-established

Session
Inactive

Session
active

Session de-activated
Session activated

Session modified

Deregistered Registered

Tracking area update (TAU)

Session de-activated
Attach success

Attach failure
Service request

TAU success TAU requestTAU failure

Data arrival Success
Service request failure

Session activation failure

(a) Control-plane signaling protocol states

Wait for MAC TBk (Under rtx)

Wait for MAC TBk (Initial)

MAC TBk received

MAC TBk lost
Corrupted &&

rtx times = limit

Tx success Tx success

Corrupted

Corrupted &&
rtx times < limit

Wait for RLCn (Under rtx)

Wait for RLCn (Initial)

RLCn received

Tx success Tx success

Detect gap

Timeout
Send NACK

Timeout
Send NACK

Wait for PDCPm (Initial)

PDCPm received
Tx success

MAC TBk pending

MAC TBk sent

Wait for radio grant

 ACK || No
ACK/NACK ||
rtx # ≥ limit

RLCn pending

RLCn rtx pending

RLCn sent

Receive
NACK

PDCPm pending

PDCPm sent
Tx success

MAC+PHY

RLC

PDCP

Receive NACK

Receive ACK
n+=1

Radio grant available
Send MAC TBk

NACK && rtx times < limit
Rtx and rtx times += 1

Receive ACK
n+=1

Uplink Downlink

No pending SR
Send SR

MAC Indication
Segment PDCP

(b) User-plane per-packet delivery states
Figure 4: Simpli�ed cross-layer state machines.

to establish the radio connectivity, the MM protocol to mutually
authenticate the device and network, and the SM protocol to create
a data session (§2). As the device moves, the control plane should
migrate the session to new network nodes for seamless data access.
To this end, the RRC protocol migrates the radio connectivity to the
new base station via handover, and the SM/MM protocol migrate
the session across location domains via tracking area update. Before
these procedures are successfully completed, the data transfer will
be blocked, thus incurring extra latencies.

� User-plane interactions: In the mobile network, each packet tra-
verses across link/physical layers. These protocols collaboratively
deliver the user tra�c through complex interactions. As shown in
Figure 4b, The PDCP layer labels each IP packet with a sequence
number, and pushes it to the RLC layer. The RLC layer divides
each packet into multiple segments based on the available runtime
physical-layer radio resource. For in-order reliable delivery, RLC
maintains per-segment sequence number and acknowledgment.

The MAC maps RLC segments to transport blocks, bu�ers them to
wait for physical-layer transfer, multiplexes them for delivery, and
corrects block errors via HARQ procedure.

� Interplays across control and user planes: The control and user
planes mutually impact each other. On one hand, before the control-
plane signaling procedures �nish, the user-plane data is blocked.
The signaling protocols also con�gure the user-plane protocols
with channel bandwidth, scheduling parameters, retransmission
timers, to name a few. We will exemplify such con�gurations in
§5.1. On the other hand, the user plane also delivers the control-
plane signaling messages. The message loss/corruption will a�ect
the signaling protocols’ functionality, reliability and performance.
Challenges of cross-layer analytics: MobileInsight faces two
challenges in analyzing cross-layer network behaviors. First, it
should tackle the complex interactions at the control plane, user
plane, and across planes. Second, at the user plane, MobileInsight
should tolerate the missing data from the packet loss or corruption.
Missing data state from one layer can propagate to other layers and
complicate the analytics. For example, if a corrupted MAC block
cannot be recovered, its error will spread to RLC for retransmis-
sion with new missing data states. Inferring such missing states
is more di�cult for downlink, since the device-side MobileInsight
has limited ground truth of downlink packets’ status.
MobileInsight’s cross-layer analytics: To address both issues,
MobileInsight derives the control/user-plane state machines, tracks
runtime states across layers, and infers the missing data state by
leveraging the temporal inter-packet dependency.

� Cross-layer state machine tracking: At the control plane, Mo-
bileInsight tracks signaling protocols’ runtime states and their inter-
actions. It �rst extracts each protocol’s state machines from 3GPP
standards [25, 26, 29, 30]. As shown in Figure 4a, the RRC states de-
cide the radio connectivity and power-saving mode, the MM states
de�ne device’s registration status to core network, and the SM
states decide the session (de)activation. These state machines are
stacked and interconnected by standardized cross-layer state map-
ping (illustrated as dotted lines in Figure 4a): The lower-protocol’s
state change (e.g., “Inactive” state in RRC due to radio link failure)
will propagate to upper layers (de-registration in MM and session
deactivation in RRC in this example). MobileInsight tracks each
protocol by feeding runtime messages to the state machines. Upon a
protocol state change, MobileInsight updates other protocols’ states
accordingly based on cross-layer state mapping.

At the user plane, MobileInsight tracks per-packet delivery status
across below-IP layers. Figure 4b shows the simpli�ed per-packet
state machines from standards [18–20, 22–24] and their cross-layer
state mapping. The PDCP states de�ne the delivery status of a ci-
phered IP packet. The RLC states track the in-order reliable delivery
status of segments. The MAC states decide the bu�ering, transfer,
and error status of transport blocks. These protocols’ states are cor-
related on a per-packet basis: A packet at PDCP layer is divided into
multiple RLC segments, each of which are further mapped to MAC
transport blocks based on available physical-layer radio resource.
The delivery state (sent, received, pending, lost/corruption, and
retransmission) at one layer will decide the delivery states of other
layers (dotted lines in Figure 4b). MobileInsight keeps a replica of
these state machines per packet, maps it to RLC segments and MAC

ACM MobiCom ’21, October 25–29, 2021, New Orleans, LA, USA Yuanjie Li et.al.
Missing state inferenceState transition

Wait for RLC0
(Under rtx*)

Wait for RLC0
(Initial)

TimePacket 0 Packet 1 (lost, unknown state) Packet 2
Wait for RLC0

(Under rtx*)

Wait for RLC0
(Initial)

RLC0 received

Wait for RLC0
(Under rtx*)

Wait for RLC0
(Initial)

Wait for RLC1
(Under rtx*)

Wait for RLC1
(Initial)

RLC1 received

Wait for RLC0
(Under rtx*)

Wait for RLC0
(Initial)

RLC2 received

Wait for RLC2
(Under rtx*)

Wait for RLC2
(Initial)

Figure 5: Missing state inference via data dependency.

RRC-Idle

Short-DRX

Long-DRX

CRX

 0 0.5 1 1.5 2 2.5 3 3.5 4

R
R

C
 S

ta
te

Time (second)

MobileInsight Ground Truth

(a) Control-plane analytics: RRC state machine tracking

1

8

64

 0 25 50 75 100

L
a

te
n

cy
 (

m
s)

RLC Packet Sequence Number

MobileInsight Min
Ground Truth

MobileInsight Max

(b) User-plane analytics: Downlink data latency tracking
Figure 6: Accuracy of MobileInsight compared to the
infrastructure-side ground truth (OAI [6] over USRP B210).

transport blocks, tracks the delivery of them based on the runtime
messages at each layer, and updates the �ne-grained state across
layers based on the dependency in Figure 4b.

Last, MobileInsight tracks the interplay across control and user
planes. By checking the signaling protocol states, it decides if the
data transfer is allowed and updates each packet’s state accordingly.
Moreover, it tracks the delivery of signaling messages at user plane,
and updates the control-plane states if the message is lost/corrupted.

� Missing data state inference via inter-packet dependency: If a
user-plane packet is lost, its status is unknown to MobileInsight. To
infer its state, MobileInsight utilizes the temporal dependency be-
tween packets. Figure 5 exempli�es this with two received packets
and one missing packet. The link-layer in-order reliable delivery
couples packets’ state machines. A missing packet’s possible state
can be bounded by its nearby packets. By checking the received
packets’ states before/after the missing data, MobileInsight nar-
rows down the missing data’s possible states to provide bounded
information such as retransmission latency.
Comparison with the ground truth: To quantify the accuracy
of MobileInsight’s cross-layer analytics, we compare it with the
ground truth. We �rst compare MobileInsight with two device-
side analytics tools: QXDM [67] and Network Signal Guru [5]. We
con�rm MobileInsight unveils identical standardized control/user-
plane operations to these tools, because all these tools have access to
the same mobile network information from the hardware modem.

We next compareMobileInsight’s accuracywith the infrastructure-
side ground truth. We build a controlled LTE infrastructure using a
commodity server (as core network), USRP B210 (as a radio base sta-
tion) and OpenAirInterface [6] software cellular protocol stack. We
use a commodity phone withMobileInsight to connect to this infras-
tructure, and compare the runtime MobileInsight analytical results
with those on the infrastructure side. Figure 6 exempli�es the com-
parison result at the control and user planes. At the control plane,
Figure 6a veri�es MobileInsight unveils identical signaling protocol

states to those on the infrastructure side. At the user plane, Figure 6b
compares the upper/lower-bound of the downlink packet latency
inferred by MobileInsight with the infrastructure-side ground truth.
When there is no retransmission due to data loss/corruption, Mo-
bileInsight unveils identical per-packet downlink data latency to
the ground truth. In presence of the retransmission, MobileInsight’s
missing data inference via inter-packet dependency ensures mar-
ginal errors compared to the ground truth, with an error of 0.19ms
on average and 4ms at maximum (i.e., 1.4% estimation errors).

4.2 E�cient Real-time User-plane Analytics
In 2018, we extended MobileInsight for the below-IP user-plane
analytics. Di�erent from control plane, user plane faces an explo-
sive growth of over-the-air messages. This poses challenges to the
energy-e�cient, real-time analytics in commodity devices.
Characteristics of user-plane analytics: Compared to control-
plane messages, user-plane messages are simpler with fewer �elds,
but more intensive with massive amount of packets to deliver. Fig-
ure 7 shows the user plane’s messages are 2⇠3 orders of magnitude
more frequent than the control plane’s.

We next quantify how well the initial MobileInsight tackles user-
plane analytics inside devices. We enable all messages in Table 2 to
evaluate the initial MobileInsight’s runtime responsiveness, energy,
and CPU usage. We repeat this test with data collection only, col-
lection + message parsing, and collection + parsing + analysis. For
energy usage, we also compare MobileInsight with the worst-case
background scenario when the screen is always on. Figure 8 shows
the results. We make three observations:

•Real-time responsiveness: Surprisingly, even with intensive
user-plane messages, MobileInsight can still timely process them
before the next message arrives. For each message, we de�ne its
accumulative lag as the elapsed time that its processing is after the
next message’s arrival. Figure 8a shows MobileInsight can analyze
�95% user-planemessages with 1ms lag. Themaximal lag is 8ms.
This is because most user-plane messages are simple to process.

• Energy de�ciency: The initial MobileInsight’s responsive
real-time user-plane analytics is at the cost of huge energy and
CPU usage. Figure 8d shows that, with all messages enabled, Mo-
bileInsight consumes 21% battery in 1 hour, which is 1.5⇥ compared
to the scenario with the always-on screen. The battery is mostly
used by software, since the data collection from chipset consumes
comparable energy to the scenario without MobileInsight. Its en-
ergy consumption is proportional to message volumes.

• Heavy CPU usage: With all messages, Figure 8c shows the
initial MobileInsight occupies one core and uses 12–23% CPU in
total. The CPU usage is proportional to message volumes, and
dominated by message parsing (�99%) in software space.
Vanilla solution: Domain-speci�c independent sampling To
save the battery and CPU, MobileInsight should reduce the cost of
processing intensive link/physical-layer messages and retain high
analytics accuracy. For non-real-time tasks, MobileInsight can col-
lect raw messages in device and analyze them o�ine. For real-time
analytics, MobileInsight can sample the messages to analyze. The
initial version of MobileInsight’s user-plane analytics uniformly
sampled each physical/link-layer’s messages independently. Fig-
ure 8c implies sampling can be approximated by parsing only a

Experience: A Five-Year Retrospective of MobileInsight ACM MobiCom ’21, October 25–29, 2021, New Orleans, LA, USA

 0

 500

 1000

 1500

 0 100 200 300 400

M
e

ss
a

g
e

/s

Time (second)

PHY
MAC
RLC

PDCP
RRC
NAS

(a) An example of the runtime messages

 0.001

 0.1

 10

 1000

SM MM RRC PDCP RLC MAC PHY

Control plane User plane

M
e

ss
a

g
e

/s

(b) Average message arrival rates
Figure 7: Runtime messages at the control and user planes.

 0

 5

 10

 0 2 4 6 8 10 12 14

L
a

g
 (

m
s)

Time (second)

(a) Runtime per-message processing lags.

 40

 60

 80

 100

 0 2 4 6 8

C
D

F
 (

%
)

Per-message lag (ms)

Pixel-1
Pixel-3

Moto-Z3

(b) Real-time responsiveness

 0.1

 1

 10

 100

C
P

U
 in

 o
n

e

 c
o

re
 (

%
)

Collection Parsing Analysis

 0.1

 1

 10

 100

Pixel-1 Pixel-3 Moto-Z3C
P

U
 a

m
o

n
g

 a

ll
co

re
s

(%
)

(c) CPU utilization

 80

 90

 100

 0 20 40 60

B
a

tt
e

ry
 (

%
)

Time (min)

No MobileInsight (screen on)
Collection only

W/ parsing
W/ analysis

(d) Battery consumption at Motorola Z3.
Figure 8: The initial MobileInsight’s user-plane analytics.

subset of messages in software. This approach still retains all the
raw data in the collection phase to facilitate full-�edged o�ine
analysis. Figure 9a con�rms it e�ectively reduces the CPU usage.

Moreover, the sampling can be optimized with domain-speci�c
knowledge. We �nd 4 types of messages (MAC bu�er status, block
error rate, serving cell measurements, and uplink transmission
power) contribute �71.8% of total messages. We customize their
analytics to be sampling-aware, treat un-sampled messages as miss-
ing data, and optimize their analytics accuracy with the missing
data inference in §4.1. Figure 9b exempli�es the customization for
the uplink MAC-layer queuing delay for each segment. To track a
segment’s queuing delay, MobileInsight needs two timestamps for
it when entering and leaving the bu�er. The naive sampling is un-
aware of this timestamp dependency and simply samples the MAC
logs uniformly. This is prone to miss one of the timestamps and
thus failure of tracking the latency. Instead, by tracking logs contin-
uously to cover both timestamps for each segment, the optimized
sampling is more accurate under the same sampling ratio.
Our solution: Domain-speci�c cross-layer sampling. How-
ever, independent sampling turns inaccurate in cross-layer analytics.
As shown in §4.1, an IP packet will traverse across link/physical
layers for delivery, during which it can be divided into multiple

 0

 50

 100

100 50 20 10

C
PU

 in

on
e

co
re

 (%
)

Sampling ratio (%)
(a) CPU reduction

(b) Single-layer sampling at MAC layer
Actual sampling ratio Per-packet latency analysis error

Target sampling ratio 10% 20% 50% 10% 20% 50%
Independent 0.04 % 0.52% 11.38% 6.76ms 6.64ms 1.69ms
sampling (34.2%) (33.6%) (8.6%)
Cross-layer 9.37% 18.1% 49.45% 1.63ms 1.48ms 0.50ms
sampling (8.3%) (7.5%) (2.5%)

(c) E�ectiveness of domain-speci�c cross-layer sampling

 0
 0.5

 1
 1.5

 2

10% 20% 50% No sampling

B
a
tt
e
ry

 c
o
st

 (
%

/m
in

)

Sampling ratio

(d) Energy e�ciency of cross-layer sampling (Motorola Z3)
Figure 9: MobileInsight’s energy-e�cient real-time user-
plane analytics (uplink data latency analysis as an example).

RLC segments and MAC blocks based on available physical radio re-
source. If messages from di�erent layers are sampled independently,
the cross-layer dependency between the IP/PDCP packets, RLC seg-
ments, MAC blocks, and physical resource can be lost. This causes
not only inaccurate analytics, but also ine�cient sampling since
sampled messages across layers are mismatched and wasted. Fig-
ure 9c exempli�es this de�ciency when tracking the uplink packet
latency. With 10%, 20% and 50% sampling ratio, independent sam-
pling only ensures 0.04%, 0.52% and 11.38% IP packets can be fully
tracked across layers. This leads to 34.2%, 33.6% and 8.6% estimation
errors for uplink packet latency, respectively.

To this end, we devise cross-layer sampling. Rather than indepen-
dent sampling among layers, MobileInsight �rst uniformly samples
the IP packets at PDCP based on the target sampling ratio. Then for
each sampled IP packet, MobileInsight runs the cross-layer depen-
dency tracking in §4.1 to locate the corresponding messages related
to its RLC segments, MAC blocks, and PHY radio resource alloca-
tion. MobileInsight only parses (samples) these messages and drop
the remaining for e�ciency. In this way, the cross-layer dependen-
cies for these sample IP packets are all retained for high analytics
accuracy. This approach is applicable to both uplink and downlink
data transmission, because the dependency across the PHY, MAC,
RLC, and PDCP layers exists for both uplink and downlink.

Figure 9 evaluates MobileInsight’s cross-layer sampling. In terms
of its accuracy, Figure 9c shows MobileInsight reduces the data
latency estimation error by 4.1⇥, 4.5⇥, and 3.4⇥ with 10%, 20%, and
50% sampling ratio, respectively. It retains comparable actual sam-
pling ratios (i.e., the percentage of IP packets that can be correctly
tracked across layers) to the target. Figure 9d con�rms viable energy
saving (by up to 47.6%) with MobileInsight’s cross-layer sampling.
Due to the variance of tra�c and battery drain, the energy saving is
not strictly proportional to the actual sampling ratio. This suggests
more energy savings are possible with further re�ned solutions.

4.3 User-Friendly, Extensible Analytics
The new features in §4.1–4.2 empower MobileInsight with deep mo-
bile network analytics. But they were not widely used as expected,
since they are unfriendly to new users because of their low-level

ACM MobiCom ’21, October 25–29, 2021, New Orleans, LA, USA Yuanjie Li et.al.

Table 4: Available runtime KPIs from MobileInsight.
Category Key performance indicator (KPI) Protocol

Radio

Signal strength (RSRP, RSRQ, RSSI, EvDo,
RSCP)

PHY

Channel estimation (CQI, PMI, RI) PHY
Modulation and coding scheme PHY
Radio resource block allocation PHY
Block error rate (BLER) PHY
Downlink path loss PHY

Accessibility

Radio connection setup success rate RRC
Attach success rate MM
Session setup success rate SM
Service request success rate RRC+MM
Session QoS/billing class MM+SM

Mobility

Tracking area update success rate MM
Tracking area update latency RRC+MM
Handover success rate RRC
Handover disruption latency RRC
Handover HOL blocking latency RLC+RRC

Retainability Abnormal RRC connection drop rate RRC

Integrity
Data throughput PDCP
Packet loss ratio PDCP
Link-layer data loss ratio RLC+MAC

Energy Uplink transmission power PHY
Downlink reception power (DRX) PHY+RRC

Initialize an online monitor
src = OnlineMonitor()
Initialize the KPI manager
kpi = KPIManager()
Enable KPI analyzer on handover latency
kpi.enable_kpi("Mobility.HANDOVER_LATENCY")
Bind the analyzers to the monitor
kpi.set_source(src)
Start analysis
src.run()

check whether handover is triggered
by tracking the RRC state machine
if ho_istriggered(event):
 HO_triggered = True
 ts = event.timestamp
check whether handover is completed
by tracking the RRC state machine
if HO_triggered and ho_iscomplete(event):
 latency = event.timestamp - ts
 HO_triggered = False

KPI analyzers Simplified underlying implementation

Figure 10: APIs of KPI analyzers inMobileInsight (handover
disruption latency as an example).

natures (§3.2). So in 2019, we started to streamline MobileInsight’s
analytics to balance its comprehensiveness and user-friendliness.

We extend MobileInsight with user-friendly, extensible perfor-
mance indicator (KPI) analyzers. Table 4 summarizes the latest
MobileInsight’s available KPIs from 3GPP standards [27, 28] and
user requests. They have covered the control and user planes, and
various aspects such as reliability, performance, and energy e�-
ciency. They are not available from the legacy mobile OS APIs.
Compared to the protocol/packet state machines in basic MobileIn-
sight analyzers, KPIs are more intuitive for users to understand
runtime mobile network operations. As summarized in Table 3, the
KPI analyzers can simplify many usage scenarios by the community.

Figure 10 exempli�es MobileInsight’s APIs for the runtime KPIs
(control-plane handover latency as an example). MobileInsight de-
�nes user-friendly hierarchical names (category.kpi_name) for the
KPIs in Table 4. For each KPI, MobileInsight de�nes a KPI analyzer,
and calls the corresponding state machine-based analyzers in §3.1
and §4.1–4.2 to track it. Instead of calling the complex low-level an-
alyzers, a new user can easily track KPIs by simply declaring them
via names, without worrying about the low-level details of mobile
network protocols. Meanwhile, an experienced user can dive into
the underlying behaviors related to KPIs. MobileInsight supports
both periodic and event-driven runtime KPI reporting. By locally
storing the historical data, it allows users to query the aggregated
KPI statistics by time, location, network node (e.g., cells) and client.

0 200M

16-Q1
16-Q2
16-Q3
16-Q4
17-Q1
17-Q2
17-Q3
17-Q4
18-Q1
18-Q2
18-Q3
18-Q4
19-Q1
19-Q2
19-Q3
19-Q4
20-Q1
20-Q2
20-Q3

3B 4B 5B 6B

User plane
Control plane

Number of over-the-air messages

(a) Dataset size over time

Duration 2016–2020
Dataset size 6.4 TB
Total message 6,163,692,448

Layers

SM: 0.01%
MM: 0.04%
RRC: 1.50%
PDCP: 3.08%
RLC: 3.45%
MAC: 13.04%
PHY: 78.88%

(b) Dataset statistics

Figure 11: Summary of the dataset from MobileInsight.
5 LESSONS OF USING MOBILEINSIGHT
We are excited to see a broad use of MobileInsight in diverse scenar-
ios since 2016. This section reports the lessons of using MobileIn-
sight by ourselves and the community.With a �ve-year longitudinal
study in §5.1, we exemplify how to apply MobileInsight in §3–4 to
unveil unforeseen insights from the operational network. Then in
§5.2, we report the adoption of MobileInsight in broader scenarios,
quantify its bene�ts, and summarize the usage experiences.

5.1 Longitudinal Case Study: Network Latency
This section uses network latency to exemplify how MobileInsight
empowers in-device mobile network analytics. We run a 5-year
longitudinal study to unveil and understand end-to-end (E2E) la-
tency over operational mobile networks. Due to space limit, the
results here are not intended to be complete; more results have
been available from MobileInsight with the collected dataset being
released. In this work, we showcase how to use MobileInsight’s new
modules in §4, and how these modules unveil some new insights
that were not visible.
Dataset: Since 2016, we have sporadically collected 4G/4.5G LTE
over-the-air messages with the evolving MobileInsight and accu-
mulated a �ve-year dataset. We ran MobileInsight over the test
phones when using ping (primary), iperf, web, video streaming, or
virtual reality applications in static, walking and driving scenarios.
Figure 11a shows the accumulated dataset size every quarter and
Figure 11b summarizes our dataset as of August 15, 2020. It has
been collected from 50+ phone models and 58 global operators
over 20+ countries and regions including the USA, China, India,
South Korea, Singapore, France, Spain, Germany, Norway, Hungary,
Egypt, Australia, New Zealand etc. Most data (82%) is collected in
the US (AT&T, Verizon, T-Mobile, Sprint, Google Fi), covering 39
states and 260,000+ miles. The early tests in 2016–2018 only enabled
the control-plane messages and partial user-plane messages. With
MobileInsight’s user-plane features in §4.2, we further enabled full
link/physical-layers messages for cross-layer analytics in late 2018
and afterwards. We ran a large-scale across-the-US driving test in
May - July 2019, resulting in a surge of the dataset size in 2019 Q2.
Analytics methodology: We apply MobileInsight’s new features
in §4 to analyze the mobile network latency. We group our dataset
by quarter/month and device context (phone models, mobility pat-
terns, and locations) and replay them to extract the mobile network
latencies using KPI analyzers in §4.3. As summarized in Table 4,
these KPI analyzers provide simple interfaces to unveil the user-
perceived network latencies from the control plane, user plane, and

Experience: A Five-Year Retrospective of MobileInsight ACM MobiCom ’21, October 25–29, 2021, New Orleans, LA, USA

< 40ms
(40, 60]
(60, 80]
> 80ms

(a) AT&T (1%)

< 70ms
(70, 90]
(90, 110]
> 110ms

(b) AT&T (50%)

< 120ms
(120, 180]
(180, 240]
> 240ms

(c) AT&T (95%)
Figure 12: Ping RTT latency over the US (AT&T).

across planes. They depend on the cross-layer analytics (§4.1) and
sampling (§4.2) for e�cient and accurate KPI extractions. To ana-
lyze the root causes of the latency variations (detailed in §5.1.3), we
further perform the cross-layer analytics in §4.1 over the dataset to
track the signaling procedures at the control plane, IP packet deliv-
ery across link/physical layers at the user plane, and the interplays
between the control and user plane.

5.1.1 What does LTE network latency look like today?
Figure 12 plots ping latency (round-trip time) measured in AT&T
in the past year (Q2 2019 - Q2 2020). Results for other carriers
in the U.S. (Verizon, T-Mobile, Sprint and Google Fi) are similar
and omitted. Unsurprisingly, E2E latency varies over the location
(much worse in freeways, mountain and rural areas than in big
cities). In particular, the 1th (a robust estimate of minimal latency),
50th (median) and 95th percentiles of RTT are below 40ms, 70ms
and 120ms in almost all the cites; But the 1th percentile is > 80ms in
mountain areas and > 40 ms over the freeways across the US. CDFs
are omitted due to space limit. These results are consistent with
other measurement studies by FCC [38, 39], Ookla speedtest [15, 61]
and OpenSignal [62–64], but o�er �ner-grained spatial analysis.

5.1.2 How does LTE network latency evolves over time?
MobileInsight’s KPI analyzers report that, in the past 5 years, LTE
network latency decreases at both control and user planes overall.
At control plane, the signaling protocols take time to establish
the radio connectivity and migrate it in device mobility, before
which all data delivery will be blocked (§4.1). For fair comparison,
we examine the latency evolution in one eastern U.S. city using
AT&T. Similar trends hold for other cities and operators in the
same dataset. Figure 13 shows a 38.2% average latency reduction
in radio connectivity setup, and 48.1% reduction in handover. At
user plane, Figure 14 shows a 50.0% average reduction of the �rst
uplink packet’s delivery latency after radio connectivity setup, and
increment of downlink bandwidth (thus faster transmission).

5.1.3 Why is LTE latency shortened?
To understand the root causes of latency reduction, we perform the
cross-layer analytics in §4.1 over the dataset. MobileInsight reports
diverse causes of the latency reduction on the infrastructure and
device across control and data planes.
Infrastructure-side latency reduction: MobileInsight’s cross-
layer analytics reports continuous re�nements of the operational
infrastructure for lower latency, including (but not limited to)

� Faster signaling processing: For the control-plane signaling
latency in Figure 13, MobileInsight reports no signi�cant reduc-
tion of the radio transmission delay. Instead, the processing delay
of the signaling procedure at the base station and the device are
both reduced. Figure 15a exempli�es this acceleration based on
MobileInsight’s control-plane analytics. By tracking the time of
delivery/receipt of the signaling messages, MobileInsight can infer

 0

 30

 60

 90

17
-Q

3

17
-Q

4

18
-Q

1

18
-Q

2

18
-Q

3

18
-Q

4

19
-Q

1

19
-Q

2

19
-Q

3

19
-Q

4

20
-Q

1

20
-Q

3

L
a

te
n

cy
 (

m
s)

(a) Radio connectivity setup

 0

 40

 80

 120

 160

17
-Q

4

18
-Q

1

18
-Q

2

18
-Q

3

18
-Q

4

19
-Q

2

19
-Q

3

19
-Q

4

20
-Q

1

20
-Q

3

L
a

te
n

cy
 (

m
s)

(b) Handover across cells
Figure 13: Control-plane signaling latency.

 0

 20

 40

19
/0

4

19
/0

5

19
/0

6

19
/0

7

19
/0

8

19
/0

9

19
/1

0

19
/1

1

19
/1

2

20
/0

1

20
/0

2

20
/0

3

L
a

te
n

cy
 (

m
s) MAC Buffering

Transmission

(a) Uplink per-packet latency

 0

 15

 30

17
-Q

4

18
-Q

1

18
-Q

2

18
-Q

3

18
-Q

4

19
-Q

1

19
-Q

2

19
-Q

3

19
-Q

4

20
-Q

1

20
-Q

2

B
W

 (
M

H
z)

(b) Downlink total bandwidth
Figure 14: User-plane latency and wireless bandwidth.

RRC connection request

RRC connection setup accept
RRC connection complete

t3

t2

t1

t3-t2 5ms18ms

2019-09-29
18:18:02.094
18:18:02.149

55ms
18:18:02.154

t2-t1 84ms

t2
t3

t1
2017-09-30

16:51:36.418
16:51:36.502
16:51:36.520

(a) Faster signaling processing

New Location
domain

Session state migration

Authentication response

Location profile update
Location update accept

Old location
domain

Authentication request

Security mode complete

Security mode command

Location update request

Optional
procedures

Mandatory
procedures

(b) Simpli�ed signaling
Figure 15: Shortened control-plane latency in LTE network.
the �ne-grained processing latency at the device and base station.
In this case, the device-side signaling processing latency (t3 � t2)
reduces from 18ms in 2017 to 5ms in 2019. The round trip between
the device and base station (t2 � t1) reduces from 84ms in 2017 to
55ms in 2019. Such reduction of round trip could be due to either the
shorter radio transmission delay or faster signaling processing at
the infrastructure. But the 4G LTE’s standard physical channel allo-
cation ensures 10ms radio latency for signaling messages [19]. So
such signi�cant latency reduction implies faster signaling process
by the base station and device, probably due to the infrastructure
upgrade and advances of hardware in the newer phone models.

� Simpli�ed signaling procedures: In device mobility, optional
control-plane procedures (e.g., re-authentication and temporary
ID re-allocation [25]) can be triggered by infrastructure during
the tracking area update. Recently, MobileInsight reports more
network nodes disable these optional procedures for shorter sig-
naling latency. Figure 15b illustrates this simpli�cation at one lo-
cation in Los Angeles. For this location, we observe less optional
re-authentication procedures if the device is in the connected state.
The infrastructure simpli�es this procedure for low latency, while
stilling retaining reasonable security level since the new location
domain can still derive the new security context from the old ones
with the standard process [21].

� Shorter scheduling interval con�gurations: At user plane, the
uplink latency reduction in Figure 14a is due to control-plane re-
con�guration. As shown in Figure 4b, LTE adopts on-demand uplink
tra�c scheduling. To request radio grants for uplink transfer, the
device should send a scheduling request to base station. This re-
quest cannot be initiated anytime. Instead, the base station uses

ACM MobiCom ’21, October 25–29, 2021, New Orleans, LA, USA Yuanjie Li et.al.

 0

 50

 100

19
/0

4

19
/0

5

19
/0

6

19
/0

7

19
/0

8

19
/0

9

19
/1

0

19
/1

1

19
/1

2

20
/0

1

20
/0

2

20
/0

3

P
D

F
 (

%
)

5ms 10ms 20ms 40ms 80ms

(a) Uplink: Scheduling interval

 0

 25

 50

 75

17
-Q

4

18
-Q

1

18
-Q

2

18
-Q

3

18
-Q

4

19
-Q

1

19
-Q

2

19
-Q

3

19
-Q

4

20
-Q

1

20
-Q

2C
e

lls
 w

/
C

A
 (

%
)

(b) Downlink: Carrier aggregation
Figure 16: Control-plane settings for user-plane delay.

 0

 30

 60

0 500ms 1000ms 1500ms 2000ms 2500ms

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Secondary Cell 2 Secondary Cell 1 Primary Cell

Figure 17: MobileInsight’s carrier aggregation breakdown.

RRC signaling protocol to con�gure periodic physical-layer time
slots for the device to send it1. Before this slot is ready, all uplink
packets are queued in the MAC bu�er and thus delayed. Figure 14a
shows such bu�ering delay dominates the latency of the �rst up-
link packet after radio connectivity setup. As shown in Figure 16a,
since 2019, MobileInsight reports that operators have shortened
the con�guration of this uplink schedule interval. This results in
the signi�cant latency reduction in Figure 14a.

�More bandwidth with carrier aggregation: The user-plane down-
link data transfer in Figure 14b is accelerated by more runtime
bandwidth. This is enabled by LTE’s carrier aggregation, by com-
bining multiple radio frequency carriers. Figure 17 exempli�es the
downlink throughput improvement with carrier aggregation. Mo-
bileInsight reports that, mobile operators continuously enable the
carrier aggregation with more cells. Figure 16b shows the percent-
age of cells with carrier aggregation increases from 7.6% in 2017 to
60.1% in 2020. Note even if a base station is capable of carrier aggre-
gation, it may not always activate it for all users in reality. To save
operators’ bandwidth, whether to enable the carrier aggregation
depends on the users’ runtime tra�c demands. The tra�c variance
results in non-monotonic bandwidth increment in Figure 14b.
Device-side contexts’ impact on LTE latency: MobileInsight’s
device-based analytics also reveal new insights that infrastructure-
side analytics cannot easily observe. By grouping and comparing
the latencies among the devices, we �nd that the device contexts
have a viable impact on the LTE latency. Figure 18 demonstrates
some impacts, including (but not limited to)

�The impact of device mobility: MobileInsight reports longer
network latencies when a device moves faster. Figure 18a compares
the handover disruption latency under di�erent device movement
speed. It shows a device on the high-speed train (200–300 km/h)
su�ers from longer tail latency than a device at lower speed (0–100
km/h). By tracking the control-plane signaling procedures across
the control-plane RRC and user-plane MAC protocols (§4.1), we
�nd this is mainly caused by the frequent handover failures in fast
device mobility. As shown in Figure 19, a fast-moving device may
leave its serving cell’s radio coverage before receiving the handover
command to the next cell. In this case, the device has to re-scan
all available cells to �nd the next cell to connect, thus prolonging
the network service disruption. The faster the device moves, the

1This con�guration is called SR-ConfigIndex in 4G/5G [29, 30].

 0
 20
 40
 60
 80

 100

 0 1 2 3 4 5 6

C
D

F
 (

%
)

Disruption time (second)

200-350km/h
0-100 km/h

(a) Impact of device mobility

 0
 20
 40
 60
 80

 100

201707
201708

201709
201710

201711
201712C

e
lls

 w
/

C
A

 (
%

)

LA WL

(b) Impact of device location

 0

 20

 40

 60

 80

Xpe
ria

 X
Z

Xia
om

i M
I6

M
ot

o
Z2

Xia
om

i M
IX

2s

O
ne

Plu
s
6

Xia
om

i M
IX

2

Xia
om

i M
I5

s
Pix

el

Xia
om

i M
I9

Pix
el
 X

L

Pix
el
 2

Pix
el
 3

M
a

x
ru

n
tim

e
 B

W
 (

M
H

z)

(c) Impact of device types
Figure 18: The device context’s impact on LTE latency.

Handover to cell 2

RRC connection re-establishment

cell 1 cell 2

Lose cell 1’s service
Re-scan all cells

Figure 19: Longer latency under faster device mobility.

more likely this failure would happen. Our traces indicate that, the
handover failure ratio increases from 4.3% at 0–100 km/h to 12.3% at
200–350 km/h, thus resulting in the long-tail latency in Figure 18a.

�The impact of device location: The user-perceived network laten-
cies also vary with locations due to heterogeneous radio coverages,
network capacities and con�gurations. As an example, Figure 18b
shows the percentage of cells with carrier aggregation in Los Ange-
les (LA) andWest Lafayette (WL) in 2017. Despite the variations over
time, Los Angeles typically has more cells with carrier aggregation
than West Lafayette, thus o�ering shorter downlink transmission
delay for devices. A possible explanation is that, carrier aggrega-
tion was a relatively new technology in 2017, so it was �rst widely
deployed in larger cities like Los Angeles in 2017. After three years,
we note West Lafayette now has comparable percentage of cells
with carrier aggregation to Los Angeles.

�The impact of device types: Di�erent mobile devices have het-
erogenous hardware modems and capabilities that a�ect their la-
tencies and bandwidth. Based on MobileInsight’s runtime physical-
layer logs, Figure 18c shows the maximum radio bandwidth allo-
cated for each device. In general, a device with earlier or lower-end
generations of hardwaremodem has less bandwidth and thus slower
data speed. With advanced radio technologies in newer chipsets,
and device can enjoy more bandwidth and less latency at runtime.

5.2 Using MobileInsight in Broader Scenarios
We summarize the experiences of using MobileInsight in broader
scenarios. We review the community users’ diverse incentives, the
diverse use cases, and the lessons of adopting MobileInsight.

5.2.1 Who have incentives to adopt MobileInsight?
As shown in Figure 3, MobileInsight has been used by 350+ aca-
demic and industrial institutes since 2016. Most MobileInsight users
are app developers, researchers, regulators, and mobile operators.

Experience: A Five-Year Retrospective of MobileInsight ACM MobiCom ’21, October 25–29, 2021, New Orleans, LA, USA

For app developers and researchers, MobileInsight enables an alter-
native approach to conduct mobile network R&D without collabora-
tion with the mobile operators. For regulators, MobileInsight allows
them to independently verify the operational mobile networks, with-
out unconditionally trusting the operators. For mobile operators,
although they could conduct analytics with their 4G/5G infrastruc-
ture, they still lack end-to-end analytical results from the end device.
In fact, many user-experienced performances and reliability issues
are invisible from infrastructure-side analytics. MobileInsight �lls
out this gap to complement operators’ infrastructure-side solutions.

5.2.2 How is MobileInsight used in diverse scenarios?
Table 3 shows some representative use cases of MobileInsight by
the community. MobileInsight has been applied to diverse usage
scenarios (Web, video, VR, mobile sensing, remote driving, high-
speed trains, to name a few) to enhance the network reliability,
performance, energy e�ciency, and security. These use cases accu-
mulate various lessons of adopting MobileInsight for device-based,
data-driven mobile intelligence and customization.
The necessity of MobileInsight’s advanced features (§4): As
evidenced in Table 3, the initial MobileInsight design cannot fully
meet the demands from all these usage scenarios. Various tasks
require to study the reliability de�ciencies, performance bottleneck,
energy wastes, and security vulnerabilities across the protocols
at the control and user planes. This justi�es the necessity of Mo-
bileInsight’s cross-layer analytics in §4.1. Besides, many tasks need
e�cient runtime user-plane analytics (e.g., link capacity estimation
[32, 33, 48] and latency reduction [71, 72] for performance boosting)
inside the devices, which motivates MobileInsight to build cross-
layer sampling in §4.2 to meet this demand. Furthermore, we note
that many analytics in Table 3 can be tracked by MobileInsight’s
recent KPI analyzers in §4.3, which helps users simplify their tasks.
The bene�ts with MobileInsight: As shown in Table 3, Mo-
bileInsight has demonstrated its potentials to bene�t a broad range
of usage scenarios. It enables accurate physical-layer link capacity
estimation inside the device, which achieves up to 93% accuracy of
detecting if LTE downlink radio is the TCP bottleneck [32], helps
reduce the web loading time by 30% [76], and improve PSNR by
up to 6dB in WebRTC-based video streaming [48, 75]. It allows for
accurate inference of infrastructure-side handover decision policies
with up to 95% accuracy, which helps prevent unnecessary TCP
degradation on high-speed trains [74] and masks latency at the
application layer. MobileInsight’s cross-layer analytics helps unveil
various de�ciencies of network latency, and helps achieve 2.1–11.5⇥
control-plane latency reduction [54] and 25ms user-plane latency
with �95% probability for VR [71]. MobileInsight helps detect di-
verse network miscon�gurations [36] and policy con�icts [49] some
of which cannot be detected by the infrastructure (e.g., con�icts
among carriers in Google Fi [81]). It also helps unveil network-
induced energy de�ciencies [35], and security threats from call
spoo�ng [37] (with ⇡100% accuracy) and signaling protocols [45].
The limitations of the current MobileInsight: While encour-
aging, users have also reported some scenarios that the current
MobileInsight cannot fully satisfy. First, some useful mobile net-
work information has not been revealed, such as the radio resource
allocation among devices (for congestion control [77]) and the angle

of antenna (for user localization [58]). This could be resolved by ex-
tendingMobileInsight for crowdsourcing analysis among users, and
developing more inference techniques. Second, MobileInsight re-
quires system privilege (root for Android, jailbreak for iOS) to access
the �ne-grained network information, which limits its applicability
to more users [68, 82]. We plan to mitigate this issue by integrat-
ing MobileInsight into the mobile OS as a system application, or
developing rootless inference techniques inspired by MobileInsight
[72]. Last but not least, MobileInsight’s existing cross-layer user-
plane sampling may still not be enough for battery-constrained IoT
devices [80]. We plan to enhance MobileInsight’s future releases
with more IoT-friendly analytics.

6 RELATEDWORK
Mobile network has been one of the most active research areas
for decades. Numerous e�orts have been made to re�ne perfor-
mance [32, 54, 59, 76], resiliency [49, 56, 73, 81], energy e�ciency
[35, 78], operational cost [36, 51, 55], and security [37, 41, 69] in
diverse usage scenarios [40, 60, 66, 75]. This creates great demands
for experimentation and validation with real mobile networks, and
therefore various open platforms such as ORAN [7], Powder [8],
CoLTE [70], srsLTE [10], OpenAirInterface [6], etc. These platforms
largely run in a controlled environment. MobileInsight comple-
ments them with operational mobile network data and analytics.

In the area of mobile network analytics, MobileInsight is also
orthogonal to most solutions today. Traditional analytics reside in
the infrastructure [43, 65]. MobileInsight complements them with
in-device analytics. While QXDM [67], OWL [34], and LTEye [46]
support device-side analytics, they require external hardware (i.e.,
desktop or USRP). X-CAL Mobile [31] and Network Signal Guru [5]
have similar data collection to MobileInsight. But they are mainly a
logger for o�ine analysis, rather than in-device runtime analytics.
To our best knowledge, only MobileInsight o�ers open-source full-
stack, runtime mobile network analytics in commodity devices.

7 DISCUSSION AND CONCLUSION
MobileInsight is the �rst attempt to build an open community tool
that enables in-device, software-de�ned mobile network analyt-
ics. It follows the end-to-end principle to facilitate the shift from
infrastructure-based to device-based mobile network intelligence
and customization. While encouraging, more e�orts are needed
to re�ne MobileInsightfor the community, and by the community.
We conclude this work by summarizing our thoughts of the past,
present, and future of MobileInsight.
Looking back: Rethinking choices inMobileInsight’s design.
MobileInsight’s success is largely attributed to three key choices we
made. First, we aimed at an in-device, software-de�ned solution. This
ensures that MobileInsight can be readily deployed in commodity
phones today, and meet demands from a broader community of
researchers and developers. Second, we decided to keep MobileIn-
sight’s framework simple, modular and extensible. This facilitates
MobileInsight’s continuous evolution and re�nement as shown in
§4. Last but not least, we chose to open-source MobileInsight. This
not only results in wide adoption, but also encourages more users
to contribute to MobileInsight’s development.

ACM MobiCom ’21, October 25–29, 2021, New Orleans, LA, USA Yuanjie Li et.al.

Of course, we also made some sub-optimal choices for MobileIn-
sight. First, MobileInsight took a bottom-up evolution from low-
level analytics to user-friendly KPIs (§3.3). In the early stages of
developing MobileInsight, we focused on implementing a complete
set of low-level analytics features but ignored most users’ real de-
mands for simple APIs for intuitive mobile network analytics. This
unnecessarily complicated the MobileInsight codebase for most
users and delayed its wide adoption. Instead, a top-down evolution
could broaden MobileInsight’s usage, i.e., interview and understand
the users’ speci�c demands for mobile network analytics, enable
the corresponding high-level KPIs �rst to attract more users (rather
than a complete yet complicated low-level primitives), educate
them with hands-on KPI experiences, and then extend MobileIn-
sight to low-level analytics. Second, to enable extensible analytics
plugins, we built MobileInsight with Python because of its script-
like semantics. This turns out to be painful. Without Android’s
native support, we built MobileInsight with a 3rd-party Python-
for-Android package [9]. This caused many unexpected bugs and
slow Python2!Python3migration in MobileInsight’s development.
We are now migrating MobileInsight to Java and C/C++ using An-
droid’s native support, and retain its extensible analytics plugin
with Javascript. Third, MobileInsight was packaged as a standalone
app, which is hard for 3rd-party apps to call and integrate. We plan
to repackage MobileInsight as an Android SDK library to facilitate
3rd-party programming and integration.
Looking now: Potentials and limitations of using MobileIn-
sight for device-based network intelligence. MobileInsight
was originally designed for network analytics only. But it turns
out that, MobileInsight has also facilitated diverse device-based
mobile network customization and intelligence as shown in §5 and
Table 3. These e�orts unveil three general insights on empowering
the device-based network intelligence with MobileInsight:

� Full-stack device-side customization: As a device-side solution,
MobileInsight has the unique advantage of full-stack intelligence,
from app to physical layers. This was not envisionedwhen initiating
the MobileInsight project in 2016. MobileInsight facilitates app-
driven network customization and network-aware app adaptation
that infrastructure cannot. Speci�cally, emergent scenarios (AR/VR,
video surveillance, smart home, IoT, etc.) involve heavy uplink data
transfer. By customizing the uplink network data transfer with
local app information, MobileInsight can help achieve 25ms user-
plane latency with �95% probability for mobile VR [71], reduce
the web loading time by 30% [76], and improve PSNR by up to 6dB
in WebRTC-based video streaming [48, 75]. These improvements
cannot be easily achieved by the infrastructure, which has no full
access to the device-side app demands and uplink tra�c patterns.

� Inferring network-side operations: Even with MobileInsight,
some network-side operations are still not fully visible to devices,
such as the radio resource scheduling and handover decision poli-
cies. In this case, MobileInsight can infer device-perceived operation
logic at best. Such inferred logics are indeed not fully identical to the
ground truth, but they can be still helpful for devices. For example,
with the runtime physical radio resource allocation information
from MobileInsight, [32] achieves 93% accuracy of detecting if LTE
downlink radio is the TCP bottleneck and [48] predicts the uplink

radio bandwidth with the mean error rate as low as 7.67%. These
inferences can guide TCP to avoid unnecessary data rate drops.

� Harnessing from mobility: Device mobility across the network
nodes complicates analytics and optimization. To tackle it, existing
infrastructure-side solutions [43, 65] must coordinate the network
nodes. This is complex or sometimes impossible if network nodes
belong to di�erent operators (e.g., international roaming [55] and
virtual operators like Google Fi [14]). Instead, our experience of
using MobileInsight unveils a unique opportunity to address this
issue: As a single vantage point across network nodes, a device with
MobileInsight can reveal more network-side insights as it moves,
simplify infrastructure-side solutions, or complement them with
insights that network alone cannot gain. For example, with Mo-
bileInsight, [36, 49] can use commodity phones to conduct mobility
miscon�guration analysis for 18,000+ cells and 32,000 handover
instances as the phone moves across base stations, without relying
on these base stations to coordinate or share their local con�gura-
tions. Moreover, in the multi-carrier access such as Google Fi [14]
(which combines T-Mobile and Sprint for better coverage), each
individual operator does not have global view on all others to fully
optimize their network services at the infrastructure side. Instead,
by allowing the device to analyze each carrier with MobileInsight
during its mobility, [50] realizes intelligent carrier selection with
3.74⇥ throughput increment and 1.9⇥ latency reduction, and [81]
resolves Google Fi’s persistent handover oscillations due to the mo-
bility management policy con�icts between T-Mobile and Sprint.
Looking forward: The future ofMobileInsight. MobileInsight
will continue its evolution toward a comprehensive, e�cient, and
user-friendly open community analytics paradigm. In the foreseen
future, we will extend MobileInsight to support upcoming 5G and
cellular IoT technologies2. We will extend MobileInsight to the mo-
bile devices beyond commodity phones, and customize its features
and energy e�ciency for battery-constrained IoT devices (e.g., via
application-driven intelligent sampling). Beyond a single device,
MobileInsight will unleash more network intelligence by crowd-
sourcing massive devices and cooperating with software-de�ned
radios. To scale tomore devices, wewill relaxMobileInsight’s depen-
dency on system privilege by exploring learning-based paradigms
with coarse-grained data. In the long term, we envision MobileIn-
sight could facilitate the users and operators to share their network
knowledge and achieve collaborative mobile network intelligence.
We wish more community e�orts would join us to move toward a
transparent and intelligent next-generation mobile network.

Acknowledgements. We greatly thank our anonymous shep-
herd and reviewers for their constructive comments. We thank all
MobileInsight users for their valuable feedback and suggestions. We
are also grateful to all the participants in the �ve-year longitudinal
study. We thank Zengwen Yuan, Zizheng Liu, Wei Liu, Jiayi Liu,
Jiayao Li and Zhehan Li for their contributions to MobileInsight by
courtesy. Yuanjie Li and Hewu Li are sponsored by the National
Key Research and Development Plan of China (2018YFB1800301)
and National Natural Science Foundation of China (61832013). Oth-
ers are in part supported by National Science Foundation (CNS-
1750953,CNS-1910150, CNS-2008026 and CNS-2027650).

2The latest v6.0 beta release (in Nov 2020) has provided the preliminary support for
5G control plane analytics [13]. More support for 5G, NB-IoT and LTE-M is ongoing.

Experience: A Five-Year Retrospective of MobileInsight ACM MobiCom ’21, October 25–29, 2021, New Orleans, LA, USA

REFERENCES
[1] Android source code for Meadiatek cellular diagnostic mode. https:

//android.googlesource.com/kernel/mediatek/+/android-6.0.1_r0.110/drivers/
misc/mediatek/.

[2] Android source code for Qualcomm cellular diagnostic mode. https:
//android.googlesource.com/kernel/msm.git/+/android-11.0.0_r0.34/drivers/
char/diag/diagchar_core.c.

[3] Android.telephony. http://developer.android.com/reference/android/telephony/
package-summary.html.

[4] iOS baseband commands. https://www.reddit.com/r/jailbreak/comments/37ap5g/
is_there_a_way_to_view_my_baseband_logs_in_i�le/.

[5] Network Signal Guru. https://play.google.com/store/apps/details?id=com.qtrun.
QuickTest&hl=en_US.

[6] OpenAirInterface. https://gitlab.eurecom.fr/oai/openairinterface5g/wikis/home.
[7] ORAN Alliance. https://www.o-ran.org/.
[8] Powder: Platform for Open Wireless Data-driven Experimental Research. https:

//powderwireless.net/.
[9] Python-for-android project. https://python-for-android.readthedocs.org/en/

latest/.
[10] srsLTE. https://www.srslte.com/.
[11] xgoldmon. https://github.com/2b-as/xgoldmon.
[12] Android telephonymanager class. https://tinyurl.com/yjznbh9, 2019.
[13] www.mobileinsight.net, Dec 2020.
[14] Google Fi. https://�.google.com/, 2020.
[15] Speedtest Global Index: United States. https://www.speedtest.net/global-index/

united-states#market-analysis, 2020. Accessed on 07/18/2020.
[16] Dataset of a �ve-year delay study. https://github.com/mobile-insight/

mobicom21-data-release, 2021.
[17] Mobileinsight code repo. https://github.com/mobile-insight, Jan 2021.
[18] 3GPP. TS36.322: Evolved Universal Terrestrial Radio Access (E-UTRA); Radio

Link Control (RLC) protocol speci�cation, Sep. 2012.
[19] 3GPP. TS36.321: Evolved Universal Terrestrial Radio Access (E-UTRA); Medium

Access Control (MAC) protocol speci�cation, Mar. 2014.
[20] 3GPP. TS36.321: Evolved Universal Terrestrial Radio Access (E-UTRA); Packet

Data Convergence Protocol (PDCP) speci�cation, Jun. 2014.
[21] 3GPP. TS33.401: 3GPP System Architecture Evolution (SAE); Security architec-

ture, Jun. 2016.
[22] 3GPP. TS38.322: Technical Speci�cation Group Radio Access Network; NR;

Packet Data Convergence Protocol (PDCP) speci�cation, Jun. 2017.
[23] 3GPP. TS38.321: 5G NR; Medium Access Control (MAC) protocol speci�cation,

Jun. 2019.
[24] 3GPP. TS38.323: 5G NR; Packet Data Convergence Protocol (PDCP) speci�cation,

Jun. 2019.
[25] 3GPP. TS24.301: Non-Access-Stratum (NAS) for EPS, Jul. 2020.
[26] 3GPP. TS24.501: Non-Access-Stratum (NAS) protocol for 5G System (5GS), Jul.

2020.
[27] 3GPP. TS28.554: 5G end to end Key Performance Indicators (KPI), Jul. 2020.
[28] 3GPP. TS32.450: Key Performance Indicators (KPI) for Evolved Universal Terres-

trial Radio Access Network (E-UTRAN), Jul. 2020.
[29] 3GPP. TS36.331: Radio Resource Control (RRC), Jul. 2020.
[30] 3GPP. TS38.331: 5G NR: Radio Resource Control (RRC), Jul. 2020.
[31] A������. XCAL-Mobile. http://www.accuver.com.
[32] B���������, A., B�����, M., M����, R., N������, K., T�����, R., K����, S., ���

S�������, A. Detecting if lte is the bottleneck with bursttracker. In The 25th
Annual International Conference on Mobile Computing and Networking (MobiCom)
(2019), pp. 1–15.

[33] B��, N., M�����������, F., ��� W�����, J. Fine-grained lte radio link estimation
for mobile phones. Pervasive and Mobile Computing 49 (2018), 76–91.

[34] B��, N., ��� W�����, J. Owl: A reliable online watcher for lte control chan-
nel measurements. In Proceedings of the 5th Workshop on All Things Cellular:
Operations, Applications and Challenges (2016), pp. 25–30.

[35] C���, X., M���, J., H�, Y. C., G����, M., H���������, R., E��������, V. N.,
S����, A., ��� S������������, S. A �ne-grained event-based modem power
model for enabling in-depth modem energy drain analysis. Proceedings of the
ACM on Measurement and Analysis of Computing Systems (POMACS) 1, 2 (2017),
1–28.

[36] D���, H., P���, C., F���, A., M���, J., ��� H�, Y. C. Mobility support in cellular
networks: A measurement study on its con�gurations and implications. In
Proceedings of the Internet Measurement Conference 2018 (2018), ACM, pp. 147–
160.

[37] D���, H., W���, W., ��� P���, C. Ceive: Combating caller id spoo�ng on 4g
mobile phones via callee-only inference and veri�cation. In Proceedings of the
24th Annual International Conference on Mobile Computing and Networking (2018),
pp. 369–384.

[38] F������ C������������� C��������� (FCC). Measuring Broad-
band America Mobile 2013-2018 Coarsened Data. https://www.
fcc.gov/reports-research/reports/measuring-broadband-america/

measuring-broadband-america-mobile-2013-2018, 2019.
[39] F������ C������������� C��������� (FCC). Measuring Mobile Broadband.

https://www.fcc.gov/general/measuring-mobile-broadband-performance, 2020.
[40] F�����, X., N������, N., K�����, M. M., M�����, M. K., ��� K�����������, K.

Flexran: A �exible and programmable platform for software-de�ned radio access
networks. In Proceedings of the 12th International on Conference on emerging
Networking EXperiments and Technologies (2016), pp. 427–441.

[41] H������, S., C��������, O., M�����, S., ��� B������, E. Lteinspector: A
systematic approach for adversarial testing of 4g lte. In Network and Distributed
Systems Security (NDSS) Symposium 2018 (2018).

[42] H������, S. R., E���������, M., C��������, O., L�, N., ��� B������, E. Pri-
vacy Attacks to the 4G and 5G Cellular Paging Protocols Using Side Channel
Information. In NDSS (2019), vol. 19, pp. 24–27.

[43] I���, A., L�, L. E., ��� S�����, I. Celliq: Real-time cellular network analytics at
scale. In 12th USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI’15) (2015), pp. 309–322.

[44] J��, Y. J., C���, Q. A., M��, Z. M., H��, J., S�������, K., Y���, A., K����, S.,
��� L��, K. Performance characterization and call reliability diagnosis support
for voice over lte. In Proceedings of the 21st Annual International Conference on
Mobile Computing and Networking (2015), pp. 452–463.

[45] K��, H., L��, J., L��, E., ��� K��, Y. Touching the untouchables: Dynamic security
analysis of the lte control plane. In 2019 IEEE Symposium on Security and Privacy
(S&P) (2019), IEEE, pp. 1153–1168.

[46] K����, S., H����, E., K�����, D., ��� E���� L�, L. Lte radio analytics made easy
and accessible. ACM SIGCOMM Computer Communication Review 44, 4 (2014),
211–222.

[47] L���������, N., B������, N., K���, M. S., C���, M. C., ���H��, J. A stealthy
location identi�cation attack exploiting carrier aggregation in cellular networks.

[48] L��, J., L��, S., L��, J., S�������������, S. D., L��, H., L��, J., Z��, X., R������
������, S., G�������, D., L��, K., �� ��. Perceive: deep learning-based cellular
uplink prediction using real-time scheduling patterns. In Proceedings of the 18th
International Conference on Mobile Systems, Applications, and Services (MobiSys)
(2020), pp. 377–390.

[49] L�, Y., D���, H., L�, J., P���, C., ��� L�, S. Instability in distributed mobility
management: Revisiting con�guration management in 3g/4g mobile networks. In
The 42nd ACM International Conference onMeasurement andModeling of Computer
Systems (SIGMETRICS’16) (Antibes Juan-les-Pins, France, June 2016).

[50] L�, Y., D���, H., P���, C., T�, G.�H., L�, J., Y���, Z., ��� L�, S. iCellular: De�ne
Your Own Cellular Network Access on Commodity Smartphones. In Accepted by
USENIX NSDI (March 2016). Draft available: http://arxiv.org/abs/1510.08027.

[51] L�, Y., K��, K.�H., V������, C., ��� X��, J. Bridging the data charging gap
in the cellular edge. In Proceedings of the ACM Special Interest Group on Data
Communication (SIGCOMM) (2019), ACM, pp. 15–28.

[52] L�, Y., P���, C., D���, H., Y���, Z., T�, G.�H., L�, J., L�, S., ��� L�, X. Device-
customized multi-carrier network access on commodity smartphones. IEEE/ACM
Transactions on Networking 26, 6 (2018), 2542–2555.

[53] L�, Y., P���, C., Y���, Z., L�, J., D���, H., ��� W���, T. Mobileinsight: Ex-
tracting and analyzing cellular network information on smartphones. In The
22nd ACM Annual International Conference on Mobile Computing and Networking
(Mobicom’16) (New York, USA, Oct. 2016).

[54] L�, Y., Y���, Z., ��� P���, C. A Control-Plane Perspective on Reducing Data
Access Latency in LTE Networks. In ACM MobiCom (Snowbird, Utah, USA, Oct.
2017).

[55] L�, Y., Z����, J., L�, Z., L��, Y., Q���, F., B��, S., L��, Y., ���X��, X. Understanding
the ecosystem and addressing the fundamental concerns of commercial mvno.
IEEE.

[56] L�, Y������ ��� L�, Q����� ��� Z����, Z����� ��� B���, G������ ��� Q��,
L��� ��� L�, S�����. Beyond 5g: Reliable extreme mobility management. In
Proceedings of the ACM Special Interest Group on Data Communication (SIGCOMM)
(2020), ACM.

[57] L��, R., K���, D., D����������, S., B�����, K., ��� I�����, L. Investigating
remote driving over the lte network. In Proceedings of the 9th International
Conference on Automotive User Interfaces and Interactive Vehicular Applications
(2017), pp. 264–269.

[58] M���, J., S�����, A., T���, T. X., B��������������, B., J���, G., H�������, M.,
��� H�, Y. C. A Study of Network-Side 5G User Localization Using Angle-Based
Fingerprints. In 2020 IEEE International Symposium on Local and Metropolitan
Area Networks (LANMAN) (2020), IEEE, pp. 1–6.

[59] M����, R., G�������, A., ��� K����, S. Quickc: practical sub-millisecond trans-
port for small cells. In Proceedings of the 22nd Annual International Conference on
Mobile Computing and Networking (2016), pp. 109–121.

[60] M�����, M., S���������, K., C���, E., R���������, S., ���M��, Z. M. Skycore:
Moving core to the edge for untethered and reliable uav-based lte networks. In
Proceedings of the 24th Annual International Conference on Mobile Computing and
Networking (2018), pp. 35–49.

[61] O����. United States: Q1-Q2 2019. https://www.speedtest.net/reports/
united-states/, 2019. Accessed on 07/18/2020.

ACM MobiCom ’21, October 25–29, 2021, New Orleans, LA, USA Yuanjie Li et.al.

[62] O���S�����. USA: Mobile Network Experience Report July 2019. https:
//www.opensignal.com/reports/2019/07/usa/mobile-network-experience, 2019.
Accessed on 08/24/2019.

[63] O���S�����. USA: Mobile Network Experience Report January 2020. https:
//www.opensignal.com/reports/2020/01/usa/mobile-network-experience, 2020.
Accessed on 03/28/2020.

[64] O���S�����. USA: Mobile Network Experience Report July 2020. https:
//www.opensignal.com/reports/2020/07/usa/mobile-network-experience, 2020.
Accessed on 07/16/2020.

[65] P��������� I���, A., E���� L�, L., C��������, M., ��� S�����, I. Mitigating
the latency-accuracy trade-o� in mobile data analytics systems. In Proceedings of
the 24th Annual International Conference on Mobile Computing and Networking
(2018), ACM, pp. 513–528.

[66] Q���, Z. A., W����, M., P����, A., S����, V., R��������, S., ��� S������, S. A
high performance packet core for next generation cellular networks. In Proceed-
ings of the Conference of the ACM Special Interest Group on Data Communication
(2017), pp. 348–361.

[67] �������. QxDM Professional - QUALCOMM eXtensible Diagnostic Monitor.
http://www.qualcomm.com/media/documents/tags/qxdm.

[68] R���, D., ������, J. J., Z�����, A. H., ��� S������, C. J. Beyond throughput:
a 4g lte dataset with channel and context metrics. In Proceedings of the 9th ACM
Multimedia Systems Conference (2018), pp. 460–465.

[69] R��������, D., K����, K., H���, T., ��� P�����, C. Breaking lte on layer two. In
2019 IEEE Symposium on Security and Privacy (S&P) (2019), IEEE, pp. 1121–1136.

[70] S������, S., J������, M., K����������, P., L����, J., ��� H������, K. Ex-
periences: Design, implementation, and deployment of colte, a community lte
solution. In The 25th Annual International Conference on Mobile Computing and
Networking (2019), pp. 1–16.

[71] T��, Z., L�, Y., L�, Q., Z����, Z., L�, Z., ��� L�, S. Enabling Mobile VR in LTE
Networks: How Close Are We? In ACM SIGMETRICS (2018).

[72] T��, Z������ ��� Z���, J������ ��� L�, Y������ ��� X�, Y���� ��� L�,
S�����. Device-Based LTE Latency Reduction at the Application Layer. In
Symposium on Networked Systems Design and Implementation (NSDI) (2021),
USENIX.

[73] T�, G.�H., L�, Y., P���, C., L�, C.�Y., W���, H., ��� L�, S. Control-Plane Protocol
Interactions in Cellular Networks. In SIGCOMM (2014).

[74] W���, J., Z����, Y., N�, Y., X�, C., Q���, F., L�, W., J����, W., C����, Y., C����,
Z., L�, Y., �� ��. An active-passive measurement study of tcp performance over
lte on high-speed rails. In The 25th Annual International Conference on Mobile
Computing and Networking (2019), ACM, pp. 1–16.

[75] X��, X., ��� Z����, X. Poi360: Panoramic mobile video telephony over lte
cellular networks. In Proceedings of the 13th International Conference on emerging
Networking EXperiments and Technologies (2017), pp. 336–349.

[76] X��, X., Z����, X., ��� Z��, S. Accelerating mobile web loading using cellular
link information. In Proceedings of the 15th Annual International Conference on
Mobile Systems, Applications, and Services (2017), pp. 427–439.

[77] X��, Y., Y�, F., ��� J�������, K. PBE-CC: Congestion Control via Endpoint-
Centric, Physical-Layer Bandwidth Measurements.

[78] X�, D., Z���, A., Z����, X., W���, G., L��, X., A�, C., S��, Y., L��, L., ��� M�,
H. Understanding operational 5g: A �rst measurement study on its coverage, per-
formance and energy consumption. In Proceedings of the Annual conference of the
ACM Special Interest Group on Data Communication on the applications, technolo-
gies, architectures, and protocols for computer communication (2020), pp. 479–494.

[79] X�, S., N��������, A., ���M��, Z. M. Leveraging context-triggered measure-
ments to characterize lte handover performance. In International Conference on
Passive and Active Network Measurement (2019), Springer, pp. 3–17.

[80] Y���, D., Z����, X., H����, X., S���, L., H����, J., C����, X., ��� X���, G.
Understanding power consumption of nb-iot in the wild: tool and large-scale
measurement. In Proceedings of the 26th Annual International Conference on
Mobile Computing and Networking (MobiCom) (2020), pp. 1–13.

[81] Y���, Z., L�, Q., L�, Y., L�, S., P���, C., ��� V�������, G. Resolving Policy
Con�icts in Multi-Carrier Cellular Access. In The 24th ACM Annual International
Conference on Mobile Computing and Networking (MobiCom’18) (New Delhi, India,
Oct. 2018).

[82] Y��, C., J��, R., S��, K., Q��, Y., W���, B., ���W��, W. Linkforecast: cellular link
bandwidth prediction in lte networks. IEEE Transactions on Mobile Computing 17,
7 (2017), 1582–1594.

[83] Z����, Z., S��, S., G����, V., ��� J���, R. Analysis of cellular network latency
for edge-based remote rendering streaming applications. In Proceedings of the
ACM SIGCOMM 2019 Workshop on Networking for Emerging Applications and
Technologies (2019), pp. 8–14.

