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ABSTRACT

Hidden screen-camera communication techniques emerge
as a new paradigm that embeds data imperceptibly into reg-
ular videos while remaining unobtrusive to human viewers.
Three key goals on imperceptible, high rate, and reliable
communication are desirable but conflicting, and existing so-
lutions usually made a trade-off among them. In this paper,
we present the design and implementation of ChromaCode,
a screen-camera communication system that achieves all
three goals simultaneously. In our design, we consider for
the first time color space for perceptually uniform lightness
modifications. On this basis, we design an outcome-based
adaptive embedding scheme, which adapts to both pixel light-
ness and regional texture. Last, we propose a concatenated
code scheme for robust coding and devise multiple tech-
niques to overcome various screen-camera channel errors.
Our prototype and experiments demonstrate that Chroma-
Code achieves remarkable raw throughputs of >700 kbps,
data goodputs of 120 kbps with BER of 0.05, and with fully
imperceptible flicker for viewing proved by user study, which
significantly outperforms previous works.

CCS CONCEPTS

• Human-centered computing → Ubiquitous and mo-

bile computing; • Networks→ Mobile networks;
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1 INTRODUCTION

Every day, billions of videos are generated, broadcast, and
watched over electronic visual displays such as phone or
tablet screens, computer monitors, TVs, and electronic ad-
vertising boards. As digital marketing evolves, people con-
tinue to see trends favoring video, especially in the era of
mobile Internet. Today such videos are mainly for viewing
only, but we look forward to an emerging paradigm of si-
multaneous viewing and communication with great demands
to allow movie audiences to refer to a website for more con-
tents, TV programs to convey interactive information, and
advertisers to provide extra details for an advertising video,
all during watching.
If enabled, the new paradigm will reform various exist-

ing applications and foster new possibilities. For example,
it may change the digital advertising industry. Currently,
it is reported that 65 percent of people skip online video
advertising, mainly due to the product placement’s intrusive-
ness [27]. Delivering advertising content by side information
without tampering primary video itself will not only guaran-
tee viewing experience but also enhance user interaction, a
key to attract consumers’ attention according to a recent re-
search [2]. Interactive TV programs and games will also be
renovated, when users can perceive multi-dimensional con-
tents for engagement with high throughput and low latency.

https://doi.org/10.1145/3241539.3241543
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Figure 1: A comparison of state-of-the-art works

All these necessitate a fully-imperceptible, high-rate, and
reliable screen-camera channel to deliver the new paradigm.
A common real-life example towards this paradigm is

Quick Response (QR) code [13]. QR code spatially occupies
a small area in the corner of a screen, or temporally appears
as a large image in the end of the primary video contents.
However, QR code is obtrusive for viewing and inefficient in
terms of data rate.
Recent efforts [28, 35, 38, 42] attempt to enable hidden

screen-camera communication by leveraging two facts: (1)
Due to the flicker-fusion property of Human Vision System
(HVS), human eyes cannot resolve light intensity fluctua-
tions, but instead perceive the averaged luminance when it
alternates beyond a certain frequency of about 40-50Hz in
typical scenarios [14]. (2) Today, many off-the-shelf displays
support 120Hz or higher refresh rates, and commodity smart-
phone cameras can support mega-pixel resolution images at
a high capture rate. The above two facts result in an oppor-
tunity to embed data into high frame rate primary videos
unobtrusively. Leveraging these properties, InFrame++ [42]
achieves high throughput though with noticeable flicker,
while TextureCode [35] and HiLight [28] both ensure invisi-
bility yet at the expense of throughput.

Albeit inspiring, previous works achieve their results due
to different trade-offs required to overcome the challenges
in imperceptible communication and suffer from several lim-
itations. First, perceptible flicker still remains in practice.
Second, the throughput remains low. Third, they cannot rec-
ognize the code reliably under distorted screen-camera chan-
nel. Fig. 1 shows qualitative comparison of state-of-the-art
works. None of previous studies achieve the three goals si-
multaneously. And among them, TextureCode[35] embeds
in only partial frames while ImplicitCode[38] is applicable
to only grayscale videos.

In this work, we aim to achieve all three goals on unobtru-
sive, high-rate, reliable screen-camera communication while
retaining video watching experience to users. Our design
and implementation of embedding data into video frames
excel in three unique aspects. First, we consider for the first

time color space for lightness changes (Specifically, I in HSI
color space, L in HSL color space, Y in YUV color space, or
L∗ in CIE 1976 L∗a∗b∗ color space, etc). The key to relax the
tension between screen-to-camera data communication and
screen-to-eye vision channel lies in the distribution of color
space. Existing solutions, however, never explore along this
direction but use common color spaces to embed bits. How-
ever, we tackle this problem fundamentally different from
others. We explore the color space and make it right at the
beginning with a uniform color space. As color is merely a
subjective feeling of HVS, uniform color space allows better
tolerance of complimentary lightness changes because, by
definition, it is perceptually uniform. Particularly, we adopt
CIE 1976 L∗a∗b∗ color space (a.k.a CIELAB or LAB) [10],
along with CIEDE2000, the latest and most accurate color
difference formula currently available [12].
The second is a full-frame adaptive embedding mecha-

nism. Invisibility is usually guaranteed by using less space
and applying smaller lightness changes. Yet to gain through-
put, data should be embedded in as much space as possible
with appropriate lightness changes for the full frame. Apply-
ing a fixed lightness change over all pixels, however, would
frequently lead to too large perceivable color changes or too
small undetectable color differences, due to a previously un-
noticed fact that an identical lightness change to a pixel does
not necessarily produce the same color differences, depend-
ing on the original lightness and surrounding texture. Differ-
ent from previous works, we manipulate lightness adaptively
for each pixel in an outcome color difference driven manner
and account for both original lightness and texture, which
reduces user-perceivable flicker to minimum while allows
full-frame embedding for high rate transmission.

Third, we achieve reliable high-rate communication. Hid-
den screen-camera channel usually exhibits low signal-to-
noise ratio and thus suffers from significant random and
burst errors. Previous works mainly focus on invisible em-
bedding or high-rate transmission, but pay little attention to
reliability, which is, though, of great importance for practical
applications. To ensure reliable communication, we design
a concatenated error correction code scheme consisting of
Reed-Solomon code and convolutional code, providing high
error-correcting capability. We further devise interleaving
technology to deal with burst errors and propose techniques
to eliminate channel distortions includingMoiré pattern, pro-
jection distortions, rolling shutter effect, etc, which together
yield highly reliable and efficient transmission.

We have implemented ChromaCode on commodity moni-
tors and camera-equipped smartphones and conducted exten-
sive evaluation including user studies. ChromaCode guar-
antees imperceptible flicker under various conditions, con-
firmed by a user study of 20 users. In the meanwhile, Chro-
maCode yields remarkable raw throughput of 777 kbps and



data goodput of 120 kbps, and a low bit error rate (BER) of
0.05, significantly outperforming previous works under the
same conditions. We believe such achievements promisingly
shape a practical technique for the emerging paradigm of si-
multaneous viewing and communication, which will become
more appealing in the near future.

In summary, the main contributions are as follows:

• We introduce for the first time uniform color space for
unobtrusive data embedding. Different from all early
works, we embed bits to pixels using the most accurate
color difference formula CIEDE2000 in a perceptually
uniform color space CIELAB.

• We design a novel adaptive embedding scheme in an
outcome-based philosophy, which accounts for both
pixel lightness and frame texture and ensures flicker
invisibility over the full frame.

• We achieve reliable data transmission by a concate-
nated code mechanism together with multiple tech-
niques to handle screen-camera channel errors.

• We prototype a full systemChromaCode and compare
it with previousworks via experimental evaluation.We
demonstrate that ChromaCode achieves remarkably
higher throughputs and goodputs with significantly
lower BER than previous arts, while guaranteeing bet-
ter viewing experience.

In the following, we first provide an overview of Chroma-
Code in §2. Then we introduce adaptive embedding in §3 and
robust coding in §4. Implementation and experiments are
presented in §5 and §6, respectively. We review the related
works in §7 and conclude in §8.

2 CHROMACODE DESIGN

2.1 Design Goals

We aim to achieve the following goals in ChromaCode.
1) Fully Unobtrusive. The screen-camera communica-

tion channel is visually hidden from users. Neither the em-
bedded images monopolize any screen space (either spatially
or temporally), nor the users perceive any flicker (over the
full screen) when viewing the video.

2)HighRate.High data rate enables transmission of large
volume data and results in low latency, which is critical
to practical real-time interaction applications. A high data
rate should be achieved regardless of the video content. In
particular, we aim at up to 100 kbps, allowing delivery of
e.g., a 1kb URL within 10ms.

3) Reliable. Previous works mainly focus on the compro-
mise between unobtrusiveness and high rate transmission.
In ChromaCode, we further keep in mind robust commu-
nication with low bit error rates. A reliable communication
channel is anticipated under various interferences such as

Figure 2: ChromaCode overall architecture

rolling-shutter effects, Moiré pattern, projection distortions,
screen-camera distances, etc.
All three goals enable side-channel to users and provide

more possibility and flexibility for content providers. How-
ever, it is extremely challenging to simultaneously achieve
the three conflicting goals. For example, reducing lightness
changes for full unobtrusiveness may hurt reliable and high-
rate communication. In contrast, applying larger lightness
changes enhances reliability but may lead to flicker.

2.2 Design Overview

Fig. 2 illustrates the overall workflow of ChromaCode.
ChromaCode employs commodity screens as transceiver
and off-the-shelf smartphones as receiver. The sender takes
primary video together with secondary side information (re-
ferred as video and data respectively hereafter) as inputs.
Data are first encoded by the concatenated error correction
coding scheme. The encoded data are then modulated as an
imagery code, which is adaptively embedded into the primary
video in a visually unobtrusive way, producing the ultimate
output at the sender (displayed on the screen and streamed
over the screen-camera channel).
On the receiver side, a video clip is captured by camera.

The receiver first extracts the embedded imagery code from
the captured video frames by code detection. The extracted
code is then demodulated and decoded, recovering the embed-
ded bits. During the entire receiving procedure, users can
normally watch the video, without feeling affected by the
screen-camera transmission.
The core of ChromaCode is to address two tensions: (1)

unobtrusive and high-rate bit embedding, and (2) high-rate
and reliable communication. For the first one, we tackle it
through spatially adaptive embedding in uniform color space
(§3). For the second one, we address it by concatenated code
and robust code detection (§4).

3 UNOBTRUSIVE BIT EMBEDDING

In this section, we discuss how to invisibly embed data
frames, in the form of image codes as shown in Fig. 5, into
normal videos without affecting the viewing experience. We
first assume we already have the data frames (consisting 0
and 1 data bits as white and black cells) for embedding and
leave its generation and modulation to next section.
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3.1 Bits Embedding to Pixels

Inspired by previous works [42], we also embed data frames
by altering the lightness of carrier video, exerting a series of
time-variant high-frequency lightness changes that are im-
perceptible to human eyes yet detectable to cameras. Briefly,
the carrier video is first multiplexed into a high frame rate
of, e.g., 120 frames per second (fps). Each data frame is ren-
dered by a pair of successive frames with contrary lightness
changes ±∆L, i.e., increasing the pixel lightness of the first
frame by a certain value and decreasing that of the subse-
quent frame by an identical amount (or in reverse). This
results in two complementary frames that visually cancel
out each other’s lightness changes thanks to the flicker fu-
sion property of HVS. Yet in the meanwhile, they still can
be captured by cameras with high capture rate, allowing
extraction of the carried data bits.

Despite the intuitive philosophy, in practice however, var-
ious factors may cause flicker perception, such as frame rate,
primary video contents, color space, etc. In the following,
we present our novel design that enables fully imperceptible
embedding, without degrading the transmission capability.
Overall, we consider perceptual flicker regarding three fac-
tors: color space, pixel lightness, and texture complexity.

3.2 Color Space Selection

All existing works directly use common color spaces like
YUV for lightness modifications, without examining the po-
tential gains in using different color space [28, 35, 38, 42].
As colors are relevant to human psycho-perception (In fact,
colors are not physical existence but merely subjective feel-
ings of HVS [37]), exploring a better color space can greatly
relieve the tension between unobtrusiveness and high-rate
communication.

There are many color spaces designed with a lightness di-
mension, such as HSI, HSL, CIELAB, etc. In ChromaCode,
we target at a space that well suits human vision system, es-
pecially in lightness dimension. Such a color space should
ensure perceptual uniformity, which means that under its
lightness definition, increasing or decreasing the lightness

by ∆L should result in about the same visual color differ-
ences and thus similar perceptual changes. Only by such
condition can the eye-perceived average lightness of contin-
uous changes from L + ∆L to L − ∆L be exactly equal to L,
thus enabling flicker-free communication.

According to prior psycho-visual studies [19, 26], uniform
color spaces are the most promising towards our goal be-
cause, by definition, they are more perceptually uniform,
which means a change of the same amount in a color dimen-
sion produces a change of about the same visual importance.
We experimentally validate such benefits of uniform color
space. Fig. 3a and 3b depict the perceptual uniformity un-
der HSL, a non-uniform color space, and CIELAB, a uniform
color space respectively. In both cases, the original colors
(middle of the each sector) are of the same saturation (100%)
and lightness (50%), but are different in hue ranging from
0◦ to 300◦. For each original color, we increase and decrease
the lightness (outer and inner sector) by the same amount
(∆L = 4%). As seen, given the same lightness changes, the
resulted color differences are considerably more uniform in
CIELAB space, regardless of the hue values. Similar results
are observed in Fig. 3c and 3d where we keep hue (120◦) and
saturation (100%) unchanged and alter lightness dimension
from 10% to 90%.

Therefore in ChromaCode, we select CIELAB color space
for lightness modification, which describes perceivable col-
ors with three dimensions L∗ for lightness, a∗ for red/green
color opponent and b∗ for yellow/blue color opponent.
CIELAB is a representative uniform color space with the
latest and most accurate color difference formula CIEDE2000
applicable [10, 12]. It can be converted easily from commonly
used spaces like the RGB space. Concretely, we first convert
each pixel in the original color space (e.g., RGB or YUV)
into the CIELAB color space, modify its lightness, and then
convert it back to the original color space for display. This
conversion process is necessary because the required chang-
ing values in RGB color space cannot be decided without
firstly counting for the lightness change in CIELAB color

1Figure size and PDF compression may influence the perception. Refer to
online examples for better viewing: https://walleve.github.io/ChromaCode/

https://walleve.github.io/ChromaCode/
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space. Precision losses between color space conversions af-
fect perception little and can be ignored.

3.3 Spatially Adaptive Embedding

Intuitively, we can simply apply a uniform lightness change
value to a whole video frame as done in [35, 42]. However,
noticeable flicker still frequently remains under such modifi-
cations due to two folds of reasons: First, depending on the
specific original pixel lightness, an identical lightness change
may produce different outcome color differences. Second,
video contents upon which the data frame is embedded affect
perceivable flicker. In particular, video regions with smooth
texture are more sensitive to lightness changes. Thus apply-
ing a fixed lightness change value over a full video frame
may lead to regional noticeable flicker.

These limitations motivate us to design an outcome-based
spatially adaptive embedding scheme for lightness modifica-
tions, targeting at ultimate outcome of color difference and
accounting for primary video contents.

3.3.1 Outcome-based Lightness Change Derivation. In con-
trast of lightness-change-driven principle adopted in pre-
vious works [28, 35, 42], we propose to design an outcome
(i.e., color difference) based lightness modification scheme.
Specifically, rather than applying a certain lightness change
and anticipating certain color difference as output, we first
specify the desired color difference and then calculate the
required lightness changes for the color difference.

Denote ∆E00 as the expected color difference. To gain the
best uniformity in eye perception, we calculate the color dif-
ference ∆E00 of a pair of color values in CIELAB space using
the CIEDE2000 formula, the most accurate color difference
formula currently available suggested by CIE [12]:

∆E00=

[( ∆L′
kLSL

)2
+
( ∆C ′

kCSC

)2
+
( ∆H ′

kHSH

)2
+
RT∆C

′∆H ′

kCSCkHSH

] 1
2

where ∆L′, ∆C ′ and ∆H ′ are corresponding lightness,
chroma and hue differences, SL , SC , SH and kL , kC , kH are re-
spective weighting functions and parametric factors, and RT

is a rotation function. As we only modify L∗ and keep a∗ and
b∗ unchanged, both ∆C ′ and ∆H ′ here equal 0. The above
formula can be simplified as:

∆E00 =
∆L′

kLSL
. (1)

Then the lightness change ∆L′ required to achieve color
difference ∆E00 can be derived as ∆L′ = kLSL∆E00 with kL =
1 recommended by CIE [12] and

SL = 1 +
0.015(L̄∗ − 50)2√
20 + (L̄∗ − 50)2

, (2)

where L̄∗ denotes the average lightness value, which
equals to the original lightness in ChromaCode as we in-
crease/decrease it by the same amount. Then for a specific
pixel at position (i, j) of a video frame, the lightness change
for a color difference of ∆E00 is:

∆L∗1(i, j) = kL

[
1 +

0.015(L∗(i, j) − 50)2√
20 + (L∗(i, j) − 50)2

]
∆E00, (3)

where L∗(i, j) is the original pixel lightness. As long as an
appropriate color difference ∆E00 is specified, we can have
the required lightness change value ∆L∗1(i, j).
Eqn. 3 indicates that the required lightness change value

∆L∗1 for a specific color difference ∆E00 depends on the orig-
inal lightness L∗ and that the same lightness change value
based on different original lightness will output different
color differences, demonstrating insufficiency of conven-
tional lightness modification approaches without consider-
ing original pixel lightness. Previous researches [29] suggest
that ∆E00 should be below 6.0. We evaluate impact of ∆E00 on
flicker invisibility in §6.2 and give its recommended values.

3.3.2 Texture-based Lightness Change Adaptation. Prior re-
search has demonstrated that video texture affects perceptual
lightness changes [16]. In particular, as depicted in Fig. 3e, ac-
cording to our experimental measurements, smooth regions
usually expose noticeable flicker more easily while textured
regions help hide flicker. Hence adjusting ∆L∗1(i, j) in Eqn. 3
by accounting for regional texture complexity will further
relieve noticeable flicker especially in less textured regions.
Yet different from TextureCode [35] that only selects some
parts of a video frame for embedding and directly discards
other regions, our method seeks for appropriate lightness
changes over the whole frame, retaining its full capability
for transmission.
We adopt gray level co-occurrence matrix [39], a typi-

cal method for image texture measures, for this purpose.
For a co-occurrence matrix M , each element M(i, j) indi-
cates the frequency within a set of image values (i.e., gray
level) that value i co-occurs with value j in certain spatial
relationship called displacement vector. Based on gray level



co-occurrence matrix, different metrics have been defined to
reflect texture complexity more precisely, such as energy, en-
tropy, contrast, etc [22]. Here we use and compute contrast
as follows.

We apply a 9×9 pixel sliding window to a video frame and
generate regional gray level co-occurrence matrix, using L∗
of pixels in this region to represent the gray level. As shown
in Fig. 4, let Contrast(i, j) be the calculated contrast from
the gray level co-occurrence matrixM(i, j) generated under
a 9 × 9 region centered at pixel (i, j). Denote S(i, j) as the
amount of valid pixels covered by the sliding window. For
most circumstances S(i, j) = 9 × 9 = 81, except when part of
the sliding window moves out of the bound of a video frame
so that S(i, j) will be smaller. Then we have the normalized
texture complexity near pixel (i, j) as:

Texture(i, j) =
Contrast(i, j)

S(i, j)
. (4)

A larger Texture(i, j) indicates more complicated texture
near pixel (i, j). Suppose the maximum Texture(i, j) over a
whole video frame is TextureMax . We define a lightness
scaling ratio α as:

α(i, j) =
Texture(i, j)

TextureMax
× (1 − k) + k . (5)

This maps Texture(i, j) to α(i, j) ∈ [k, 1], where k is the
minimal scaling factor and can be set to a certain value.
Then we refine the ultimate lightness modification amount
∆L∗2 as:

∆L∗2(i, j) = ∆L∗1(i, j) × α(i, j). (6)

As seen, ∆L∗2 is scaled down from ∆L∗1 in smooth regions
with smaller Texture(i, j).

We then use ∆L∗2(i, j) as lightness modification amount for
complementary pixels at position (i, j). For one pair of pixels
at position (i, j) in two complementary frames, we apply a
respective lightness change of ±∆L∗2(i, j) to them to embed
information bit ‘1’ and apply ∓∆L∗2(i, j) for bit ‘0’. By doing
this, we successfully embed the data frames intended from
streaming into the primary video frames, without impairing
the viewing quality for display.

4 RELIABLE DATA TRANSMISSION

Data transmission is achieved by decoding the slight light-
ness changes of received video captured through the screen-
to-camera channel. Besides the primary video contents, vari-
ous factors may lead to channel errors, such as projection
distortions, blurring, Moiré patterns, rolling shutter effects,
etc. In this section, we present how to overcome these chal-
lenges and address the tension between high rate and reliable
communication over the noisy screen-to-camera channel.

Data blocks Code preamble blocks
Black-and-white linesBlack border

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

Figure 5: Data frame

4.1 Encoding and Modulation

4.1.1 Data Segmentation. A single data frame (image code
as in Fig. 5) can hold only limited amount of data bits. Thus
streaming data need to be segmented into different segments,
each containing K bytes for one data frame. We design the
segment header as simple as possible to reduce the amount
of non-data bits. As shown in Fig. 6a, the segment header
contains 3 bytes, the first two for segment sequence number
and the last for checksum. The checksum is simply com-
puted as the XOR sum of all data bytes and the two sequence
number bytes.
Besides the three bytes, a payload length field is also

needed to allow different code sizes. The payload length
field is marked by a variable length of L = 1 ∼ 4 bytes,
depending on segment length K (Fig. 6b). Here we use a vari-
able length in purpose of remaining as more capacity for
data bits as possible.
Supposing the capacity of a single data frame is C , we

can derive the required L for the largest payload length and
thus determine the largest group length K = C − L. The
capacity is determined by data frame size. In this work, we
define 40 different sizes of data frame, allowing for various
requirements of code capacity. For each data frame size Ck ,
the data frame covers 12k bits in width, and 12k × 9/16 bits
in height, where k ∈ [1, 40].

4.1.2 Concatenated Error Correction Coding. To deal with
random channel errors, a common error-correcting mecha-
nism used in visible light communication is systematic code
like BCH code, Reed-Solomon (RS) code, etc [42, 43]. Despite
its stable error-correcting capability, RS code requires de-
terministic input for hard-decision decoding. Therefore, the
performance may degrade due to channel distortions.

To deal with the noisy channel, we consider convolutional
code commonly used in wireless communication, which per-
forms maximum likelihood soft decision decoding. It doesn’t
require each bit’s definite binary value, but instead only uses
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Figure 6: Data segment header structure

each bit’s distance to ‘0’ or ‘1’. This feature is especially ben-
eficial to screen-camera channel where the received data
(captured video) may be noisy due to channel distortions.
The limitation, however, lies in its unstable error correcting
capability related to input data bits, error position, etc.
Fortunately, we notice that RS code and convolutional

code complement each other in advantages and drawbacks.
To leverage the advantages of both codes and overcome
each other’s shortcomings, we design a concatenated error
correction code that employs RS code as outer code and
convolutional code as inner code, which is commonly used
in radio communications [20].

As shown in Fig. 7, to apply RS coding, the input data bits
are divided into multiple units, whose length is determined
by RS encoder’s parameter, i.e., length of data bits. For each
unit, we apply RS coding (outer code) and add parity bits
to the data. After that, we merge these units together and
pass them through the convolutional encoder (inner code),
resulting in encoded data bits. By concatenated encoding,
the receiver can not only benefit soft decision decoding from
convolutional code, but also enjoy high error-correcting ca-
pability of RS code to correct those data bits that are not
correctly decoded by convolutional code.

Both the input/output ratios of RS code and convolutional
code can be changed to achieve different error-correcting ca-
pability. In this work, we design 4 ratios for RS code and 2 for
convolutional code, resulting in 8 different error-correcting
levels for different scenarios. In this paper, we denote error
correction level of convolutional code as (N ,K ,L), and that
of RS code as (N ,K), with N being output symbol rate, K
being input data rate, and L being constraint length.

4.1.3 Interleaving and Data Frame Assembling. Finally the
encoded data is rendered as an imagery code for embedding.
Fig. 5 illustrates the overall structure of our imagery design
for a data frame. It involves three types of basic elements,
i.e., cell, the basic operation unit comprised by several pixels
for one bit, block made from multiple neighboring cells, and

Figure 7: Concatenated Error Correction Code

line, a specially featured block formed by a column or row
of cells.
(1) Code Borders. The outmost fringe of the data frame

is comprised by a rectangle with black edges. Next to it is a
rectangle consisting of four intermediate black-and-white
featured lines with one cell width. Together with another
3 horizontal and 3 vertical such lines crossing the rectan-
gle, they partition the whole frame into 16 blocks (i.e., data
blocks). These featured code borders are intended for code
detection and localization, as well as data block recognition.
The specially designed black-and-white patterns are also
preserved for handling rolling shutter effects (§4.2.1) and
lightness normalization (§4.2.2).
(2) Code Preamble Blocks. Inside the black-and-white

borders are filled by a round of repeated square blocks (4×4
cells) intended for code preamble information. Particularly,
as shown in Fig. 8, code preamble information include 2 bits
for segment sequence number (the last two bits of segment
sequence number after segmentation, remained for handling
rolling shutter effects as will be detailed below), 2 bits for RS
code error correction level and 1 bit for convolutional code
error correction level. We apply BCH coding to generate 10
parity bits for these 5 bit information, occupying 15 bits in
total. The remaining 1 bit in the code preamble block is used
as the checksum for the above-mentioned 15 bits. In addition
to the strong error-correcting code, we further repeat the
16-cell block for many times in the data frame (Fig. 5) to
ensure successful delivery of the code preamble information,
which is critical to decoding at the receiver side.

(3) Data Blocks. All the remaining space except for the
above two parts are used for rendering the encoded data bits.
Since screen-camera channel may suffer from burst errors
due to rolling shutter effects and primary video contents,
which means some continuous areas encounter errors. Burst
errors will degrade the error-correcting capability of both RS
code and convolutional code. To alleviate it, we borrow in-
terleaving technique from radio communication to disperse
potential burst errors such that error correction code can
deal with them as random errors. To apply interleaving, we
partition the data space of a data frame into 16 equally sized
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blocks, each containing a certain number of cells determined
by the specific code capacity. The blocks are filled with the
encoded data bits in an iterative column-by-column manner,
with black representing 1 and white representing 0. Specif-
ically, we place the first 16 bits of the encoded data bits at
the first left-top pixel of each data block respectively, in the
order as indicated by Fig. 5. We repeat this procedure for all
data bits, while during each iteration, we shift the pixel posi-
tion to the next on the right (or the left first of the next row
if current row is fulfilled). When all encoded data bits are
rendered, an imagery code is produced as the data frame.
The data frame is then invisibly modulated onto the pri-

mary video frames for transmission by adaptive embedding,
as stated above in Section 3. The resulting video is then dis-
played on the screen, delivering to users as normal video yet
to cameras as embedded frames.

4.2 Demodulation and Decoding

Here we discuss data decoding and demodulation assuming
that embedded video frames are available and code positions
in the frames are detected, and postpone how to extract
embedded frames from the captured video and detect code
positions to next section.

4.2.1 Demodulation. When code positions are recognized,
the data frame can be obtained by subtraction over two com-
plementary video frames in lightness dimension. Note that
ChromaCode supports dynamic primary video contents.
Even for dynamically changing video frames, we notice that
the adjacent frames are mostly similar, allowing our subtrac-
tion mechanism to work. As a pair of complementary frames
possess the same video content, only positive and negative
lightness values remain after subtraction, which reflects the
received data frame. Ideally, if the channel is perfect, this re-
ceived data frame will be exactly the same with what was
embedded at the sender side. However, significant biases
exist as the captured video has undergone various channel
distortions including imprecise code positions, rolling shut-
ter effects and so on. In this subsection, we present how to

precisely recognize the code and deal with rolling shutter
effects.

Code Recognition. The first step of demodulation is to
recognize code capacity, which determines the size (width
and height in pixels) of a cell. We also need to resolve the
code positions as precisely as possible, especially when code
boundary detection (§5) causes potential errors. We achieve
precise code positioning and recognition jointly by looking
into the four featured black-and-white border lines as shown
in Fig. 5.

Recall that we have defined 40 ranks of code capacity, with
a gap of 12 cells in width between adjacent ranks. Each rank
is specified with a fixed aspect ratio of 16:9. Hence we can
simply vote among the 40 candidate patterns by evaluating
how each of them agrees with the captured patterns. For
each of the four lines, denote д1,д2, ...,дN as the extracted
lightness values of the N pixels it covers. Supposing the line
should contain K cells under a specific code capacity, we can
calculate a corresponding similarity S as:

SK =
1
N

����� N∑
i=1

дi (−1)

⌊
(i−1)K
N

⌋ ����� (7)

Exceptions are for left and right vertical lines, for which
the lightness may be reversed due to rolling shutter effect.
Suppose the rolling shutter happened at the jth pixel, then
the true similarity SK should be revised as:

SK =
1
N

����� j−1∑
i=1

дi (−1)

⌊
(i−1)K
N

⌋
−

N∑
i=j

дi (−1)

⌊
(i−1)K
N

⌋ ����� (8)

Since we do not know the true j at this moment (next sub-
section will present how to infer the exact j), we choose
j ∈ [1,N ] that maximizes SK in Eqn. 8.
We sum up the SK from all four lines and compare the

sums for every possible code capacity. The code capacity
that yields the largest similarity is then selected. As adjacent
capacity ranks are 12 cells apart, we can find the correct code
capacity confidently.

Once we have the code capacity information, the cell size
in pixels as well as the data block positions are also known.
Then we compute the lightness of each cell as the averaged
value over all pixels within the cell, which will be used for
soft-decision decoding in §4.2.2 after eliminating the impacts
of rolling shutter effect.

Rolling Shutter Effect Correction. When recording a
picture or a video frame, modern cameras don’t capture
a snapshot of the entire scene instantly at one time, but
instead scan the scene line-by-line horizontally, which is
the well-known rolling shutter effect [33]. As a result, the
pixels of different rows in one image are actually captured
at different time instants. In ChromaCode, cameras capture
video frames at the same frame rate as video displays on
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screen. Therefore, one frame captured by the camera may in
fact come from two successive video frames played on the
screen, with one dimmed horizontal line dividing them, as
shown in Fig. 9. Upper the line is the previous frame while
lower the line is the subsequent frame. This will lead to
reversed lightness difference when taking the subtraction of
two frames. In addition, the line itself is dimmed, leading to
burst errors around it.
Albeit we have employed interleaving technique in the

encoding scheme to alleviate unpredictable burst errors, we
particularly correct rolling shutter effect before decoding.
Recall Section 4.1.3, we have designed 5 specially featured
vertical black-and-white lines in our code (See Fig. 5). We
can identify where the rolling shutter exactly happened by
examining from where the sequenced black and white cells
are inverted. To detect that position, we can simply reuse the
similarity formula in Eqn. 8, while we denote д1,д2, ...,дn as
the average lightness of each cell and n as the number of
cells contained in each line. The calculated similarity S j will
reach its maximum when j is the exact cell where rolling
shutter happened, because for any other j there will always
be some mismatches between the captured lightness and
the predefined black and white sequence. Therefore, the
position of rolling shutter is estimated as ĵ = arдmax jS j .
Each of the 5 vertical featured lines can output an estimate
of the position. We then interpolate among the 5 estimates to
derive the ultimate position, and revert the lightness change
values below that position. By doing so, the impacts of rolling
shutter effects are corrected.

4.2.2 Decoding. Normalization. After demodulation, we
have the received data frame with corrected lightness for
each cell. Ideally, each positive lightness value shall repre-
sent bit ‘1’ while negative represents bit ‘0’ (or vice verse). In
practice, however, due to screen-camera channel distortions,
there may be significant lightness offsets, making this sim-
ple strategy infeasible. To combat lightness distortions, we
normalize the subtracted lightness values to [0, 1] and em-
ploy soft-decision decoding to leverage their tendency to bit
‘1’ or ‘0’.

Again we take the featured black-and-white lines as refer-
ences for lightness normalization over the data frame. Par-
ticularly, we use the median lightness of all black and white
blocks on these featured lines as reference values for bit 1
and 0, denoted as R1 and R0 respectively. Denote the light-
ness of the data cell centered at (i, j) as ∆L(i, j). Then we
normalize ∆L(i, j) to ∆L′(i, j) by:

∆L′(i, j) =


1 v > 1
v 0 ≤ v ≤ 1
0 v < 0

(9)

v =
∆L(i, j) − R0

R1 − R0
(10)

By Eqn. 9, we map each cell’s lightness to a value within
[0, 1], which is sufficient for our soft-decision coding scheme,
without the need to force them to binary values of 1 or 0.

Convolutional Decoding and RS Decoding. We read
normalized lightness of each data cell in the same order as
interleaving during encoding process, leading to a sequence
of data values between [0, 1]. Then we identify the preamble
blocks and extract code preambles including segment se-
quence number, RS code and convolutional code correction
levels. With the data sequence and code preamble informa-
tion, decoding basically works in two steps: First, we decode
the inner convolutional codewith Viterbi decoding algorithm
[41], which, in brief, seeks for a Viterbi path of most likely
sequence in terms of certain distance metric. This step takes
advantages of its soft-decision decoding property, which cal-
culates code distances from the normalized lightness values
to 1 or 0 but not quantize them by a hard threshold of, e.g., 0.5.
After that, we conduct RS decoding upon the decoded out-
put of convolutional decoding, and finally obtain the original
segmented data.

5 IMPLEMENTATIONS

We have developed data frame embedding program on com-
puters as the sender, as well as Android application on smart-
phones as the receiver. To embed codes in normal video
at sender, we use FFmpeg [1] tool to duplicate primary
video frames to 120fps as well as compress the modulated
video frames into the final ready-to-transmit video. We use
MediaCodec[3] from Android API for hardware video decod-
ing at receiver. We do image processing with Qt[6] at the
sender and OpenCV[5] at the receiver. 2 In the following,
we discuss some implementation details that address several
practical challenges.

Data Frame Localization. Unlike InFrame++ [42] that
uses visible locators and invisible alignment patterns around
data frame borders for code block localization, which affects
2All our implementation and the following evaluation programs and data
are available upon request.



Table 1: Representative primary video clips and tags used in the experiments

Zootopia (Z) [8] Football (F) [7] GTA V (G) [7] Minecraft (M) [7] Town (T) [7]

Texture Plain Textured Textured Textured Plain&Textured
Switching Gradual Gradual&Sharp Sharp Gradual Gradual
Luminance Bright Bright Dark Bright Dark
Quality SD SD HD HD SD

video watching experience and shrinks precious code embed-
ding spaces, we perform full-screen data frame embedding.
The code borders are the same as the video borders, and also
the same as the monitor inner border (we assume the com-
mon case that video is playing at full-screen mode). Thus
we can perform code localization by detecting the screen
border, without any extra visible locators or patterns. There
are already mature techniques for screen border detection.
In ChromaCode, we combine Canny algorithm [15] and
Hough transform [23] for this purpose.

Handling Channel Distortions. We also overcome sev-
eral screen-to-camera channel distortions that may cause
burst errors and noises for data transmission.

1) Projection Distortions. Geometric distortion is a unique
challenge of screen-camera channel, which is due to the un-
parallel camera plane and screen plane, i.e., an angle exists
between them. Therefore the boundary of captured video
frames are not regular rectangles but distorted quadrilat-
erals. ChromaCode addresses this issue by recovering the
distorted frames via projection transformation under homo-
geneous coordinates [17].

2) Moiré Pattern. Images taken from an electronic display
with a digital camera may exhibit Moiré patterns because
both electronic screens and digital cameras display or cap-
ture images by line-by-line scanning [4]. Moiré patterns will
blur the captured frames and act as noises to screen-camera
channel, preventing precise code block recognition. Fortu-
nately, as Moiré patterns usually occur at relatively high
frequency [46], they can be eliminated by low-pass filter-
ing. In ChromaCode, we apply Gaussian smoothing to the
received frames to attenuate high-frequency components,
which is demonstrated to effectively overcome Moiré pat-
terns.

6 EXPERIMENT EVALUATION

6.1 Experimental Methodology

Our evaluation contains two major parts, a user study that
evaluates the user perceived data hiding quality and a data
transmission benchmark that demonstrates the throughput
and BER under various conditions. For both evaluation, we

implemented two related schemes, InFrame++ [42] and Tex-
tureCode [35], for comparison.

Experiment Settings.We use a DELL XPS 8900-R17N8
desktop as the sender for video generation and playing,
which has a GeForce GTX 745 graphic card that supports
hardware video acceleration for efficient 120fps video play-
ing and an AOC AGON AG271QX 27 inch monitor that sup-
ports 120Hz refresh rate. The screen resolution is fixed to
1920×1080. By default the receiver is run as an App on a
Nexus 6P smartphone. Note that the camera frame rate is
not necessarily the same as the screen refresh rate. Any cam-
era that supports a capture rate equal to or higher than the
screen refresh rate can work as the receiver.

Video Selection. We select a group of videos as primary
videos for experiments. A key consideration is to find a set
of representative videos with various characteristics, e.g., in-
corporating both plain and textured frames, involving both
sharply and slowly switching scenes, containing both dark
and bright scenarios, and covering both high definition (HD)
and standard definition (SD). Accordingly, we choose 10 dif-
ferent videos for experiments. Table 1 shows screenshots of
5 representative video clips and their characteristics. Reso-
lutions of HD videos are all 1920×1080, while those of SD
videos are relatively lower. Besides, ChromaCode supports
4K video as long as sufficient 120 fps 4K video playing is
supported by the graphic card.

Comparative Approaches. As we do not have access to
the source codes of InFrame++ and TextureCode, we make
our own implementations according to their paper. Texture-
Code uses YUV color space for lightness modification. In-
Frame++ authors did not clarify what color space they use.
However, as their sender is mainly implemented in GPU, we
speculate it uses YUV color space as well since GPUs com-
monly use YUV color space. TextureCode additionally faces
a major issue that code positions are unknown to receiver,
for which they simply assume that the receiver already has
the knowledge from the sender. In our implementation, we
follow the same settings for TextureCode.

User Study. We invited 20 participants with 8 females
and 12 males ageing in range of 20 to 40 with healthy vision
conditions to watch 67 experimental videos under various
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Figure 10: Impact of video sources

conditions and assess on the data hiding quality according to
their watching experience. They are asked to score the per-
ceived flicker level by 5 grades from 1 to 5, where 5 indicates
completely imperceptible, 3 means slightly perceptible but
not affecting much the watching experience, and 1 indicates
severely affected watching experience. To reduce score bias
among different users, we provide sample videos of score 1
to 5 for their references. Users are told to watch the videos
normally as they usually do. They are not required to remain
static during watching.
The experiment videos are displayed to users in a fixed,

previously randomized order. To eliminate the interferences
of the diversity of primary video qualities on the flicker
level and avoid psychological implications, we mix primary
videos with their embedded versions for user assessment
and then calculate the relative score of each video as score =
score_embedded/score_oriдin × 5, where score_oriдin and
score_embedded indicate the respective scores users gave on
the video before and after embedding. If score > 5 (which
means score_embedded > score_oriдin), we let score = 5.
Data Transmission. We conduct experiments to evalu-

ate the throughput and BER and study the impacts of various
factors and environment conditions. We use three metrics.
1) Data goodput (goodput or G_Data hereafter): the effec-
tive throughput of correctly decoded data bits, which is the
ultimate goal for data communication; 2) Raw throughput
(throughput or T_Raw hereafter): throughput accounting for
all received bits, which is, albeit not achievable in practice
due to errors, useful for indicating the upper bound of poten-
tial throughput; 3) Bit error rate (BER): the number of error
bits divided by total received data amount.

6.2 ChromaCode Performance

By default, we set ∆E00 = 2.0, k = 0.5, data cell size as
10×9, convolution code error correction level as (3, 1, 5), RS
code error correction level as (30, 11), and test at typical
watching/recording distance 50 cm. Under default settings,
ChromaCode achieves remarkable throughput of 777 kbps
and goodput of 120 kbps, with a BER of 0.05. Note that the
ultimate goodput is much smaller than the raw throughput.
This is because the concatenated code occupies a significant
portion of channel capacity for parity bits, which can be
changed by using different error correction levels.
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Figure 11: Impact of color space

In the following, we examine the impacts of some individ-
ual parameters by varying each of them while leaving others
unchanged as the default values. Impacts of other parame-
ters such as viewing angel, ambient luminance and energy
efficiency are not shown due to paper space limitation. For
all boxplots in Fig. 10-14 and Fig. 15, black lines are medians,
red dots are means, and green dots are outliers.

Video sources. We first evaluate the results on different
source videos in Fig. 10. Different videos exhibit considerably
diverse performance due to their disparate properties in
terms of texture, luminance, quality, etc (See Table 1). In
short, videos achieving higher data hiding quality usually
lead to low throughput and high BER. For example, both
GTA V andMinecraft video clips, two HD videos with highly
textured contents, yield the highest data hiding quality with
mean score of nearly 5, but also the lowest throughput. The
other two videos Zootopia and Town produce the contrary
results. This is natural because when flicker is imperceptible
to users, it also becomes difficult for cameras. We test with 5
additional highly textured videos [7]. The raw throughputs
range from 312 to 621 kbps, goodputs range from 5 to 56
kbps, and BERs range from 0.09 to 0.12. These results prove
that good performance remains over various videos with
diverse properties. In the following, we choose Zootopia as
the default video for parameter study. The results using other
videos can be similarly inferred.

Color space. We compare bits embedding in LAB color
space and three non-uniform color space, i.e., YUV, HSL, HSI,
all with a lightness dimension. As shown in Fig. 11, thanks
to the perceptual uniform color differences, CIELAB color
space yields significantly better invisibility than the other
color spaces, without downgrading the data transmission
performance (the best data rate and BER are obtained by
LAB color space).

Color difference∆E00. Fig. 12 shows the impacts of∆E00.
As seen, as ∆E00 increases from 1.5 to 3.5, both raw through-
puts and goodputs increase, from 734 kbps to 846 kbps and
from 94 kbps to 151 kbps respectively, while BER decreases
from 0.07 to 0.03. The data hiding quality consistently re-
mains at a graceful level (mean and median scores above 3)
regarding different ∆E00, although it slightly drops to be ob-
servable in several cases when ∆E00 is as large as 3.5. We
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Figure 12: Impact of ∆E00
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Figure 13: Impacts of k

believe that ∆E00 ∈ [2.0, 3.0] is a good compromise for both
invisibility and transmission performance.

Scaling factor k . Fig. 13 presents the performance im-
pacts of scaling factor k in Eqn. 5 for lightness adaptation.
As expected, smaller k (which means smaller changes in
smooth regions) results in less flicker, although the differ-
ences are marginal. However, transmission is more sensitive
to k . As k decreases from 0.7 to 0.3, the BER increases signif-
icantly from 0.04 to 0.09, while goodput degrades from 138
kbps to 59 kbps. Considering the lightness changes even in
smooth regions should be significant enough for capture, we
suggest a safe range of k ∈ [0.4, 0.7].

Data cell size. We examine the performance under differ-
ent data cell sizes, which are changed at the sender side and
automatically recognized by the receiver. As shown in Fig.
14, both throughputs and BER increase with smaller data cell
size within one frame. This is intuitive since, smaller data
cells mean more data blocks that convey more bits within a
single frame while at the same time increase the probability
of bit errors. Specifically, the overall goodput increases from
28 kbps to 137 kbps when cell size decreases from 26×17 to
8 × 7, while suddenly drops to 58 kbps when data cell size
further decreases to 6×6. The drop is due to too small data
cells to be correctly recognized at the receiver.

Watching and recording distance. Fig. 15 illustrates
the performance at various watching and recording disances.
Evidently, the data hiding quality improves over largerwatch-
ing distances. When watching from a distance of 180 cm, all
participants give the highest invisibility scores for all videos.
However, the flicker becomes challenging to be captured by
cameras as well when it is too far to be seen by eyes. When
recording distances increase from 60 cm to 180 cm, both
throughputs and goodputs degrade from 697 kbps to 112
kbps and 56 kbps to 0.47 kbps respectively, while BERs in-
crease from 0.09 to 0.12. Larger data cell sizes will improve
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Figure 14: Impact of data cell size
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Figure 15: Impact of distance

performance over long distances. For example, a throughput
of 309 kbps can be achieved at 180 cm when using a data cell
of 14×12.
Error correction level.We evaluate the impacts of 4 out

of our 8 different error correction levels and depict the results
in Fig. 16, where we plot both the BERs after convolutional
decoding (BER_Conv) and after RS decoding (BER_RS). We
make two observations. First, concatenated code achieves
lower BERs than any individual code scheme. Second, higher
error correction levels of convolutional code or RS code lead
to lower BERs, yet the latter’s impacts are far more marginal
than the former. However, higher error correction level also
means lower data throughput, as parity bits occupy more
space. As a trade-off, we by default recommend the error
correction levels of convolutional code as (3, 1, 5) and RS
code as (30, 11).

Ambient luminance. Fig. 17 shows the performance im-
pacts of ambient luminance. We test under ambient lumi-
nances ranging from 0 to 300 lux, with the screen luminance
fixed to 300 lux. As ambient luminance increases, data good-
put slightly decreases and BER increases since more interfer-
ence is resulted from higher ambient luminance. However,
the impacts of ambient luminance on data rates and error
rates are negligible.

Recording angle. We carry out experiments to test the
impacts of different recording angles. The recording angle
here refers to horizontal angle between the camera and per-
pendicular bisector of the screen. As shown in Fig. 18, the
performance degrades with larger recording angles. Raw
throughputs decrease to 531 kbps at 15 degrees and 365 kbps
at 25 degrees. Data goodputs between 15 to 25 degrees are
about 40 kbps and BERs are about 0.10. The performance
degradation is not only owing to projection distortion, but
also due to larger distances from the camera to the outermost
side of screen due to the angle.
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Figure 16: Impact of error cor-
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Table 2: Energy consumption (W)

Nexus 6P Pixel 2
Video recording 0.05 4.11
Screen border detection 0.62 1.11
Demodulation and decoding 0.76 1.38

Table 3: Encoding/Decoding speed (fps)

PC Nexus 6P Pixel 2
Encoding and Modulation 6.5 - -
Screen border detection - 3.8 8.0
Demodulation and decoding - 0.6 2.2

Hardware diversity. We compare the performance on
Pixel 2 smartphone. The raw throughput, goodput, and BER,
under default settings, are 632 kbps, 55 kbps, and 0.09 re-
spectively, which is slightly worse than Nexus 6P (recall
the first paragraph in this Section). Such hardware diver-
sity may arise from differences in camera quality and drivers
that automatically control focusing and exposure time when
recording video.

Hand motions. Hand motions during video recording
will introduce extra distortions and potentially degrade per-
formance. We test the performance in practical use cases
when the receiver is held by user hand. The default perfor-
mance achieved in raw throughput, data goodput, and BER
are 627 kbps, 70 kbps and 0.09 respectively, which are slightly
worse compared with fixed cameras.

Energy consumption. Table 2 shows energy consump-
tion at the receiver implemented on Nexus 6P and Pixel 2
smartphones respectively. While ChromaCode consumes
more overall energy on Pixel 2 than Nexus 6P, we make two
futher observations: 1) Demodulation and decoding module
consumes more energy than screen border detection module.
2) The power consumption for video recording varies vio-
lently on different devices, depending on the specific smart-
phone OS and camera hardware capability.

Encoding/Decoding speed. We evaluate the encoding
and decoding speed of ChromaCode. The sender is a DELL
XPS 8900-R17N8 PC equipped with 8×3.40 Ghz CPU, DDR4
RAM and 7200 rpm HDD. The receiver is run on Nexus
6P with 4×1.55 GHz & 4×2.0 GHz CPU as well as Pixel 2
with 4×2.35 GHz & 4×1.9 GHz CPU. By the time of writing

our implementation of ChromaCode mainly uses CPUs
for computing and has not performed GPU optimization.
The experiment results are summarized in Table 3. At the
receiver the demodulation and decoding speed is lower than
that of screen border detection. Decoding speed on the more
powerful Pixel 2 is faster than that on Nexus 6P. However,
neither encoding nor decoding speeds have supported real-
time capability now, which is remained for our future works.

Finally, we would like to point out that, despite of Chro-
maCode’s significant improvements, the achieved BER is
somewhat still high compared to typical radio or acoustic
communications (typically under 10−3). Screen-camera chan-
nel is a very noisy channel that may suffer from rolling
shutter effect, Moiré pattern, etc. Moreover, in hidden screen-
camera communication, we only make tiny modifications to
videos to ensure invisibility. All these raise significant chal-
lenges in efficient decoding, which remains room for future
enhancements.

6.3 Comparative Study

We compare the performance of ChromaCode with two
state-of-the-art approaches, namely, InFrame++ [42] and Tex-
tureCode [35]. Similar toChromaCode, both InFrame++ and
TextureCode achieve different throughputs under different
settings. For a fair comparison, we compare the invisibility
and BER when they reach at equivalent throughputs. We
adapt the data cell sizes of each system so that a specific
throughput is obtained, and measure the corresponding in-
visibility scores and BER. Other parameters such as watching
distances are kept identical for all systems.

The experimental results on 3 primary videos (Z, G, and T)
are demonstrated in Fig. 19. As seen, although TextureCode
retains graceful invisibility consistently, the throughputs it
can achieve are considerably low, ranging from 1 kbps to only
95 kbps, yet the BERs are fairly high. This is because Tex-
tureCode does not embed in plain regions, and does not use
error correction codes. As comparison, both InFrame++ and
ChromaCode yield throughputs up to 500 kbps, while Chro-
maCode further reaches about 1360 kbps, nearly 3× over
InFrame++. In addition, when producing equivalent through-
puts from about 120 kbps to 540 kbps, ChromaCode con-
sistently outperforms InFrame++ by achieving significantly
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Figure 19: Comparative study

higher invisibility scores and lower BERs. The throughput
gain over InFrame++ is mainly because that ChromaCode
embeds 1 bit using 1 cell, while InFrame++ uses multiple
cells. The BER gain is obtained from ChromaCode’s concate-
nated error correction coding and interleaving techniques.
In a nutshell, ChromaCode outperforms both InFrame++
and TextureCode with remarkably better flicker invisibility,
higher throughputs and lower BERs.
We would like to point out that our evaluation results

seem different from what was reported by TextureCode [35],
which claims to reach equivalent or higher goodputs than
InFrame++. This is because TextureCode uses a data frame
rate of 60 fps for evaluation, while InFrame++ uses only
15 fps. In other words, in TextureCode one data frame is
repeated within 2 video frames, while in InFrame++ it is
repeated over 8 frames. In our comparison, we use 60 fps
data frame rate for all.

7 RELATEDWORKS

Color Space. Many color spaces have been defined and
used in computer systems such as CIE1931 RGB and CIE1931
XYZ space [18]. These color spaces, however, are not percep-
tually uniform [31]. To overcome this, CIE later introduced
uniform color spaces, e.g., CIE 1976 L∗a∗b∗ and CIE 1976
L∗u∗v∗ [10, 11]. However, the uniform color space is still not
perfectly perceptual uniform. Decades of efforts are made
by CIE to improve color difference calculation, from CIE76
to CMC(1:c) [30] to CIE94 [32] and finally CIE presented
and recommended CIEDE2000, the most accurate color dif-
ference formula currently available [9], which is the exact
formula used in ChromaCode.
VLC over Screen-Camera Links. VLC grows as an in-

creasingly hot topic [34, 40, 48]. Originated from one dimen-
sional barcode, imagery codes like QR code [13] have been
widely used for screen-camera communication nowadays.
Recently, dynamic code becomes popular, which renders a
sequence of images for streaming. PixNet [36] is the first-of-
its-kind system that enables data streaming between LCD
screens and cameras. COBRA [21] designs a novel colorful
code for phone-to-phone communication. LightSync [24] en-
hances the coding scheme of COBRA and achieves higher
rate. RDCode [43] contributes a robust dynamic code de-
sign with multi-level error correction schemes. ARTcode

[47] aims to produce visual codes that encode data in the
form of human-readable images. These works focus on effi-
cient transmission over dedicated screen-camera links. On
the contrary, ChromaCode aims at invisible communication
with screen-camera link as a side channel.

Hidden Screen-Camera Communication. Hidden
communication conveys information via a side visual [42] or
acoustic [45] channel. InFrame [44] and its extended version
InFrame++ [42] pioneer the research area of unobtrusive
screen-camera communication. They are the first to propose
complementary frames to leverage flicker fusion property of
HVS. However, as argued by a later work TextureCode [35],
flicker still remains noticeable in InFrame++. TextureCode
[35] improves invisibility by adaptive embedding based on
video texture, but it only embeds data in textured regions and
discards the others, which leads to degraded throughputs
and changing uncertain code locations. Instead of lightness,
HiLight [28] changes real-time accessible transparency in
RGB color space and enables any-scene communication. Yet
HiLight transmits bits by translucency changes at different
frequencies, which largely limits its achievable throughputs.
ImplicitCode [38] combines InFrame and HiLight to achieve
better balance between invisibility and throughputs, which is,
however, applicable to only grayscale carrier videos. Uber-in-
Light [25] encodes data as complementary intensity changes
over RGB channels and enables hidden communication for
any screen and camera. Differently, ChromaCode excels in
its adaptive embedding in uniform color space, which is be-
yond the consideration of all existing works, robust coding
scheme, and comprehensive system implementations.

8 CONCLUSION

We present ChromaCode, a system that achieves all three
goals on unobtrusive, high-rate, reliable screen-camera com-
munication. We prototype ChromaCode and evaluated it
by experiments. The results demonstrate its superior per-
formance over previous schemes in terms of invisibility,
throughput and BER. ChromaCode is on the way of chang-
ing video advertising industry by the new paradigm of ad-
vertisement placement for online video, TV, movie, outdoor
electronic billboard, etc. Not only that, we anticipate even
more imaginary spaces for novel applications.

ACKNOWLEDGMENTS

We sincerely thank the anonymous shepherd and reviewers
for their helpful comments and advices. We appreciate all
20 participants in our user study. This work is supported in
part by the National Key Research Plan under grant No.
2016YFC0700100, NSFC under grant 61522110, 61332004,
61672319 and 61632008.



REFERENCES

[1] [n. d.]. FFmpeg. https://ffmpeg.org/
[2] [n. d.]. The Interactive Effect: A Key to Surviving in the Attention

Economy of a Mobile-First World. https://medium.com/ipg-media-
lab/the-interactive-effect-a-key-to-surviving-in-the-attention-
economy-of-a-mobile-first-world-dcd8ace76ab1

[3] [n. d.]. MediaCodec | Android Developers. https://developer.android.
com/reference/android/media/MediaCodec

[4] [n. d.]. Moiré_pattern. https://en.wikipedia.org/wiki/MoirÃľpattern
[5] [n. d.]. OpenCV library. https://opencv.org/
[6] [n. d.]. Qt | Cross-platform software development for embedded &

desktop. https://www.qt.io/
[7] [n. d.]. Xiph.org :: Derf’s Test Media Collection. https://media.xiph.

org/video/derf/
[8] [n. d.]. Zootopia | Disney Movies. http://movies.disney.com/zootopia
[9] 2002. Publications Briefly Mentioned: CIE 142-2001, improvement to

industrial colour-difference evaluation. Color Research & Application
27, 1 (2002), 61–61. https://doi.org/10.1002/col.10020

[10] 2008. Colorimetry – Part 4: CIE 1976 L∗a∗b∗ Colour space.
[11] 2009. Colorimetry – Part 5: CIE 1976 L∗u∗v∗ Colour space and u’, v’

uniform chromaticity scale diagram.
[12] 2013. Colorimetry – Part 6: CIEDE2000 Colour-Difference Formula.
[13] 2016. Information technology - Automatic identification and data

capture techniques - QR Code 2005 bar code symbology specification.
[14] G. S. Brindley, J. J. Du Croz, and W. A. H. Rushton. 1966. The flicker

fusion frequency of the blue-sensitive mechanism of colour vision.
The Journal of Physiology 183, 2 (1966), 497–500. https://doi.org/10.
1113/jphysiol.1966.sp007879

[15] J. Canny. 1986. A Computational Approach to Edge Detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence PAMI-8, 6
(1986), 679–698. https://doi.org/10.1109/TPAMI.1986.4767851

[16] Charles Chubb, George Sperling, and Joshua A. Solomon. 1989. Tex-
ture interactions determine perceived contrast. In Proceedings of the
National Academy of Sciences of the United States of America (PNAS
’89). 9631–9635.

[17] H.S.M. Coxeter. 1969. Introduction to geometry. Wiley. https://books.
google.com/books?id=c0ld-crynsIC

[18] Hugh S. Fairman, Michael H. Brill, and Henry Hemmendinger. 1997.
How the CIE 1931 color-matching functions were derived from
Wright-Guild data. Color Research & Application 22, 1 (1997), 11–
23. https://doi.org/10.1002/(SICI)1520-6378(199702)22:1<11::AID-
COL4>3.0.CO;2-7

[19] D. J. Fleet and D. J. Heeger. 1997. Embedding invisible information
in color images. In Proceedings of International Conference on Image
Processing (ICIP ’97), Vol. 1. 532–535 vol.1. https://doi.org/10.1109/
ICIP.1997.647967

[20] Arunabha Ghosh, David R. Wolter, Jeffrey G. Andrews, and Runhua
Chen. 2005. Broadband wireless access with WiMax/802.16: current
performance benchmarks and future potential. IEEE Communications
Magazine 43 (2005), 129–136.

[21] Tian Hao, Ruogu Zhou, and Guoliang Xing. 2012. COBRA: Color
Barcode Streaming for Smartphone Systems. In Proceedings of the 10th
International Conference on Mobile Systems, Applications, and Services
(MobiSys ’12). ACM, New York, NY, USA, 85–98. https://doi.org/10.
1145/2307636.2307645

[22] Robert M. Haralick, K. Shanmugam, and Its’Hak Dinstein. 1973. Tex-
tural Features for Image Classification. IEEE Transactions on Systems,
Man, and Cybernetics SMC-3, 6 (1973), 610–621. https://doi.org/10.
1109/TSMC.1973.4309314

[23] P. V. C. Hough. 1959. Machine Analysis of Bubble Chamber Pictures.
Conf. Proc. C590914 (1959), 554–558.

[24] Wenjun Hu, Hao Gu, and Qifan Pu. 2013. LightSync: Unsynchronized
Visual Communication over Screen-camera Links. In Proceedings of
the 19th Annual International Conference on Mobile Computing and
Networking (MobiCom ’13). ACM, New York, NY, USA, 15–26. https:
//doi.org/10.1145/2500423.2500437

[25] M. Izz, Z. Li, H. Liu, Y. Chen, and F. Li. 2016. Uber-in-light: Unob-
trusive visible light communication leveraging complementary color
channel. In The 35th Annual IEEE International Conference on Com-
puter Communications (INFOCOM ’16). 1–9. https://doi.org/10.1109/
INFOCOM.2016.7524513

[26] Rolf G. Kuehni. 2003. Historical Development of Color Space and Color
Difference Formulas. John Wiley & Sons, Inc., 204–270. https://doi.
org/10.1002/0471432261.ch6

[27] IPG Media Lab. 2017. Media Trial Report: MAGNA and IPG Media Lab
Turbocharge Skippable Pre-Roll Campaign.

[28] Tianxing Li, Chuankai An, Xinran Xiao, Andrew T. Campbell, and Xia
Zhou. 2015. Real-Time Screen-Camera Communication Behind Any
Scene. In Proceedings of the 13th Annual International Conference on
Mobile Systems, Applications, and Services (MobiSys ’15). ACM, New
York, NY, USA, 197–211. https://doi.org/10.1145/2742647.2742667

[29] Hao Xue Liu, Bing Wu, Yu Liu, Min Huang, and Yan Fang Xu. 2013.
A Discussion on Printing Color Difference Tolerance by CIEDE2000
Color Difference Formula. In Advances in Printing and Packaging Tech-
nologies (Applied Mechanics and Materials), Vol. 262. Trans Tech Publi-
cations, 96–99. https://doi.org/10.4028/www.scientific.net/AMM.262.
96

[30] M R Luo and B Rigg. 1986. Uniform Colour Space Based on the
CMC(l:c) Colour-difference Formula. Journal of the Society of Dy-
ers and Colourists 102, 5-6 (1986), 164–171. https://doi.org/10.1111/j.
1478-4408.1986.tb01069.x

[31] David L. MacAdam. 1942. Visual Sensitivities to Color Differences in
Daylight∗. J. Opt. Soc. Am. 32, 5 (1942), 247–274. https://doi.org/10.
1364/JOSA.32.000247

[32] R. McDonald and K J Smith. 1995. CIE94-a new colour-difference
formula*. Journal of the Society of Dyers and Colourists 111, 12 (1995),
376–379. https://doi.org/10.1111/j.1478-4408.1995.tb01688.x

[33] Marci Meingast, Christopher Geyer, and Shankar Sastry. 2005. Geomet-
ric Models of Rolling-Shutter Cameras. CoRR abs/cs/0503076 (2005).
arXiv:cs/0503076 http://arxiv.org/abs/cs/0503076

[34] S. Naribole, S. Chen, E. Heng, and E. Knightly. 2017. LiRa: A WLAN
Architecture for Visible Light Communication with a Wi-Fi Uplink. In
2017 14th Annual IEEE International Conference on Sensing, Commu-
nication, and Networking (SECON ’17). 1–9. https://doi.org/10.1109/
SAHCN.2017.7964932

[35] Viet Nguyen, Yaqin Tang, Ashwin Ashok, Marco Gruteser, Kristin
Dana, Wenjun Hu, Eric Wengrowski, and Narayan Mandayam. 2016.
High-rate flicker-free screen-camera communication with spatially
adaptive embedding. In The 35th Annual IEEE International Conference
on Computer Communications (INFOCOM ’16). 1–9. https://doi.org/10.
1109/INFOCOM.2016.7524512

[36] Samuel David Perli, Nabeel Ahmed, and Dina Katabi. 2010. PixNet:
LCD-camera Pairs As Communication Links. In Proceedings of the
Annual Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications (SIGCOMM ’10). ACM, New
York, NY, USA, 451–452. https://doi.org/10.1145/1851182.1851258

[37] Austin Roorda and David R. Williams. 1999. The arrangement of the
three cone classes in the living human eye. Nature (1999), 520–522.
https://doi.org/10.1038/17383

[38] Shuyu Shi, Lin Chen, Wenjun Hu, and Marco Gruteser. 2015. Reading
Between Lines: High-rate, Non-intrusive Visual Codes Within Regular
Videos via ImplicitCode. In Proceedings of the 2015 ACM International
Joint Conference on Pervasive and Ubiquitous Computing (UbiComp ’15).
ACM, New York, NY, USA, 157–168. https://doi.org/10.1145/2750858.

https://ffmpeg.org/
https://medium.com/ipg-media-lab/the-interactive-effect-a-key-to-surviving-in-the-attention-economy-of-a-mobile-first-world-dcd8ace76ab1
https://medium.com/ipg-media-lab/the-interactive-effect-a-key-to-surviving-in-the-attention-economy-of-a-mobile-first-world-dcd8ace76ab1
https://medium.com/ipg-media-lab/the-interactive-effect-a-key-to-surviving-in-the-attention-economy-of-a-mobile-first-world-dcd8ace76ab1
https://developer.android.com/reference/android/media/MediaCodec
https://developer.android.com/reference/android/media/MediaCodec
https://en.wikipedia.org/wiki/Moiré_pattern
https://opencv.org/
https://www.qt.io/
https://media.xiph.org/video/derf/
https://media.xiph.org/video/derf/
http://movies.disney.com/zootopia
https://doi.org/10.1002/col.10020
https://doi.org/10.1113/jphysiol.1966.sp007879
https://doi.org/10.1113/jphysiol.1966.sp007879
https://doi.org/10.1109/TPAMI.1986.4767851
https://books.google.com/books?id=c0ld-crynsIC
https://books.google.com/books?id=c0ld-crynsIC
https://doi.org/10.1002/(SICI)1520-6378(199702)22:1<11::AID-COL4>3.0.CO;2-7
https://doi.org/10.1002/(SICI)1520-6378(199702)22:1<11::AID-COL4>3.0.CO;2-7
https://doi.org/10.1109/ICIP.1997.647967
https://doi.org/10.1109/ICIP.1997.647967
https://doi.org/10.1145/2307636.2307645
https://doi.org/10.1145/2307636.2307645
https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.1145/2500423.2500437
https://doi.org/10.1145/2500423.2500437
https://doi.org/10.1109/INFOCOM.2016.7524513
https://doi.org/10.1109/INFOCOM.2016.7524513
https://doi.org/10.1002/0471432261.ch6
https://doi.org/10.1002/0471432261.ch6
https://doi.org/10.1145/2742647.2742667
https://doi.org/10.4028/www.scientific.net/AMM.262.96
https://doi.org/10.4028/www.scientific.net/AMM.262.96
https://doi.org/10.1111/j.1478-4408.1986.tb01069.x
https://doi.org/10.1111/j.1478-4408.1986.tb01069.x
https://doi.org/10.1364/JOSA.32.000247
https://doi.org/10.1364/JOSA.32.000247
https://doi.org/10.1111/j.1478-4408.1995.tb01688.x
http://arxiv.org/abs/cs/0503076
http://arxiv.org/abs/cs/0503076
https://doi.org/10.1109/SAHCN.2017.7964932
https://doi.org/10.1109/SAHCN.2017.7964932
https://doi.org/10.1109/INFOCOM.2016.7524512
https://doi.org/10.1109/INFOCOM.2016.7524512
https://doi.org/10.1145/1851182.1851258
https://doi.org/10.1038/17383
https://doi.org/10.1145/2750858.2805824
https://doi.org/10.1145/2750858.2805824


2805824
[39] George Stockman and Linda G. Shapiro. 2001. Computer Vision (1st

ed.). Prentice Hall PTR, Upper Saddle River, NJ, USA.
[40] Zhao Tian, Kevin Wright, and Xia Zhou. 2016. The darkLight Rises:

Visible Light Communication in the Dark. In Proceedings of the 22Nd
Annual International Conference on Mobile Computing and Networking
(MobiCom ’16). ACM, New York, NY, USA, 2–15. https://doi.org/10.
1145/2973750.2973772

[41] ANDREW J. VITERBI. 2011. Error Bounds for Convolutional Codes
and an Asymptotically Optimum Decoding Algorithm. Co-Published
with Indian Institute of Science (IISc), Bangalore, India, 41–50. https:
//doi.org/10.1142/97898142875170004

[42] Anran Wang, Zhuoran Li, Chunyi Peng, Guobin Shen, Gan Fang, and
Bing Zeng. 2015. InFrame++: Achieve Simultaneous Screen-Human
Viewing and Hidden Screen-Camera Communication. In Proceedings
of the 13th Annual International Conference on Mobile Systems, Applica-
tions, and Services (MobiSys ’15). ACM, New York, NY, USA, 181–195.
https://doi.org/10.1145/2742647.2742652

[43] Anran Wang, Shuai Ma, Chunming Hu, Jinpeng Huai, Chunyi Peng,
and Guobin Shen. 2014. Enhancing Reliability to Boost the Throughput
over Screen-camera Links. In Proceedings of the 20th Annual Interna-
tional Conference on Mobile Computing and Networking (MobiCom ’14).
ACM, New York, NY, USA, 41–52. https://doi.org/10.1145/2639108.
2639135

[44] Anran Wang, Chunyi Peng, Ouyang Zhang, Guobin Shen, and Bing
Zeng. 2014. InFrame: Multiflexing Full-Frame Visible Communication

Channel for Humans and Devices. In Proceedings of the 13th ACM
Workshop on Hot Topics in Networks (HotNets ’14). ACM, New York,
NY, USA, Article 23, 7 pages. https://doi.org/10.1145/2670518.2673867

[45] Qian Wang, Kui Ren, Man Zhou, Tao Lei, Dimitrios Koutsoniko-
las, and Lu Su. 2016. Messages Behind the Sound: Real-time Hid-
den Acoustic Signal Capture with Smartphones. In Proceedings of the
22Nd Annual International Conference on Mobile Computing and Net-
working (MobiCom ’16). ACM, New York, NY, USA, 29–41. https:
//doi.org/10.1145/2973750.2973765

[46] Zhouping Wei, Jian Wang, Helen Nichol, Sheldon Wiebe, and Dean
Chapman. 2012. A median-Gaussian filtering framework for Moiré
pattern noise removal from X-ray microscopy image. Micron 43, 2
(2012), 170 – 176. https://doi.org/10.1016/j.micron.2011.07.009

[47] Zhe Yang, Yuting Bao, Chuhao Luo, Xingya Zhao, Siyu Zhu, Chunyi
Peng, Yunxin Liu, and Xinbing Wang. 2016. ARTcode: Preserve Art
and Code in Any Image. In Proceedings of the 2016 ACM International
Joint Conference on Pervasive and Ubiquitous Computing (UbiComp ’16).
ACM, New York, NY, USA, 904–915. https://doi.org/10.1145/2971648.
2971733

[48] Jialiang Zhang, Chi Zhang, Xinyu Zhang, and Suman Banerjee. 2016.
Towards a Visible Light Network Architecture for Continuous Com-
munication and Localization. In Proceedings of the 3rd Workshop on
Visible Light Communication Systems (VLCS ’16). ACM, New York, NY,
USA, 49–54. https://doi.org/10.1145/2981548.2981556

https://doi.org/10.1145/2750858.2805824
https://doi.org/10.1145/2973750.2973772
https://doi.org/10.1145/2973750.2973772
https://doi.org/10.1142/9789814287517_0004
https://doi.org/10.1142/9789814287517_0004
https://doi.org/10.1145/2742647.2742652
https://doi.org/10.1145/2639108.2639135
https://doi.org/10.1145/2639108.2639135
https://doi.org/10.1145/2670518.2673867
https://doi.org/10.1145/2973750.2973765
https://doi.org/10.1145/2973750.2973765
https://doi.org/10.1016/j.micron.2011.07.009
https://doi.org/10.1145/2971648.2971733
https://doi.org/10.1145/2971648.2971733
https://doi.org/10.1145/2981548.2981556

	Abstract
	1 Introduction
	2 ChromaCode Design
	2.1 Design Goals
	2.2 Design Overview

	3 Unobtrusive Bit Embedding
	3.1 Bits Embedding to Pixels
	3.2 Color Space Selection
	3.3 Spatially Adaptive Embedding

	4 Reliable Data Transmission
	4.1 Encoding and Modulation
	4.2 Demodulation and Decoding

	5 Implementations
	6 Experiment Evaluation
	6.1 Experimental Methodology
	6.2 ChromaCode Performance
	6.3 Comparative Study

	7 Related Works
	8 Conclusion
	Acknowledgments
	References

