
CEIVE: Combating Caller ID Spoofing on 4G Mobile
Phones Via Callee-Only Inference and Verification

Haotian Deng
Purdue University

Weicheng Wang
Purdue University

Chunyi Peng
Purdue University

ABSTRACT

Caller ID spoofing forges the authentic caller identity, thus
making the call appear to originate from another user. This
seemingly simple attack technique has been used in the grow-
ing telephony frauds and scam calls, resulting in substantial
monetary loss and victim complaints. Unfortunately, caller
ID spoofing is easy to launch, yet hard to defend; no effective
and practical defense solutions are in place to date.
In this paper, we propose Ceive (Callee-only inference

and verification), an effective and practical defense against
caller ID spoofing. It is a victim callee only solution without
requiring additional infrastructure support or changes on
telephony systems. We formulate the design as an inference
and verification problem. Given an incoming call, Ceive
leverages a callback session and its associated call signaling
observed at the phone to infer the call state of the other
party. It further compares with the anticipated call state,
thus quickly verifying whether the incoming call comes from
the originating number. We exploit the standardized call
signaling messages to extract useful features, and devise
call-specific verification and learning to handle diversity and
extensibility. We implement Ceive on Android phones and
test it with all top four US mobile carriers, one landline and
two small carriers. It shows 100% accuracy in almost all tested
spoofing scenarios except one special, targeted attack case.

CCS CONCEPTS

• Security and privacy→ Spoofing attacks; •Networks

→ Mobile networks; Signaling protocols;

KEYWORDS

Caller ID spoofing; Callee-only defense; 4G Signaling; Ceive

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
MobiCom ’18, October 29-November 2, 2018, New Delhi, India
© 2018 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-5903-0/18/10. . . $15.00
https://doi.org/10.1145/3241539.3241573

ACM Reference Format:

Haotian Deng, Weicheng Wang, and Chunyi Peng. 2018. CEIVE:
Combating Caller ID Spoofing on 4G Mobile Phones Via Callee-
Only Inference and Verification. In The 24th Annual International
Conference on Mobile Computing and Networking (MobiCom ’18),
October 29-November 2, 2018, New Delhi, India. ACM, New York, NY,
USA, 16 pages. https://doi.org/10.1145/3241539.3241573

1 INTRODUCTION

Voice call has been a killer communication service for mo-
bile users for decades. In recent years, despite the various
security mechanisms deployed inside the carrier infrastruc-
ture and the device OS, a substantial number of telephony
frauds, including scam calls, spam calls, and voice phish-
ing, have been reported [44]. The victim leaks confidential
information to the attacker during the call, resulting in busi-
ness, property, or monetary losses. Even worse, the number
of victims suffered from telephony frauds are growing at
an alarming rate. Scam calls have been regularly reported
(e.g., [2, 6, 21, 26, 34, 40, 42, 49]), and imposter scam has been
the No.2 source of consumer complaints according to FTC
report in 2017 [25]. An estimated one in every 10 American
adults lost money in a phone scam in the past 12 months with
$430 loss on average, totaling about $9.5 billion overall in
2017 [37]; These scams went up nearly 60% and the average
loss increased by 56% ($274 in 2016) from a year ago. Similar
losses and complaints are reported in Europe, Asia, Australia
and globally [7, 8, 11, 20, 23, 55].

A simple, yet menacing attack technique behind telephony
frauds is through caller ID spoofing. The attacker acts as the
caller, and spoofs its caller ID (i.e., the caller name or phone
number or other identities). Upon receiving the call, the
victim is deceived to believe that the call comes from the
“trusted” caller indicated by the spoofed ID (e.g., government
agencies, public and utility services, banks, insurances, etc).

Specifically, caller ID spoofing uses two means to deceive
the victims. The first is to simply spoof the caller name by
claiming to be the trusted party (e.g., an IRS agent, Microsoft
technical support) whereas the originating phone number
is not spoofed (not from IRS or Microsoft). This is relatively
easier to resolve given the increasing usage of phone number
search service [5, 45, 50, 51, 53]. By leveraging online pub-
lic information and crowdsourcing records, we can verify
the calling party (i.e., whether the call is indeed from IRS

https://doi.org/10.1145/3241539.3241573
https://doi.org/10.1145/3241539.3241573

or Microsoft). The second is more difficult to defend. The
attacker forges the phone number of the trusted caller so
that the call appears to come from the “correct” number of
the authentic party. The solution based on phone number
search thus does not work. In fact, no simple and effective
solution is available for practical defense. This is the focus
of this work.
In this paper, we first empirically confirm that, caller ID

spoofing is indeed easy to launch, but hard to defend. Exist-
ing solution proposals are deemed ineffective due to heavy
deployment and major updates on the telephony systems.
These include the approaches of building a global certificate
authority for end-to-end caller authentication [22, 24, 27, 35,
52], enabling network assistance on caller verification [46],
launching challenge-and-response to verify the true caller
(changes required on all possible callers) [38, 39], etc..

Instead, we propose Ceive (Callee-only inference and
verification), a practical and effective solution that leverages
callee-only capability to defend against caller ID spoofing.
Ceive explores the simple solution concept of initiating a
callback session to the originating phone number and com-
paring the call states of the outgoing call session with the
incoming call. The goal is to verify whether the claimed caller
ID indeed matches the actually used one. Specifically, upon
receiving an incoming call request session inCall with a po-
tentially spoofed phone number, the (victim) callee initiates
a callback session auCall before accepting the incoming call.
In the absence of ID spoofing, the callee of auCall is identi-
cal to the caller of inCall1, the user then accepts the call. In
the presence of ID spoofing, auCall will reach another party
different from inCall.caller, and the user can consequently
reject the call. To make the verification more reliable, we
have to infer the fine-grained call state of auCall.callee, (e.g.,
dialing, idle, on-a-call (connected)), in order to assert whether
it matches the anticipated one of inCall.caller. This moti-
vates us to exploit an available, yet unexplored side channel.
Another salient feature of Ceive is that, it has to infer the
inCall.caller state based on the victim-side information only.
This is because the caller can be malicious.

Ceive formulates the core design as an inference problem,
and further devises novel techniques to address three practi-
cal challenges. First, inferring the call state of auCall.callee
only from auCall.caller’s observation is difficult. We find that
common features (e.g., call/phone states) frommobile phones
would not work; They can inform the local caller’s state, but
are insufficient to infer the remote callee’s call state. To this
end, we discover an unexplored side channel of call setup
signaling, and show that it is feasible to infer certain call

1It may not be true in multi-line telephone systems, which are discussed in
§7. In this paper, we consider a single-line system where one phone number
matches one entity only.

state out of the sequence of observed signaling messages (§3).
Second, inference accuracy is affected by many factors un-
known to auCall.caller. We find that the sequence of call setup
signaling messages varies with carriers, call technologies,
call settings, and even seemingly-random factors (controlled
by network operations). For example, the same sequence is
observed for two distinct call states (e.g., dialing or being-
dialed); Multiple sequence variants are observed for the same
call state. We thus enhance spoofing verification with infer-
ence, and design an inference engine tailored to caller ID
spoofing detection. In doing so, we enable a coarse-grained
inference to learn a few, but not all call states, and show
that they suffice to differentiate spoof from no-spoof in
most usage scenarios (§4.2 and §4.3). Third, single inference-
verification may still fail to resolve ambiguity in certain sce-
narios, especially when the adversary designates special at-
tacks againstCeive to manipulate call states (e.g., making the
authentic caller busy or stuck at certain hard-to-differentiate
state). Ceive thus employs multiple-phase (mostly two) ver-
ification, and leverages delta and coherence across phases
to refine inference (§4.3). Finally, it applies re-learning for
automated evolution (§4.4).
We have prototyped Ceive on Android phones, and val-

idated it with real-world evaluations. We first show that
Ceive successfully combats caller ID spoofing used in a re-
cent real scam call. We further run controlled experiments to
launch a variety of caller ID spoofing attacks (C2-C7), as well
as normal calls (C1). We test with both 4G voice solutions:
VoLTE and CSFB (described in §2). Surprisingly, Ceive is
100% accurate in almost all attack scenarios (except C7) with
all top four US mobile and one landline carriers. In the worst
case (C7: a targeted attack against Ceive), Ceive just fails
without deterministic inference and reaches an ambiguity
outcome (N/A) under certain settings, which still can keep
the victim stay alert. Moreover, Ceive is fairly responsive
and completes within tens of seconds (up to 23 seconds in
our tests). It defers call answering only for several seconds
(mostly within 4-10 seconds for VoLTE or 8-10 seconds for
CSFB). It is user friendly without degrading normal call expe-
riences. It is extensible to new carriers with learning ability.

We have also noted that the current design of Ceive does
have a limitation. It does not work with a multi-line caller,
where multiple phone lines share the same number; this is
part of our future work. Nevertheless, Ceive offers the first
callee-based solution against caller ID spoofing. It does not
require additional infrastructure support or cooperation from
the caller side (who can be malicious). Mobile users, who are
potential victim callees, have strong incentive to deploy the
solution. While Ceive is currently targeting 4G phone users,
it is conceptually applicable to 5G/3G/2G mobile networks
and even non-cellular calls.

1. request(callerID)

2. more signaling for call setup

3. call conservation in an established call

gateway

database

caller callee

caller's carrier network public network callee's carrier network

signaling(control-plane)
call conversation(data-plane)

Figure 1: A generic call setup flow.

2 CALLER ID SPOOFING ATTACK:

EASY TO LAUNCH, HARD TO DEFEND

We confirm that caller ID spoofing is indeed easy to launch
but hard to defend over 4G LTE networks.
Background. Figure 1 depicts a generic call setup flow for
any call technology. Call signaling runs first to establish a call
session and then starts voice conversations over the session.
The signaling starts with a setup request from the caller to
the callee, followed by more signaling required by the call
setup procedure. Both parties obtain call service from their
own carrier network (CN). CNs are inter-connected so that
call parties from different CNs can talk to each other.
We consider the callee’s CN as the 4G LTE network. 4G

supports two voice solutions: Voice-over-LTE (VoLTE) [4]
and Circuit Switched FallBack (CSFB) [13]. VoLTE adopts
Voice-over-IP (VoIP) and carries voice calls (and its signaling)
in IP packets; CSFB leverages legacy 3G/2G networks to
provide CS voice calls. Both conceptually support similar
signaling but use different protocols. VoLTE uses Session
Initiation Protocol (SIP) [43], while CSFB uses Call Control
(CC) [12]2. Though they speak different protocol languages,
e.g., the first request via INVITE in SIP for VoLTE and via
SETUP in CC for CSFB/CS, the translation is handled by their
border gateways for inter-operability. For example, INVITE
is mapped into SETUP once leaving 4G and entering 3G/2G.
More signaling messages will be introduced in §3.

Each call party has a globally unique ID, often a telephone
number (e.g., +1 xxx-xxx-xxxx)3. ID acts as a permanent
address-of-record which is assigned upon subscription and
is authenticated before use. Specifically, cellular networks
run Authentication and Key Agreement (AKA), which uses
the shared secret key stored at SIM (locally) and known only
to the operator (user database) to authenticate each other.
Caller ID Tests: Easy to spoof. Caller ID spoofing uses
a fake ID. In this paper, we consider the spoofing scenario
where caller Eve (E, hereafter) calls the victim Bob (B) by
fabricating Alice’s ID (A.ID).
In reality, caller ID spoofing is technically feasible and

simple. Spoofer E simply alters the caller ID carried in the
setup request, which is allowed through because E’s CN
does not enforce the forwarded caller ID is the same as the
authenticated one. Use VoIP/VoLTE as an example. It uses the
2UMTS/GSM uses CC and CDMA uses similar signaling [28].
3Other IDs like username (e.g., xxx@xxx.xxx) are allowed in VoIP. In this
paper, we consider telephone numbers only.

!"#$%&'()*$&"+

!"#$%&''$"

(a) after a scam call (b) spoofing 20D later (c) spoofing 20D later
Figure 2: Screenshots of the callee phones (Pixel 2) in

a real scam and two controlled caller ID spoofing tests.

‘From’ header in the INVITE message to convey the caller ID,
as illustrated in Figure 4d. E places A.ID instead of E.ID, so
that B only sees an incoming call from ‘A’. Even worse, caller
ID spoofing is even offered as one public service by fake ID
providers such as Spoofcard [47], Spooftel [48], FakeCall [10]
and many alike apps. To use it, E only needs to input B’s
phone number as the target one and A’s phone number as
the desired spoofed caller ID. Spoofing takes a few seconds
and zero cents; it is very easy to use.

Figure 2 shows that users can indeed easily launch a spoof-
ing attack. We use Spoofcard [47] and FakeCall [10] and
successfully make spoofing attacks towards our test phones
(Pixel 2) in Figures 2b and 2c. The same ID was used in a
recent real scam call, which has resulted in more than $1M
loss for a single victim [8, 32, 41, 55]. We also observe that
the solution to combating caller name spoofing, e.g., True-
Caller [51] and Google’s dialer [5], might not work. Both
failed to detect when the real scam call happened in Jan 2018
(Figure 2a), though it was reported 6 months ago [41, 55].
In our spoofing tests 20 days later, TrueCaller worked to
certain degree for the phone with Internet access (Figure 2c),
but failed at the phone without Internet access (Figure 2b).
Google’s dialer failed on both phones but worked at another
Pixel 2 (omitted due to space limit); it is unclear why it fails.
These solutions make things even worse, because they likely
mislead the callee to trust the call is from an authentic party.

In our controlled experiments (both attackers and victims
owned by us), we test with fabricating other phone numbers
(mobile or landline, personal or business, from different states
and countries, >100 in total). We confirm that, all are easy
to spoof with no sign of restrictions.
Lessons and root causes. We discover that, spoofing is
feasible even when user authentication is in place. Although
authentication is a well-known technique against spoofing,
two reasons make it fail to prevent caller ID spoofing. First,
user authentication is within the caller’s network, but not end-
to-end. There are no means for the callee to authenticate
the caller; As long as ID spoofing is permitted in the caller’s
CN, the callee has to ‘trust’ the received ID. Second, user
authentication is separated from call setup signaling.Although
authentication runs at the start (to authorize call making), no
mechanism prevents the caller from altering the forwarded
ID, thus hiding its authenticated ID, during later call setup.

Related work: Hard to defend in reality. There are
several solution proposals without actual deployment. They
address the issue of end-to-end authentication via a global
authority (e.g., a public certification service [22, 24, 27, 35])
or a public key infrastructure (PKI) [52], to authenticate
each party before call setup. [46] addresses the second is-
sue through additional network assistance (authentication
required at gateways during call setup). They are deemed
effective in principle but have not been deployed. Its real use
is not foreseen in the near future, due to its deployment costs
(third-party global infrastructure, network infrastructure up-
grade, changes on every phone). An alternative solution is
to detect caller ID spoofing [38, 39]. These proposals use
challenge-and-response between two ends and require the
caller to respond to SMS [39] or a call [38]. They require
the caller’s cooperations, which may mandate updates on all
phones (i.e., all possible callers); Moreover, they only con-
sider simplistic attacks where E does nothing to A.

3 BASIC IDEA AND FEASIBILITY STUDY

We now present the basic idea of Ceive, and conduct feasi-
bility tests while identifying practical issues. We consider
VoLTE first and defer CSFB to §3.5.
Threat model. We consider a large class of practical spoof-
ing attacks against mobile phone users. The attack is initi-
ated by malicious users, who have full control of their phone
devices. It is not from mobile carriers. The attack can be
launched by leveraging public service/software or running
private programs for designated attack operations. The ad-
versary can not onlymake a spoofed call request to the victim
callee, but also manipulate other call parties through legit-
imate access interfaces for advanced attacks. For example,
the attacker can dial the true caller (here, A) or even estab-
lish another call with A accompanying the spoofed call; The
adversary can further adjust attack frequency and modify
dial/call operations. However, the attacker has no ability to
hijack or compromise the victim’s phone, the true caller’s de-
vice, or their carrier networks. No malware can be installed;
The true caller does not conspire with the adversary; The
carrier network infrastructure also functions well. In short,
the victim callee, the true caller and their carrier networks
are all trustworthy.

3.1 Basic Idea

Our basic idea (shown in Figure 3) is to verify whether the
caller ID (A.ID) is spoofed or not, by comparing the call states
of two call sessions. For an incoming call inCall, Ceive asks
the callee (i.e., B) to make an auCall back to the originating
ID (1). B makes use of the inCall’s context to infer the state
of caller X (A or E in the absence/presence of spoofing). For
example, X is dialing when inCall rings. Meanwhile, B uses

A

E caller CNs callee

A

B inCall(ring)

infer A.status
e.g., idle

=?

X.status (dialing)

A!= X, spoof

1

2

3

X? inCall: callerID=A.ID

auCall: calleeID=A.ID

… … }Blackbox

Figure 3: Ceive’s basic idea: one-run verification.

its own observation on auCall to infer A’s call state (2), and
compares it with X’s (3). If they mismatch, A is asserted to
be not X, and spoofing happens to inCall.
The above simple solution concept has several nice fea-

tures. No control is assumed on other components (the car-
rier infrastructure, or other devices). It does not require coop-
eration by others or extra information access. It also works
under two premises: (1) B’s observation is able to infer A’s dis-
tinct call state. When the call state of auCall.Callee changes,
the observation at auCall.Caller should also change to make
the inference possible. (2) The inferred A’s call state should
differ from the true call state at least once upon spoofing.
We next conduct feasibility tests to address a key techni-

cal issue: what available information from the auCall.caller
side can be used to infer the distinct state on the remote au-
Call.callee side?We first study common call information pro-
vided by mobile OSes (using Android as an example) such as
PRECISE_CALL_STATE[18], PHONE_STATE in TelephonyMan-
ager [19] and system logs. However, we conclude that such
information fails to infer the state on the remote callee side,
because it only provides call states on its own side. In prin-
ciple, both sides are in the same call session, and the caller
should be able to know what happens at the terminating
party. However, in practice, these high-level APIs hide in-
ternal, fine-grained call context and fail to run inference
required by Ceive. We thus look into raw call context infor-
mation. We find that, the sequence of call setup signaling
messages (SIP for VoLTE and CC for CSFB/CS) suffices!

3.2 Baseline Feasibility Tests

We first run basic feasibility experiments to validate that,
the call signaling messages received on the caller’s side are
enough to infer the callee’s call state.We run our experiments
in three common call settings:
(C1) A calls B (no-spoof),
(C2) E calls B while A is idle (spoof-idle),
(C3) E calls B while A is on a call (spoof-conn).

We collect SIP signaling messages for auCall using tcp-
dump at phone B, a rooted Android device. We have tried
with 10+ phone models (from Samsung, Google, LG, Mo-
torola, Xiaomi, etc) and found no difference. We also test
with all four top-tier US carriers: AT&T, T-Mobile, Verizon
and Sprint. The observations are slightly different, but all
are proven feasible (Figure 5, in §3.4). We use the T-Mobile
results to illustrate Ceive’s feasibility.

inCall from A to B
A B

auCall from B to A

100 Trying

183 Session Process

PARCK

100 INVITE

200 OK

180 Ringing(PEM=sendonly)

PARCK

200 OK(PARCK)

200 OK(INVITE)

ACK

BYE

200 OK(BYE)

(a) C1: no-spoof

A(idle) B
auCall from B to A

100 Trying

183 Session Process

PARCK

100 INVITE

200 OK

180 Ringing(PEM=sendrecv)

PARCK

200 OK(PARCK)

CANCEL

200 OK(CANCEL)

487 Request Teminated

ACK

E

spoofing call

(b) C2: spoof-idle

A B
auCall from B to A

100 Trying

183 Session Process

PARCK

100 INVITE

200 OK

alert-service: call-waiting

PARCK

200 OK(PARCK)

CANCEL

200 OK(CANCEL)

487 Request Teminated

ACK

E

spoofing call
on-a-call

180 Ringing(PEM=sendrecv)

(c) C3: spoof-conn (d) Wireshark log of SIP messages for C3 (spoof-conn)
Figure 4: Examples of SIP message sequence (key in red) in three call scenarios via VoLTE in T-Mobile.

True state Key observations (Features)

C1 A is dialing 180.PEM = sendonly
C2 A is idle 180.PEM = sendrecv
C3 A is conn 180.PEM = sendrecv, 180.ALERT = call-waiting
Table 1: Examples of key observations in T-Mobile.

Figure 4 plots the diagrams of SIP signaling messages ob-
served at B in C1-C3 scenarios. auCall is initiated, when
inCall rings but is not accepted by B. We make three ob-
servations. First, the sequences of call signaling messages
share many common parts in all three scenarios. Specifically,
all start with INVITE, followed by 100→183 → · · · → 180
· · · → 200 · · · . These numbers represent the SIP state and
response codes, all of which are standardized [43]. Second,
each sequence contains certain critical information to dis-
tinguish three call settings. For example, in the received
180 Ringing message, there are two fields: P-Early-Media
(PEM) and Alert-Info (detailed logs in Figure 4d). Table 1
lists their distinct values in all three scenarios. Third, we
also discover redundant features which can infer distinct call
state as well. C1 observes 200 but C2/C3 uses 487 Request
Terminated in response to INVITE; C1 uses BYEwhile C2/C3
uses CANCEL at the end.

We thus exploit the unexplored side channel of call setup
signaling messages. We consequently infer distinct callee
state: dialing (C1), idle (C2) and conn (C3) (Premise 1)
while the inferred state in C2/C3 differs from the anticipated
state in the absence of spoofing (C1) (Premise 2).

3.3 Why Should it Work?

We now explain why the above solution should work. The
rationale lies in the call setup procedure standardized by
Internet RFCs and cellular specifications. Table 2 exemplifies
such important information.
First, call setup signaling messages contain explicit or

implicit information related to the callee’s state to facilitate

the call setup. The call request can reach the callee if (s)he is
available. When the callee is busy, we can learn it from the
ringtone or being switched to the voice mailbox. If the callee
has call waiting, the call request can still reach him/her if
(s)he is in a call.

Second, standard specifications mandate a rich set of sig-
naling messages, which carry rich context information and
can be exploited to infer the call state on the other party. SIP
defines many parameters and response codes [31, 43] (125 pa-
rameters and 50 codes). For instance, ‘180 Ringing’ indicates
that the call request arrives at the callee; ‘181 Call Is Being
Forwarded’ is usedwhen the call is forwarded to a voicemail-
box for a busy callee;‘486 Busy Here’ indicates a busy callee.
Moreover, SIP defines extensions to convey more informa-
tion. For example, the P-Early-Media (PEM) field [1] autho-
rizes early media (e.g., ringtone), with ‘sendrecv’ indicating
a bidirectional line, ‘sendonly’, ‘recvonly’ and ‘inactive’
indicating a directional line to the caller, from the caller, and
no line. Another example is URN-Alert (Figure 4d), which
provides common understandings of the referenced tones [3].
‘call-waiting’ indicates that the callee is in an active or
held call, and ‘forward’ indicates the call will be forwarded.
Third, these signaling messages are associated with the

call setup’s finite state machine (FSM), which together re-
veals more call state information. For instance, ‘487 Request
Terminated’ implies that the request was terminated by a
BYE or CANCEL request [43]. The caller sends CANCEL when
planning to terminate a call before the call is answered. It
sends BYE if the original INVITE still returns ‘200 OK’. CANCEL
is observed without ‘200 OK’ in response to INVITE. Cel-
lular specifications [15–17] also assert that VoLTE adopts
certain signaling messages useful for callee state inference
from the caller-side observations.

In summary, call setup uses a stateful FSM and its signaling
likely carries enough information to infer callee state. This

Field Reference: Values (examples)

SIP re-
sponse
codes

RFC3261[43]: e.g., 200 OK, 180 Ringing, 181 Call Is Be-
ing Forwarded, 182 Queued, 183 Session Progress, 301
Moved Permanently, 480 Temporarily Unavailable, 481
Call/Transaction Does Not Exist, 486 Busy Here, 487
Request Terminated, · · ·

PEM RFC5009 [1]: sendrecv, sendonly, recvonly, inactive
URN-
Alert

RFC7462 [3]: normal (default), call-waiting, forward,
recall:callback, recall:hold, recall:transfer, · · ·

VoLTE
FSM

TS24.229[15], TS24.628 [17], TS24.615[16]: e.g., carrying
early-media value or alert-info in 180/183, call termi-
nated by network when busy· · ·

Table 2: Main standards on VoLTE (VoIP) call setup.

183 SP (PEM=sendonly)

183 SP (PEM=sendrecv)

181 Call Is Being FWD

180 Ringing(PEM=Inactive)

BYE

(a) C1: AT&T

183 SP (PEM=sendonly)

183 SP (PEM=sendrecv)

180 Ringing(PEM=Inactive)

487 Request Terminated

(b) C2: AT&T

183 SP (PEM=sendonly)

183 SP (PEM=sendrecv)

180 Ringing(PEM=Inactive)

487 Request Terminated

(c) C3: AT&T
183 SP (PEM=sendonly)

183 SP (PEM=sendrecv)

200 OK(CSeq=1Invite)

BYE

(d) C1: Verizon

183 SP (PEM=sendonly)

180 Ringing(PEM=sendonly)

No 200 OK(CSeq=1INVITE)

487 Request Terminated

(e) C2: Verizon

183 SP (PEM=sendonly)

180 Ringing(PEM=sendonly)

No 200 OK(CSeq=1INVITE)
487 Request Terminated

alert:service:call-waiting

(f) C3: Verzion
183 SP (PEM=sendonly)

183 SP (PEM=sendrecv)

200 OK(CSeq=1INVITE)

BYE

(g) C1: Sprint

183 SP (PEM=sendonly)

180 Ringing(PEM=sendonly)

183 SP(PEM=sendonly)

No 200 OK

487 Request Terminated

(h) C2: Sprint

183 SP (PEM=sendonly)

183 SP (PEM=sendonly)

No 200 OK

487 Request Terminated

(i) C3: Sprint
183 SP (PEM=sendonly)

No 180 Ringing

486 Busy Here

CANCEL

(j) C1: landline

183 SP (PEM=sendonly)

180 Ringing(PEM=Inactive)

487 Request Terminate

(k) C2: landline

183 SP (PEM=sendonly)

180 Ringing(PEM=Inactive)

487 Request Terminate

(l) C3: landline
Figure 5: Examples of key observed patterns (in red)

when A is from other three US carriers and landline.

makes callee state inference possible based on the signaling
message sequence observed on the caller side.

3.4 More Feasibility Tests

We run more real-world tests to see whether the idea works
in more usage settings. Figure 5 shows the selected key pat-
terns when B remains the same but A is from other three US
carriers and one landline. AT&T and Sprint do not support
VoLTE but use CSFB/CS. We test with many other settings
(see §6) The feasibility is validated in all settings. We sum-
marize four findings and discuss their design implications.

First, our idea works in all tested carriers, despite with dis-
tinct key patterns (in red). For instance, in AT&T, C1 has 181
prior to 180, which can differentiate itself from C2 and C3. In
Verizon, C1 has no 18x response code but 200 OK in response
to INVITE followed by BYE. This implies carrier-specific im-
plementation. The standard stipulates the mechanism, but

SETUP

CALL PROCEEDING

ALERTING

CONNECT (<1s)

T=0s

T=0.14

T=2.67

T=2.71

(a) C1:CSFB-TMobile

SETUP

CALL PROCEEDING

ALERTING

PROGRESS (>10s)

T=0s

T=0.3

T=7.04

T=28.7

PROGRESS
T=3.7

(b) C2:CSFB-TMobile

SETUP

CALL PROCEEDING

ALERTING

PROGRESS (>10s)

T=0s

T=0.19

T=3.69

T=34.1

(c) C3:CSFB-TMobile
SETUP

CALL PROCEEDING

DISCONNECT

T=0s

T=0.17

T=2.85

(d) C1:CSFB-landline

SETUP

CALL PROCEEDING

ALERTING

DISCONNECT (>10s)

T=0s

T=0.15

T=2.45

T=5.41

(e) C2:CSFB-landline

SETUP

CALL PROCEEDING

ALERTING

DISCONNECT (>10s)

T=0s

T=0.22

T=2.63

T=6.70

(f) C3:CSFB-landline
Figure 6: Examples of key patterns using CSFB/CS.

leaves options for vendors and carriers. The carrier-specific
diversity makes inference more involved, as B may not know
A’s carrier information (at least initially).

Second, we observe redundancy when recognizing dis-
tinct call states. This offers more design choices and makes
our inference more robust (elaborated in §4.2). For example,
to differentiate C1 and C2, AT&T can use either 181→180
versus 180, or BYE versus 487, or both. Verizon may rely on
180, or BYE versus 487, or both. We further observe another
level of redundancy in the message sequence. For example,
CANCEL and 487 are associated (see Figure 4), because 487
is invoked by CANCEL in FSM. We can use 487 only, CANCEL
only, or both, for our inference. It also helps us to infer A’s
carrier information.
Third, some call states are not recognizable in certain

scenarios. In AT&T, the observed sequences are the same
when A is idle (C2) or connected (C3). The verification still
works when auCall is made when inCall just rings at B.
However, it may fail when auCall is made after B accepts
the call (X is conn). The same message sequence is observed
in all three (spoof and no-spoof) settings and we cannot
infer A to be conn or idle. The adversary may consequently
upgrade his spoofing strategy. For example, E uses another
channel to dial A and affect A’s state to defeat B’s verification.
This calls for an effective solution over coarse-grained state
inference to handle rich possibilities (elaborated in §4.3).

Last, our idea also works when the callee (A) is a landline
phone. C1 has distinct patterns from C2 and C3. B receives a
response 486 Busy Here. In our tests, the response codes
may change (e.g., 481), but C1 is consistently observed with-
out 180 or 487, both of which appear in C2 and C3. Landline
is known to use different signaling. The signaling translation
between A and B is thus inevitable. Our study shows that
critical information on signaling is still retained after the
translation. Call technologies follow similar setup conven-
tions. This makes our approach quite promising in practice.

3.5 Feasibility Tests on CSFB/CS

Our idea is also applicable to CSFB/CS calls. Figure 6 shows
the key patterns with CSFB, where B uses AT&T and A

A1 Dialing
A2 Being dialed
A3 Connected (not-on-hold)
A4 Connected-on-hold
A5 Idle
A6 Unreachable (off, flight

mode, invalid number, etc)
(a) Tested callee state

 0

 5

 10

 15

 20

 25

 30

 35

A1 A2 A3 A4 A5 A6

N
u

m
b

er

Seq. Pattern

(b) Number of sequence variants

A1

A2

A3

A4

A5

A6

A1 A2 A3 A4 A5 A6

 0

 0.2

 0.4

 0.6

 0.8

 1

(c) Similarity (T-Mobile only)

A1

A2

A3

A4

A5

A6

A1 A2 A3 A4 A5 A6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

(d) Similarity (all 4 US carriers)
Figure 7: Challenges for Ceive.

uses T-Mobile or landline. We do not show results for other
combinations due to space limit, but all are feasible. This
matches our expectation, because CSFB follows the call setup
convention and conveys state information in the signaling
messages. We also run experiments directly with CS calls
over 3G and observe no difference between CSFB and CS calls.
To retrieve CSFB/CS call setup signaling messages, we use
MobileInsight, an open-source tool [36]. We plot important
call control (CC) messages, such as SETUP, ALERTING and
CONNECT, with more regulated in [14].

We have four findings. First, compared to VoLTE, CSFB/CS
carries less information in its signaling without second-level
messages such as ‘P-Early-Media’ and ‘URN-Alert’. Second,
it still carries sufficient information to distinguish certain call
states. In the landline case, C1 has no ALERTING, which dif-
fers from C2 and C3. In T-Mobile, C1, C2 and C3 observe dif-
ferent signaling sequences: ALERTING-CONNECT, PROGRESS-
ALERTING-PROGRESS, and ALERTING-PROGRESS, respectively.
Third, we also observe redundant features in CSFB. In these
examples, time interval information is not necessary. In the
T-Mobile case, the ALERTING-CONNECT interval in C1 is small
(< 1 second), and the interval between ALERTING and the
second PROGRESS in C2 is always larger than 10 seconds.
Figure 6 plots time information for one run, but the interval
patterns have been confirmed in all runs. Last, we detect
less carrier-specific diversity. Cellular carriers follow similar
signaling procedures in CSFB/CS, as confirmed by the stan-
dards [14]. In summary, inference is still feasible in CSFB/CS
calls despite smaller signaling space than VoLTE.

3.6 Remaining Issues

Our study also uncovers three practical issues to be ad-
dressed. First, the observed signaling sequence may vary
for a given callee’s state. For example, when A uses CSFB
but not VoLTE, a second 183, rather than 180, is observed.
The observed sequences are affected by many factors un-
known to the caller. They include the callee’s carrier, callee’s
VoLTE/CSFB technology, voice forward configuration, ad-
ditional call service etc. We further test with six typical
callee states A1-A6 (dialing, being dialed, connected-not-
on-hold, connected-on-hold, idle, unavailable, see Figure 7a).

Figure 7b shows the number of unique sequences observed
(the number of pattens greatly reduces thanks to our fea-
ture extraction in §4.2). Moreover, the same sequence ex-
hibits for distinct call states. We use Jaccard index to quan-
tity similarity (dissimilarity) when inferring distinct call
states. Let SAi denote the set of sequences for label Ai , and
J (SAi , SAj) =

|SAi ∩SAj |
|SAi ∪SAj |

. Figures 7c and 7d plot the similarity
matrix using T-Mobile only and all four US carriers. If the
same sequence is observed under two callee states, they are
not differentiable. We find that, ‘dialing’ (A1) and ‘being di-
aled’ (A2) are not distinguishable; ‘connected-not-on-hold’
(A3) and ‘connected-on-hold’ (A4) have almost the same pat-
terns. Note that, it is not necessary to distinguish all call
states (elaborated in §4.2). Our solution is 100% reliable for a
single carrier, but accuracy might slightly reduce (still very
high) once A is from another carrier unknown to B. For in-
stance, when A is idle and connected in AT&T, there is no
difference in the observed sequences.

Second, user operations may incur uncertainty as well. We
infer the call state at the start (ring7−→dialing), but it may
change during verification (e.g., A accepts auCall). Conse-
quently, the captured sequence might not be for a single
state. We do observe different sequences when A accepts, re-
jects, or does nothing to auCall. For example, the sequence
ends with 200 (INVITE) and 200 (BYE) when A accepts the
call. Despite such dynamic factors, it is still feasible to infer
the callee state, because we can infer A’s response from the
observed sequence and use this hint in state inference.

Third, the adversary may exploit more sophisticated spoof-
ing strategies. For example, it may dial A while dialing B,
thus manipulating A’s state and deceiving our verification.
It is desirable for Ceive to withstand such advanced attacks.

4 CEIVE DESIGN

We now present the full design of Ceive, which extends
the above feasibility study to address practical issues. Ceive
seeks to exploit the callee-side capability only to timely ver-
ify whether an incoming call is truly associated with its
authentic caller ID. Central to Ceive is to let the callee to
proactively and strategically (elaborated later) to call back
(auCall) to the originating ID until the spoofing hypothesis

inCall?

Multi-phase

Strategy Sequence
Collection

Pattern
Extraction

Callee
Status

Interference

N

Y

TBD

N/A

spoof

no-spoof*

Sequence
Collection

Pattern
Extraction

Pattern
Grouping

…

…

Classifier Training

… …

Initial

Training Ω1(X) one-run

verification

Exp Setting
Setup

… …

next
phase

action

auCall

Spoof-Verififer

Re-Learning

user feedback

training real use

TΩ

TH

phase i

Output:

Figure 8: Overview and operation flows of Ceive.

H is validated.

H :
{
True, inCall.Caller , auCall.Callee
False, inCall.Caller = auCall.Callee (1)

OnceH is accepted, inCall is marked as spoof; otherwise,
no-spoof. The original problem is to validate whether in-
Call.CallerID is associated with inCall.Caller. Because each
caller ID matches only one unique entity, auCall reaches the
callee associated with inCall.callerID as long as the carrier
functions normally. In order to validate H and assert inCall
is a spoof, we only need to observe one mismatch between
their call state captured, Namely,

∃i,Ωi (inCall.Caller) , Ωi (auCall.Callee) 7−→ spoof, (2)

where Ωi (X) denotes X ’s call state at time i . Otherwise, we
believe it as no-spoof when they match every time;

∀i,Ωi (X) = Ω̂i (A) 7−→ no-spoof. (3)

We apply rules (2) and (3) to infer spoofing in Ceive.

4.1 Overview of Ceive

Figure 8 illustrates the overall design and main operation
flows of Ceive. The core module is spoof-verifier for runtime
spoofing detection when a call comes. We devise a multi-
phase (mostly two-phase) verification strategy because one-
run verification described in §3.1 may not always suffice
in practice. The initial phase starts with Ω1(X) = dialinд,
namely, we dial the first auCall while inCall is ringing; At
each phase possibly with distinct Ωi (X) (dialing or con-
nected), we perform one-run verification as illustrated in
§3.1. Specifically, we perform an action πi (make one au-
Call) and exploit the received sequence of call setup signal-
ing messages to infer Ω̂i (A), the state of the originating ID
and determine whether the spoofing incurs by comparing
with Ωi (X). We apply Eqn. (2) to ascertain spoof. Otherwise,
when both states match at all the phases, we believe it as

no-spoof*. We cannot be 100% confident in no-spoof infer-
ence because Ceive uses a limited number of phases; This
cannot guarantee Eqn. (3) holds true in any case. Due to
the attacker’s manipulation and the existing uncertainties, a
match is possible when X , A (spoof). The details are elabo-
rated later. Consequently, it is to be determined (TBD) when
a match is observed and not all the phases complete. If so, the
next phase will be invoked accordingly, for example, making
another auCall when inCall is answered and Ωi (X) = conn.

The modules of initial training and re-learning are to train
and update decision tree rules (classifiers) used by spoof-
verifier. The former is mandatory and requires one-time ef-
fort before use. The latter is optional and can update rules
with user feedbacks (labelled samples) after use. We need
to learn these rules for two reasons. First, our raw observa-
tion is a sequence of messages which has a relatively high
dimension, while the effective patterns lie in a much smaller
subspace. The rules based on the original sequence is prone
to more variants (caused by irrelevant messages) and this
becomes harder to bootstrap accurate classifiers (TΩ and TH)
for call state inference andH -validation, especially using a
small number of samples at the start. To this end, we seek to
leverage domain knowledge on call setup and extract useful
features (sub-sequence) for Ceive’s need. Second, no single
rule can fit all. We must handle sequence variants in real-
ity and ensure its effectiveness under a variety of unknown
factors like caller’s carrier, call technology, call configura-
tions and operations etc. We find that the rules are specific
to the victim callee’s carrier and call technology (VoLTE or
CSFB/CS). There is no surprise that the rules learned can be
shared to the same-type mobile users using the same carrier
and call technology. The training effort is modest. We next
elaborate on each component.

4.2 Initial Training

It takes three steps: sample collection, pattern extraction,
and classifier training.
Sample collection. We design and conduct experiments to
collect samples to infer the callee status from the caller’s
observation. We find that inference is not affected by B’s
inCall status (whether it is on another ongoing call or just
idle), so we consider the auCall call session only. Given the
output label of the callee’s status Ωi (A), we collect train-
ing samples under two settings: the caller’s call action πj
under control and typical experimental settings Sk which
might be unknown in use. We consider four output labels:
dialing (A1), connected (A3), idle (A5) and unavailable (A6)
(Table 7a). This is because our preliminary study shows that
A1 and A2 are not distinguishable, while A3 and A4 are al-
most indistinguishable in reality. Action πj is constrained
by the caller’s power and we consider VoLTE and CSFB/CS

Command Response Sequence

INVITE
ACK
BYE

CANCEL
PRACK

UPDATE
… 200

…
100 183 181 180 487

…

 Extension

180a: PEM.sendonly
180b: PEM.sendrecv
180c: PEM.sendonly & ALERT.call-waiting

(a) Definitions of sequence segmentation and expansion

raw sequence
100 183 180aINVITE PRACK 200 PRACK 200 ACK BYE 200

segment seq.

pattern
extraction

primary
180a 200

200
secondary

(b) Using the example of Figure 4a (T-Mobile, VoLTE, C1)
Figure 9: Sequence pattern extraction.

calls. Experimental setting Sk takes into account other fac-
tors such as the callee’s carrier and call technology (VoLTE,
CSFB, landline), voice service configuration, etc. In each run
r , we collect one raw sequence sample forψi, j,k [r].

We later find that there is no need to enumerate all possible
experimental settings (which is extremely hard, if not impos-
sible). In fact, our training quickly converges with several
samples in typical settings. This is because the key patterns
are commonly observed due to the inherent FSM.
Pattern extraction.We next extract low-dimensional fea-
tures out of the raw sequences for further inference. We
take a domain-specific approach over two facts: (i) the se-
quence of signaling messages is structural (determined by
its inherent FSM); (ii) many segments are common, but only
a few distinct segments are critical to inference.

Our extraction has two steps. First, we represent the raw
sequence into a simple and meaningful manner. Figure 9a
illustrates the segment structure. Each segment starts with
a signaling command or request (e.g., INVITE, ACK, OPTION,
BYE, CANCEL,PRACK and UPDATE [43]), and ends with its re-
sponse codes (zero, one or multiple). As a result, each seg-
ment has its call signaling context. The INVITE segment is
used to invoke call signaling, while the ACK/BYE/CANCLE is
to stop signaling. Other segments like PRACK and UPDATE are
used for other purposes and irrelevant to call status inference
(#). We also find that, all segments except INVITE have at
most one response code (usually 200 or no response). This
implies that only its segment head (aka, the request itself)
suffices. The INVITE request not only invokes multiple re-
sponse codes, but also exhibit complicated patterns, such as
183-183-487, 183-180-487, 183-180-200, and so on. More-
over, certain response codes have multiple variants such as
180/183 (with distinct PEM and ALERT values). They thus ob-
tain multiple extensions based on the additional information
carried. Figure 9b illustrates how it works using the T-Mobile
example (Figure 4a). We represent the raw sequence (top)

100 183 180a 200

100 183 180d 200181

100 183 486

(fig.4a)

(fig.5a)

(fig.5j)

A1
dialing

A3
conn

A5
idle

A6
off

100 183 180b 487
 (fig.4b)

100 183 180d 487
(fig.5b,5c)

…
-180a-200

common
subseq

-181-180d-….
-486

A1

A3

A3|A5

…

-180b-200
…

…

…

-180d-487
…

first-subseq

Figure 10: Illustration of classifier training.

into a segment sequence by substituting all non-INVITE seg-
ments with its command head only.

Second, we extract the pattern in the form of one primary
segment (INVITE), along with one secondary segment. Pri-
mary and secondary segments are defined based on their
importance to inference. It is not surprising that the INVITE
segment plays an essential role (). Other segments like
ACK/BYE/CANCEL are somehow useful and act as the sec-
ondary ones (H#). Note their significance is not only justified
by their meanings, but also is confirmed in the training pro-
cess. Finally, we retrieve the pattern as one sole INVITE
segment (here, INVITE-100-183-180a-200) and a chain of
the secondary ones (here, ACK-BYE) followed by a primary
segment element, here 200(for INVITE), which records how
to chain two segments. This way, we greatly reduces the
feature space while still retaining key information.
Classifier training. The last step is to train the classifiers
TΩ and TH . Their approaches are similar and the only dif-
ference is that the latter is a binary classification, which
is simpler. Given Ωi (A), we only consider two sets: match
(Ωi (A)) and dismatch (¬Ωi (A)). In the former TΩ training, we
handle multiple labels (here, A1, A3 and A5 and A6). We use
the former task to present our training procedure. Consider
the classifier is call technology specific. The training runs
separately per πj (VoLTE or CSFB/CS).
Figure 10 illustrates the training procedure using real in-

stances described in Figures 4 and 5. The training input is a
bipartite graph which maps the pattern to the status label.
Note that not every pattern corresponds to single label. For
example, pattern P5 is observed in both A3 (conn) and A5
(idle). This results in ambiguity, so we cannot precisely tell
the callee status in use. So our training is to remap all the
patterns to new status labels so that every pattern contains
no ambiguity. This is crucial for the subsequent spoofing
inference. Ceive utilizes it to determine the confidence level
of our inference (described later). To do so, we first group
all the patterns per Ωi (A) and then divide these groups into
exclusive sets. For those patterns which are associated with
multiple labels, we create a new label. For example, P5 is
labelled as A3|A5, which is different from A3 only or A5
only. Initially, these exclusive sets can be obtained via set
interaction and difference. For two sets A and B, we divide

into three new sets: A∩ B, A/B (A only), B/A (B only). Theo-
retically, we convert n (here, n=4) groups into at most 2n − 1
(= C1

n +C
2
n + · · · +C

n
n) sets. It can work interatively. When a

new sample (Px ,Ax) comes, we first check if the extracted
pattern is new. If yes, Px will be added into itsAx -only set. If
no, we check if its new label conflicts with the existing label
(say Aold . When the new label is not included, we need to
move this patten into the set labelled as Ax |Aold . In fact, we
iteratively perform the above process until we finish all the
training samples.
To make Ceive efficient, we take two measures in train-

ing. First, we locate common subsequences that appear in all
patterns for distinct callee status. They are of no value for
inference. We thus apply the popular LCS (Longest Common
Subsequence) algorithm [33]. We run it iteratively until we
find all common subsequences. In this example, we identify
a common subsequence of the first three messages (INVITE-
100-183). Second, our classifiers use the first distinct subse-
quence, rather than the whole pattern sequence. We apply
FreeSpan, a sequential pattern mining algorithm [30] to gen-
erate unique subsequence patterns. Note that the first distinct
subsequence is sufficient to classify different callee statuses.
For example, after the common subsequence, 180a or 181
or 486 infers A1 (dialing) but 180d indicates A3|A5. This
speeds up spoofing interference without waiting for all the
messages. We notice that the first distinct subsequence may
vary as training samples grow. One pattern may change its
label upon a new sample. To handle this, we still perform
the training for the whole pattern sequence (primary and
secondary segments). Once the first subsequence expires,
we leverage the rest subsequences (redundant features) to
update the first unique subsequence.
4.3 Spoof Verifier

Themodule of Spoof Verifier has twomain components: multi-
phase verification strategy and one-run verification.
One-run verification. Each verification starts with known
Ωi (X) and actions πi at phase i . Following the flow of Fig-
ure 8, it uses many common components in the training
process. We focus on three distinct operations.
First, we go directly for spoofing inference. We check

whether the observed pattern matches Ωi (X), without infer-
ring Ω̂i (A). Moreover, Ωi (X)may not be an arbitrary state of
Table 7a. Due to the incoming call constraints, there are only
two (actually three) options: (1) when inCall still rings, Ωi (X)

is dialing; (2) when inCall is accepted, Ωi (X) is connected
(no difference in not-on-hold or on-hold).

Second, we run an online algorithm for inference. This
accelerates the process without waiting for all the signaling
messages to come. Upon receiving a new signaling message,
we update its pattern incrementally. Once the update is able
to validate Ω̂i (A) , Ωi (X), spoof is detected; We stop data

spoof

mismatch match

ambiguity?

Last phase? Last phase?

TBD

Yes No

N/A TBD

Yes No

no-spoof*

Yes No

Figure 11: Multi-phase spoofing inference logic.

collection and verification (e.g., stop dialing or hang up this
auCall). Otherwise, we stop until we receive all the signaling
messages. We choose to use the first unique subsequence
at runtime in order to complete the spoofing inference early.
Note that there are other design options to defer inference
and use multiple subsequences (if possible) for reliable in-
ference. We find that, certain signaling message will not be
invoked if we do not hang up auCall (see §6). We thus add a
timer to hang up the call to avoid waiting too long.

Third, our inference decision logic is slightly different. In
the training process, the ground truth is known. But in the
inference process, we face more uncertainties. As illustrated
in Figure 11, our decision tree at each phase have four out-
puts. (1a) If it does not match any pattern for Ωi (X), it stops
with ‘spoof’. This is the easiest case. (1b) Otherwise, we
consider if the used pattern contains any ambiguity, namely
marked with more than one call states. (2a) If no, we stop at
‘no-spoof*’ if this is the last phase, otherwise ‘TBD’ for next
phase. (2b) If yes, we stop at ‘N/A’ if this is the last phase,
otherwise ‘TBD’ for next phase. Note that in 2b, there is alter-
native aggressive option: we can also mark it as ‘no-spoof*’
with lower confidence than the same case in 2a. However, it
may generate false-negative results (Ceive says ’no-spoof’
when it is a spoof) We choose the current one because we
believe that false negative is more damaging. In contrast,
marking true negative (no-spoof) as N/A may not be a big
concern. Given N/A, the callee may stay alert than usual,
which is unnecessary when it is not a spoof. Moreover, the
callee can be relaxed after learning the call is not ill-intended
over the conversation.
Multi-phase verification strategy. Clearly, reducing am-
biguity is critical. When one pattern has multiple state labels,
one of which matches with Ωi (X), it is hard to ensure infer-
ence accuracy. Our preliminary study shows that ambiguity
is caused by several factors such as indistinguishable call
states in one carrier, diversity across unknown carriers (the
same pattern means different states in different carriers),
user-induced diversity (user setting affecting the pattern).
Here, we propose multi-phase verification to tackle it.
First, Multi-phase reduces the N/A likelihood when cer-

tain call state is not distinguishable. The N/A probability is
the product of those N/A ones at all the phases and greatly
reduces with more phases. In this work, we run two-phase
verification before and after the call is accepted. Table 3 lists

No. Call Scenario Ω1(A) Ω2(A)

basic

C1 A→B dialing conn
C2 E→B, A is idle idle idle
C3 E→B, A is connected (on-a-call) conn conn
C4 E→B, A is unavailable (i.e, A6) off off

advanced

C5 E→B, E (E’) made A on a call conn conn
C6 E→B, E (E’) is dialing A too dialed* dialed*
C7 E→B, E (E’) first dials A and hangs

up once B answers the call
dialed* idle

Table 3: Call Scenarios. ‘being dialed’ and ‘dialing’ is

indistinguishable in our state inference.

seven typical scenarios. Here, only C1 is no-spoof case. For
example, in C2, even when idle is not distinguishable from
dialing at phase one, it is detectable as long as conn and
idle can be distinguished. This allows us to tolerate coarse-
grained call state inference to some extent. We also see that it
helps us to combat advanced spoofing strategy. For example,
when E dials A in C6 to cheat our verification at the first
phase, we still can infer the spoofing at the next phase.

Second, multi-phase verification allows us to combine pat-
terns and get a longer feature vector which combats ambigu-
ity caused by unknown factors. Though A’s carrier or other
factors are unknown to B, the resulting sequences convey ad-
ditional information constrained by these unknown factors.
Let us use an two-carrier two-phase example to illustrate this
idea. Let Pi be the observed pattern while Ωi (X) is dialing.
Assume that Pi is labelled as idle (carrier 1) but dialing
(carrier 2). Without running more phases, it is believed to be
a match with ambiguity and ends with N/A (Figure 11). If we
run another phase when Ωi+(X) is conn, we obtain a new
observation Pi+1 which can be conn (carrier 1) but cannot be
conn (carrier 2). Combining both observations, we can infer
that Pi + Pi+1 can not be dialing + conn for either carrier.
We thus ascertain that it is a spoof.

In this work, we choose two-phase verification because
in the evaluation, it has already achieved 100% accuracy
when the spoofing occurs (expect in the stretched attack)
using single call action (either VoLTE or CSFB). Theoretically,
Ceive can run more phases as long as each has distinct
Ωi (X) and πi (e.g., using hybrid (both VoLTE and CSFB),WiFi
calling, VoIP, and other well-designed calling schemes).

4.4 Re-Learning and Other Components

Ceive also supports learning during the use. This ability is
important when our initial training is not sufficient and does
not capture key patterns. This also makes Ceive extensible
to new settings (for example, a call from a new carrier which
has not been studied before). With re-learning, Ceive can
evolve itself and improve accuracy even if it performs poorly
at the start. Re-learning requires user feedback. After one
call, Ceive allows to label this call. We take the same iter-
ative approach in initial training to update our classifiers.

Upon a new sample, we need to add this pattern if it never
appears, or update the relevant rules if it appears before. If
it is consistent with the existing rules, no update is needed.
Otherwise, we update its label of call status and re-extract
the feature (say, the first distinct subsequence). Ceive suffers
with incorrect samples (e.g., marking a no-spoof as spoof).
This may produce wrong ambiguity and mislead Ceive’s
inference. Currently, Ceive works with correct samples only.
When a small portion of samples are polluted, we can ap-
ply advanced classification techniques (say, majority voting
classifiers). This is our ongoing work.
Other triggers for Ceive. Currently, Ceive is invoked by
any incoming call. It is extensible to other trigger conditions.
For example, the user can configure not to run Ceive when
those numbers are from personal contacts, whitelists, call
history etc. Billing is another critical factor. In those countries
where the user needs to pay extra costs for outgoing calls,
Ceive can be more conservative to make auCalls and even
do not run when the call is form one international number or
one premium number etc. Note that Ceive just dials auCalls
and hangs up before they get through in most cases, which
will not incur extra charges. Moreover, it can work with the
existing solutions which mark some suspecting numbers.
What if A also Ceive-enabled? Ceive does not require
additional support from A. But it should work gracefully in
this case. We avoid the chain effect (B calls A, A calls B and
into a loop) by allowing at most one active verification test
for one number at one time. So even when A calls back to B,
B will not a invoke new verification call.

5 IMPLEMENTATION

We implement Ceive on Android smartphones. It is a proof-
of-concept prototype addressing three practical implemen-
tation issues. First, commodity mobile OS (Android, iOS,
etc) does not open permissions to obtain cellular signal-
ing messages. We thus use rooted phones to enable data
collection (SIP via TCPDUMP, CSFB/CS signaling via Mo-
bileInsight [36]). Second, the current cellular network does
not allow another dialing when being dialed. B thus cannot
make a call to A while receiving an incoming call request.
We prototype Ceive using a buddy phone B*. B* can be from
a family number, a friend or buddy trusted by B. When B
makes a call during dialing, B forwards this request and as-
sociated information to B*. B* will do it exactly as designed
on B and then return results to B. In our implementation,
we use Google Firebase [29] to register and obtain buddy
services and use the Internet for B-B* communication. Note
that the buddy option will not cause any chain effect when
both A and B are Ceive capable. This is because the incoming
call will not show up when the phone is dialing or being
dialed. In the absence of spoofing, A will not see a request

from B*. In the presence of spoofing, A may ask A* to call B*
upon receiving the request from B*. This call will not show
up at B*, because B* is dialing. Last, cellular networks and
Android OS permit two calls but do not allow both active
simultaneously. The incoming call is put on hold when B
makes another new call, and gets resumed when Ceive ends.
This slightly affects user experience. To program voice call
services, we use TELEPHONY_SERVICE, a system service in
TelephonyManager[19] to monitor any incoming call and
obtain phone information; We use ACTION_CALL in Android
Intent to launch a new verification call, which automati-
cally places the prior incoming call on hold; We use Java
reflection to access the endCall() function defined in
ITelephony. We thus terminate the verification call once
having sufficient information for spoofing inference.

6 EVALUATION

We evaluate Ceive in the six aspects: effectiveness against
real spoofing, accuracy, extensibility, user friendliness, re-
sponsiveness and overhead.
Experiment settings: We assess Ceive in four basic call
scenarios and under three advanced spoofing attacks (Ta-
ble 3). C2-C4 are simple spoofing scenarios where E only
fabricates A.ID. C5-C6 are two advanced spoofing attacks
where E also manipulates A’s state (e.g., being dialed, con-
nected). C7 is a special attack designated against Ceive. E
synchronizes his operations to B and A, where E first dials
A when dialing B, and hangs up once the call is accepted
by B. To amplify damages, we assume A follows E’s will
(e.g., A will not accept or reject the call and stop the state
of being dialed). By default, B is idle before inCall comes.
We also consider other scenarios where B is in an ongoing
call, B is dialing, B is being dialed by someone else when
the call comes. B will not receive the call in the latter two
cases. There is no difference when B is already on-a-call. We
present the results when B is initially idle.
We run experiments in a responsive and controlled man-

ner. All parties (A,B,E) are under our control unless specified.
We use 12 Android phones, covering 8 models from Samsung
Galaxy S5/S8, Google Pixel XL/2, Nexus 6/6P, LG G4, Xiaomi
Mix2 with OSes ranging from 4.4.2 to 8.0.0. We also recruit 12
volunteers (5 local and 7 out-of-states) to act as A only. They
use iPhones (6/6s/6p/7/7p) and Android phones. We test with
different phone models, and find no phone-specific results,
except that B must run Ceive over an rooted Android phone.
We run Ceive over VoLTE or CSFB. In VoLTE experiments,
we run T-Mobile VoLTE on S5 phones and Verizon VoLTE on
LG G3 phones as B and B’s buddy. Note that in the US, only
T-Mobile and Verizon support VoLTE now (no VoLTE for
Sprint; VoLTE restricted in AT&T). On the A’s side, we test
with all top four US carriers, several single-line landlines, as

(a) a real test

A Basic Spoofing Advanced Spoofing
C1 C2 C3 C4 C5 C6 C7

AT&T CS N/A* 100% 100% 100% 100% 100% N/A
T-Mobile CS 100% 100% 100% 100% 100% 100% 100%
T-Mobile VoLTE 100% 100% 100% 100% 100% 100% 100%
Verizon CS N/A* 100% 100% 100% 100% 100% N/A
Verizon VoLTE 100% 100% 100% 100% 100% 100% 100%
Sprint CS 100% 100% 100% 100% 100% 100% 100%
CT-Mobile CS 100% 100% 100% 100% 100% 100% 100%
Landline N/A* 100% 100% 100% 100% 100% N/A

(b) B running VoLTE (T-Mobile and Verizon)
Figure 12: Effectiveness and accuracy results of Ceive

running over VoLTE.

C1 C2 C3 C4 C5 C6 C7

AT&T N/A 8/8 0/8 0/8 0/8 0/8 0/8 8/8
Accuracy 0% 100% 100% 100% 100% 100% 0%

T-Mobile N/A 7/8 0/8 0/8 0/8 0/8 0/8 7/8
Accuracy 100% 100% 100% 100% 100% 100% 100%

Table 4: Accuracy of Ceive over CS/CSFB.

well as an international roaming carrier and a small US car-
rier. A runs CSFB/CS and VoLTE if supported. In CSFB tests,
we consider B for AT&T or T-Mobile, because the MobileIn-
sight tool [36] does not support 3G CDMA call signaling (in
Verizon and Sprint); Ceive runs at most two phases where
auCall is made before and after the call is accepted.
Effectiveness against real spoofing attacks. We launch
the spoofing attack described in §2 towards a Ceive-enabled
phone (Pixel 2). Figure 12a shows that Ceive effectively de-
tects spoof and completes within 9 seconds while B runs
VoLTE in T-Mobile. We validate that it works in all four
B’s options: VoLTE in T-Mobile and Verizon, CSFB in T-
Mobile and AT&T. Remarkably, no other solutions work
well. Google’s dialer [5] and TrueCaller [51] mislead the
callee to believe this number is from ‘Passport & Visa Of-
fice’ (actually, Consulate General of China in Los Angeles).
Because this number is a landline out of our control, we can-
not run all the attack scenarios (C2-C7). We use the public
spoofing service to launch a E → B call faking the ID used
in the real scam call. We do not know A’s true state and
C2/C3/C4 is possible (likely C2). Clearly, Ceive successfully
shields against spoofing using the callee-side power only.
With Ceive, the victim is able to immediately realize that
the incoming caller ID is not trustworthy and likely prevent
from the telephony frauds atop.
Accuracy. We further assess its effectiveness in more sce-
narios. In VoLTE experiments, B uses two carriers and A uses
eight carrier-call technology settings. In all tests, Ceive runs
with no prior information on A’s carrier and call technol-
ogy. We observe the same accuracy results for both carriers
(T-Mobile and Verizon) and combine them in Figure 12b.

Ceive has three outputs: spoof, no-spoof* and N/A. We
assess accuracy only in the former two cases and count N/A
as the missing rate. It achieves 100% accuracy as long as it in-
fers spoof/no-spoof. It remains 100% effective (true positive)
in all spoofing scenarios, except C7 under certain settings.

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8

N
/A

 R
a
te

 (
%

)

Round

Cricket
CT Mobile

(a) Learning speed

20

40

60

80

100

 0 2 4 6 8 10 12

C
D

F
 (

%
)

seconds

VoLTE
CSFB

(b) Wait time

0

20

40

60

80

100

 0 5 10 15 20 25

C
D

F
 (

%
)

seconds

1-phase
2-phase

both

(c) Completion time via VoLTE

0

20

40

60

80

100

 0 5 10 15 20 25

C
D

F
 (

%
)

seconds

1-phase
2-phase

both

(d) Completion time via CSFB
Figure 13: Extensibility and responsiveness results in Ceive.

Note that C2-C6 cover themost common and advanced spoof-
ing attacks. C7 is an stretched attack which has not been
observed in use; It requires special efforts to synchronize its
manipulation on A. Without such synchronizations, Ceive
can possibly detect the spoofing attack. In C7, Ceive outputs
N/A in 3 out of 8 basic experimental settings and infers spoof
in the rest five settings. Ceive still can keep the users from
possible spoofing attacks, as long as the callee stays alert
given N/A. However, it implies that the user needs to pay
extra efforts when Ceive infers N/A in no-spoof settings (C1).
As a matter of fact, Ceive observes the same sequence when
C1 or C7 happens. This is why Ceive infers N/A because
Ceive adopts a conservative option upon pattern ambiguity
(here, the same pattern observed when A is conn or idle).
If Ceive enforces an deterministic inference which aggres-
sively converts N/A into no-spoof with high confidence, all
N/A results will turn into 100% accuracy in C1 but 0% in C7.
As described in §4.3, N/A is more tolerable because the user
has no risk for staying alert in case of no spoof. High missing
rate in C1 (and in C1 only) are still able to free the users from
the spoofing risks, though it is a potential downside to be
addressed in the future.
Table 4 shows that Ceive also works well over CSFB. It

also achieves 100% accuracy in C2-C6, and faces similar N/A
issues in C1 and C7. In C1/C7, it is less effective than VoLTE;
It outputs N/A in all the runs when B uses AT&T; When B
uses T-Mobile, it can combat ambiguity in only 1 out of 8
settings (T-Mobile VoLTE). This is because CSFB conveys less
information than VoLTE. Note N/A is tolerable and Ceive is
still effective in the spoofing cases except C7. This indicates
that Ceive is ready for wider applicability (as not all 4G
carriers support VoLTE to date).
Extensibility. We also assess how Ceive learns and adapts
to new scenarios. We examine Ceive’s learning speed when
applying our algorithm learned from four US carriers and
one land-line over two new carriers. CT-Mobile is an inter-
national roaming carrier with limited SIP message pattern
diversity, and we get 0% N/A rate after 4 rounds (Figure 13a).
Cricket Wireless has various SIP message sequences at the
dialing state, and also suffers from the same SIP pattern at the
idle and connected states. It thus takes much longer learning
time, yet still exposed to the risk of failing to infer all cases

after convergence (Figure 13a). Note that, this is also caused
by N/A in C1 and C7 as well.
User friendliness and responsiveness. Ceive seeks to
minimize unnecessary changes and remain friendly to nor-
mal users including the callee victim B and the spoofed entity
A as well. Ceive largely does well, but still imposes some
noticeable (possibly annoying) changes to users.

For B, the obvious change is to prompt the spoofing detec-
tion result on the screen, which is expected and needed by
B. The second change is related to Ceive’s responsiveness.
Ceive requires the users to accept the call until it completes
the first-phase verification. This induces extra wait time for
call answering. We measure the completion time of the first-
phase in all the experiments in Figure 13b. Users needs to
wait for 4–10 seconds using VoLTE, which is faster than
CSFB (mostly, 8-10 seconds). This matches with our experi-
ence that CS call setup is slightly slower. When the second
phase is needed, Ceive holds the incoming call for 3-10 sec-
onds and then resumes; This might upset B when the call is
not malicious (no-spoof).
We further quantify responsiveness in terms of the com-

pletion time needed for Ceive. Figure 13c and Figure 13d
plot the results using VoLTE and CSFB. we note that, there
exists uncertain delay incurred by user operations when the
second-phase is required (B must answer the call first). We
thus measure the time at B’s side between the phone’s start-
ing to ring and the final decision, excluding the human delay
(i.e., the interval between the first AuCall state being inferred
at B and B’s answering the call.) We find that Ceive requires
only one phase in 60% cases using VoLTE and 40% cases
using CSFB. When only one phase is required, it completes
within 10 seconds. For most cases (>90%), Ceive finishes
within 16 seconds (VoLTE) and 19 seconds (CSFB), up to 23
seconds. Clearly, Ceive yields timely verification. It can alert
the user before the telephony fraud take effects (no real loss
within tens of seconds).

For A, Ceive has no notifiable changes, if A is not spoofed
(the incoming call is made by A). This is because dialing from
another party (B or B*) will not be shown up if A is dialing.
If A is spoofed, A may notice an incoming call from B or B’s
buddy. Our user study shows that, A likely has no chance to
take this verification call because it ends right after it rings.

Once it starts to ring, Ceive has enough information from
call signaling. However, Amay call back later once he notices
a missed call. This may increase unnecessary calls. But one
benefit is to help A realize that A’s ID has been spoofed by
others when calling back. There are more options to handle
this case. For example, we can offer other automated options.
such as a recorded voice message indicating that the calls
fromB or B* is used for verification only, or we can signify the
verification from the phone number (e.g., a dedicated number
registered for the spoofing verification service provided by
Ceive). We treat it as our future work.
Lowoverhead.Weuse built-in tools and apps on the phones
tomeasure CPU[9], memory and battery usage (in the Setting
panel). We do not notice that Ceive consumes extra CPU,
memory, energy when running in the background (without
incoming calls). When Ceive is invoked by an incoming call,
the incurred overhead is comparable to that of making a call
out without Ceive. That is, the overhead is caused by call
making. The overhead induced by Ceive is negligible.

7 DISCUSSION

We discuss other possibilities and remaining issues.
Better solution: implementation at the network? Our
idea can be implemented at the network as well. It is better
if so. The callee’s carrier may detect/stop caller ID spoofing
by running verifications (more options available inside the
network). It can be done even before it rings at the callee,
without hurting any user experience. It can even create more
signaling for this purpose.
Deployment issues. Deploying Ceive indeed faces several
practical issues: It needs a buddy to make an auCall when
the incoming one rings (no need in other cases); The phone
making auCall (victim or victim’s buddy) must be rooted.
These constraints come from the phone OS and chipset ven-
dors. It is possible to relax some: root is not needed in a
customized OS (e.g., Android Open Source Project); buddy is
not needed with an adjusted verification. Real use may start
with selective groups (e.g., seniors who are among the top
victims of scam calls).
Possible Downsides. Ceive should conceptually work in
any other carrier but its effectiveness depends on signaling
realization in various carriers. Given possible carrier-specific
customizations, learning over more other carriers is required
(using the proposed technique). Another downside is that,
this solution may not work when the spoofing call is from
a multi-line phone system or any other telephony network
where multiple entities share the phone number [54]. As the
verification call may reach another entity different from the
original caller, state inference may not work unless other
information is exposed during call signaling. We have tested

with several 800-lines, each of which likely runs a multi-line
system. We find that the received signaling sequences do
not vary no matter whether A is on a call or being dialed
(by our another phone) or we do nothing with A. We gauge
that this is because the number is accessible as a whole
even when some lines are in use (not all the lines occupied).
This matches with our expectation. We note that all cellular
networks and most landline carriers are single-line.
New security issues by Ceive. One may concern Ceive
is exploited for unintended, malicious usage. For example,
an adversary leverages Ceive to launch DoS attacks towards
A by making calls to many parties using spoofed A.ID. How-
ever, all Ceive’s calls are invoked by incoming calls; the at-
tacker already has the capability to make many calls. There
is no difference from making many calls directly to A with
spoofed caller IDs, thus an non-issue with Ceive.
Spoofing for valid causes. Caller ID spoofing may be used
for valid causes, such as anonymity for privacy protection.
Our goal is to detect spoofing, regardless of its good or ill
intentions. We leave the decision to mobile users on whether
to accept or reject the call. We believe that, an alert regarding
caller ID spoofing can greatly help those technology-unsavvy
people, who are often the target victims of scam calls, to stay
alert against malicious caller ID spoofing.

8 CONCLUSION

The paper presents the design, implementation and evalua-
tion of Ceive. Ceive takes a fresh view on cellular-specific
operations and low-layer call signaling, in order to differen-
tiate a spoofed caller ID. It thus presents a novel, callee-only
solution against caller ID spoofing. It devises various infer-
ence techniques to infer the remote caller state, by exploiting
an unexplored side channel of 4G networks.
Different from all existing approaches, Ceive is possibly

the first effective and practical solution using the callee’s
capability only. Without requiring any additional infrastruc-
ture update or caller-side cooperation, Ceive offers a unique
opportunity to take immediate action and combat caller ID
spoofing. The defense capability will further improve, as
Ceive is being refined and more extensively assessed. Our ex-
perience with Ceive also offers a showcase example, where
new network security designs can be posed as inference
problems and solutions can be devised by applying general
machine learning while exploiting deep domain knowledge.

Acknowledgement.We greatly appreciate our anonymous
shepherd and reviewers for their constructive comments.
This work was partially supported by NSF Grants: CNS-
1750953, CNS-1753500 and CNS-1749045.

REFERENCES

[1] 2007. RFC5009: Private Header (P-Header) Extension to the Session
Initiation Protocol (SIP) for Authorization of Early Media.

[2] 2015. "Largest IRS Phone Scam Likely Exceeded 450,000 Potential Vic-
tims in March". https://www.pindrop.com/irs-phone-scam-live-call_
analysis/.

[3] 2015. RFC7462:URNs for the Alert-Info Header Field of the Session
Initiation Protocol (SIP).

[4] 2015. Voice over LTE. http://www.gsma.com/technicalprojects/volte.
[5] 2016. Google Phone App. https://play.google.com/store/apps/details?

id=com.google.android.dialer.
[6] 2016. Victims lose more than $1 million to China phone scam: Po-

lice. http://www.straitstimes.com/singapore/courts-crime/victims-
lose-more-than-1-million-to-china-phone-scam-police.

[7] 2017. Chinese callers phish personal information
in new phone scam, one person loses over $100k.
http://www.straitstimes.com/singapore/chinese-callers-phish-
personal-information-in-new-phone-scam-one-man-loses-over-100k.

[8] 2017. Chinese police arrest 118 in scam targeting seniors. http://www.
xinhuanet.com/english/2017-09/20/c_136624766.htm.

[9] 2018. CPU Profiler. https://developer.android.com/studio/profile/
cpu-profiler.html.

[10] 2018. Fake Call - Fake Caller ID. Mobile app at Google Play and App
Store.

[11] 2018. Missed call phone scam still catching Australian mobile users
off guard, ACCC says. http://www.abc.net.au/news/2018-02-07/
international-missed-call-scam-still-affecting-australians/9396072.

[12] 3GPP. 2011. TS24.007: Mobile radio interface signalling layer 3; General
Aspects.

[13] 3GPP. 2017. TS23.272: Circuit Switched (CS) fallback in Evolved Packet
System (EPS).

[14] 3GPP. 2017. TS24.008: Mobile Radio Interface Layer 3.
[15] 3GPP. 2017. TS24.229: IP multimedia call control protocol based on

Session Initiation Protocol (SIP) and Session Description Protocol
(SDP); Stage 3.

[16] 3GPP. 2017. TS24.615:Communication Waiting (CW) using IP Multi-
media (IM) Core Network (CN) subsystem; Protocol Specification.

[17] 3GPP. 2017. TS24.628: Common Basic Communication procedures
using IP Multimedia (IM) Core Network (CN) subsystem.

[18] Android. 2017. Precise Call State. https://android.googlesource.com/
platform/frameworks/base.git/+/master/telephony/java/android/
telephony/PreciseCallState.java.

[19] Android. 2017. TelephonyManager. https://developer.android.com/
reference/android/telephony/TelephonyManager.html.

[20] BBC. 2016. Themassive phone scam problem vexing China and Taiwan.
http://www.bbc.com/news/world-asia-36108762.

[21] Bloomberg. 2017. Millennials Are Most Likely to Fall for an
IRS Scam. https://www.bloomberg.com/news/articles/2017-04-26/
millennials-are-most-likely-to-fall-for-an-irs-scam.

[22] Yigang Cai. 2012. Validating caller id information to protect against
caller id spoofing. US Patent 8,254,541.

[23] CFCA. 2017. 5 phone scams to watch out for right now - the criminals
that are calling you to hack your account. https://www.mirror.co.uk/
money/5-phone-scams-watch-out-10748178.

[24] Stanley Taihai Chow, Vinod Choyi, and Dmitri Vinokurov. 2016. Caller
name authentication to prevent caller identity spoofing. US Patent
9,241,013.

[25] Federal Trade Commission. 2017. FTC Releases An-
nual Summary of Consumer Complaints. https:
//www.ftc.gov/news-events/press-releases/2017/03/
ftc-releases-annual-summary-consumer-complaints.

[26] Federal Trade Commission. 2018. Scammers impersonate the Social
Security Administration. https://www.consumer.ftc.gov/blog/2018/01/
scammers-impersonate-social-security-administration.

[27] Serdar Artun Danis. 2015. Systems and methods for caller ID authen-
tication, spoof detection and list based call handling. US Patent
9,060,057.

[28] Vijay K Garg. 1999. IS-95 CDMA and CDMA2000: Cellular/PCS systems
implementation. Pearson Education.

[29] Google. 2017. Firebase Projects. https://firebase.google.com/.
[30] Jiawei Han, Jian Pei, Behzad Mortazavi-Asl, Qiming Chen, Umeshwar

Dayal, and Mei-Chun Hsu. 2000. FreeSpan: frequent pattern-projected
sequential pattern mining. In Proceedings of the sixth ACM SIGKDD
international conference on Knowledge discovery and data mining. ACM,
355–359.

[31] IANA. 2017. Session Initiation Protocol (SIP) Parameters. https://www.
iana.org/assignments/sip-parameters/sip-parameters.xhtml.

[32] iFeng. 2018. Alert! Phone Scam targeting Chinese from China’s Con-
sulates across the US! Someone lost Millions of dollars (in Chinese).
http://wemedia.ifeng.com/47830827/wemedia.shtml.

[33] Tao Jiang andMing Li. 1995. On the approximation of shortest common
supersequences and longest common subsequences. SIAM J. Comput.
24, 5 (1995), 1122–1139.

[34] KTVB. 2017. Caller ID spoofing on the rise in Ada
County. http://www.ktvb.com/article/news/crime/
caller-id-spoofing-on-the-rise-in-ada-county/449086755.

[35] Jikai Li, Fernando Faria, Jinsong Chen, and Daan Liang. 2017. A Mech-
anism to Authenticate Caller ID. InWorld Conference on Information
Systems and Technologies. Springer, 745–753.

[36] Yuanjie Li, Chunyi Peng, Zengwen Yuan, Jiayao Li, Haotian Deng, and
Tao Wang. 2016. MobileInsight: Extracting and Analyzing Cellular
Network Information on Smartphones. In ACM MobiCom.

[37] MarketWatch. 2017. Here’s how much phone scams cost Americans
last year... https://www.marketwatch.com/story/heres-how-much-
phone-scams-cost-americans-last-year-2017-04-19.

[38] Hossen Mustafa, Wenyuan Xu, Ahmad Reza Sadeghi, and Steffen
Schulz. 2014. You Can Call but You Can’t Hide: Detecting Caller
ID Spoofing Attacks. In Dependable Systems and Networks (DSN), 2014
44th Annual IEEE/IFIP International Conference on. IEEE, 168–179.

[39] Hossen Mustafa, Wenyuan Xu, Ahmad-Reza Sadeghi, and Steffen
Schulz. 2016. End-to-End Detection of Caller ID Spoofing Attacks.
IEEE Transactions on Dependable and Secure Computing (2016).

[40] The News & Observer. 2017. Scammer using State Bureau of Inves-
tigation phone number in fraud scheme. http://www.newsobserver.
com/news/local/crime/article160888534.html.

[41] Consulate General of the People’s Republic of China in New York.
2017. "Phone Scam Alert". http://newyork.china-consulate.org/eng/
lqfw/lsbhyxz/t1486921.htm.

[42] OA Online. 2018. "DOJ warns of telephone scam".
http://www.oaoa.com/news/crime_justice/article_
a54bf226-0093-11e8-91ba-93e4492d41d7.html.

[43] RFC3261 2002. RFC3261: SIP: Session Initiation Protocol. RFC 3261.
[44] Merve Sahin, Aurélien Francillon, Payas Gupta, andMustaque Ahamad.

2017. Sok: Fraud in telephony networks. In Security and Privacy (Eu-
roS&P), 2017 IEEE European Symposium on. IEEE, 235–250.

[45] ShowCaller. 2017. https://play.google.com/store/apps/details?id=com.
allinone.callerid&hl=en.

[46] Jaeseung Song, Hyoungshick Kim, and Athanasios Gkelias. 2014.
iVisher: real-time detection of caller ID spoofing. ETRI Journal 36, 5
(2014), 865–875.

[47] spoofcard. 2018. Spoofcard Free Spoof Call. https://www.spoofcard.
com/free-spoof-caller-id.

https://www.pindrop.com/irs-phone-scam-live-call_analysis/
https://www.pindrop.com/irs-phone-scam-live-call_analysis/
https://play.google.com/store/apps/details?id=com.google.android.dialer
https://play.google.com/store/apps/details?id=com.google.android.dialer
http://www.xinhuanet.com/english/2017-09/20/c_136624766.htm
http://www.xinhuanet.com/english/2017-09/20/c_136624766.htm
https://developer.android.com/studio/profile/cpu-profiler.html
https://developer.android.com/studio/profile/cpu-profiler.html
http://www.abc.net.au/news/2018-02-07/international-missed-call-scam-still-affecting-australians/9396072
http://www.abc.net.au/news/2018-02-07/international-missed-call-scam-still-affecting-australians/9396072
https://android.googlesource.com/platform/frameworks/base.git/+/master/telephony/java/android/telephony/PreciseCallState.java
https://android.googlesource.com/platform/frameworks/base.git/+/master/telephony/java/android/telephony/PreciseCallState.java
https://android.googlesource.com/platform/frameworks/base.git/+/master/telephony/java/android/telephony/PreciseCallState.java
https://developer.android.com/reference/android/telephony/TelephonyManager.html
https://developer.android.com/reference/android/telephony/TelephonyManager.html
http://www.bbc.com/news/world-asia-36108762
https://www.bloomberg.com/news/articles/2017-04-26/millennials-are-most-likely-to-fall-for-an-irs-scam
https://www.bloomberg.com/news/articles/2017-04-26/millennials-are-most-likely-to-fall-for-an-irs-scam
https://www.mirror.co.uk/money/5-phone-scams-watch-out-10748178
https://www.mirror.co.uk/money/5-phone-scams-watch-out-10748178
https://www.ftc.gov/news-events/press-releases/2017/03/ftc-releases-annual-summary-consumer-complaints
https://www.ftc.gov/news-events/press-releases/2017/03/ftc-releases-annual-summary-consumer-complaints
https://www.ftc.gov/news-events/press-releases/2017/03/ftc-releases-annual-summary-consumer-complaints
https://www.consumer.ftc.gov/blog/2018/01/scammers-impersonate-social-security-administration
https://www.consumer.ftc.gov/blog/2018/01/scammers-impersonate-social-security-administration
https://firebase.google.com/
https://www.iana.org/assignments/sip-parameters/sip-parameters.xhtml
https://www.iana.org/assignments/sip-parameters/sip-parameters.xhtml
http://wemedia.ifeng.com/47830827/wemedia.shtml
http://www.ktvb.com/article/news/crime/caller-id-spoofing-on-the-rise-in-ada-county/449086755
http://www.ktvb.com/article/news/crime/caller-id-spoofing-on-the-rise-in-ada-county/449086755
http://www.newsobserver.com/news/local/crime/article160888534.html
http://www.newsobserver.com/news/local/crime/article160888534.html
http://newyork.china-consulate.org/eng/lqfw/lsbhyxz/t1486921.htm
http://newyork.china-consulate.org/eng/lqfw/lsbhyxz/t1486921.htm
http://www.oaoa.com/news/crime_justice/article_a54bf226-0093-11e8-91ba-93e4492d41d7.html
http://www.oaoa.com/news/crime_justice/article_a54bf226-0093-11e8-91ba-93e4492d41d7.html
https://play.google.com/store/apps/details?id=com.allinone.callerid&hl=en
https://play.google.com/store/apps/details?id=com.allinone.callerid&hl=en
https://www.spoofcard.com/free-spoof-caller-id
https://www.spoofcard.com/free-spoof-caller-id

[48] Spooftel. 2018. Spooftel Free Caller ID Spoofing Trial. https://www.
spooftel.com/freecall/call.php.

[49] New York Times. 2012. Multinational Crackdown on Com-
puter Con Artists. http://www.nytimes.com/2012/10/04/business/
multinational-crackdown-on-computer-con-artists.html?_r=0.

[50] Trapcall. 2017. https://www.trapcall.com/.
[51] Truecaller. 2017. https://www.truecaller.com/.
[52] Huahong Tu, Adam Doupé, Ziming Zhao, and Gail-Joon Ahn. 2017.

Toward Standardization of Authenticated Caller ID Transmission. IEEE

Communications Standards Magazine 1, 3 (2017), 30–36.
[53] whoscall. 2017. https://whoscall.com/.
[54] Wikipedia. [n. d.]. Business telephone system. https://en.wikipedia.

org/wiki/Business_telephone_system.
[55] Xinhua. 2017. Phone scams targeting NYC Chinese communities

exposed. http://www.xinhuanet.com/english/2017-08/10/c_136513524.
htm.

https://www.spooftel.com/freecall/call.php
https://www.spooftel.com/freecall/call.php
http://www.nytimes.com/2012/10/04/business/multinational-crackdown-on-computer-con-artists.html?_r=0
http://www.nytimes.com/2012/10/04/business/multinational-crackdown-on-computer-con-artists.html?_r=0
https://www.trapcall.com/
https://www.truecaller.com/
https://whoscall.com/
https://en.wikipedia.org/wiki/Business_telephone_system
https://en.wikipedia.org/wiki/Business_telephone_system
http://www.xinhuanet.com/english/2017-08/10/c_136513524.htm
http://www.xinhuanet.com/english/2017-08/10/c_136513524.htm

	Abstract
	1 Introduction
	2 Caller ID Spoofing Attack: Easy to Launch, Hard to Defend
	3 Basic Idea and Feasibility Study
	3.1 Basic Idea
	3.2 Baseline Feasibility Tests
	3.3 Why Should it Work?
	3.4 More Feasibility Tests
	3.5 Feasibility Tests on CSFB/CS
	3.6 Remaining Issues

	4 Ceive Design
	4.1 Overview of Ceive
	4.2 Initial Training
	4.3 Spoof Verifier
	4.4 Re-Learning and Other Components

	5 Implementation
	6 Evaluation
	7 Discussion
	8 Conclusion
	References

