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Abstract—Edge-assisted video analytics is gaining momentum.
In this work, we tackle an important problem to compress
video content live streamed from the device to the edge without
scarifying accuracy and timeliness of its video analytics. We find
that on-device processing can be tuned over a larger config-
uration space for more video compression, which was largely
overlooked. Inspired by our pilot study, we design VPPlus
to fulfill the potentials to compress the video as much as we
can, while preserving analytical accuracy. VPPlus incorporates
two core modules – offline profiling and online adaptation – to
generate proper feedback automatically and quickly to tune on-
device processing. We validate the effectiveness and efficiency
of VPPlususing five object detection tasks over two popular
datasets; VPPlus outperforms the state-of-art approaches in
almost all the cases.

Index Terms—Video analytics, edge computing, on-device pro-
cessing, video compression

I. INTRODUCTION

Video analytics is becoming part of the norm. With recent
rapid advances in deep learning and edge computing, video
content is transmitted and even live-streamed from in-field
cameras to edge machines to perform computer vision tasks
such as detecting/tracking target objects (e.g., pedestrians,
cars, traffic lights, and stop signs) and identifying/counting
events of interest (e.g., traffic violations, breaks-in, pack-
age deliveries, and suspicious activities in restricted zones).
Such analytics on video enriches many new and essential
services like security monitoring, autonomous driving, incident
detection, subject counting, public safety, and surveillance
services across business vectors [1]. Unsurprisingly, global
video analytics market is roaring up, with a projection of
$21.8B by 2027, quadrupling its size of $5.2B in 2020 [2].

High demands for video analytics pose new challenges
in capturing, processing, transmitting, and analyzing quality
video. The status quo video analytics runs over deep neural
networks (DNNs) and requires heavy computing, which hardly
fits on resource-constrained devices. To this end, edge-assisted
video analytics becomes one dominant solution paradigm by
offloading compute-intensive analytical tasks to the edge [1].
Fig. 1 shows its typical workflow in four or five steps. The
device camera first captures raw video content ( 1 ) and then
runs on-device processing to convert these raw frames into a

Fig. 1: A typical architecture and workflow of edge-assisted video
analytics. Components in blue are the core of our VPPlus design.

bitstream which will be sent to the edge ( 2 ). At the edge side,
the received bitstream is decoded and reversely constructed
into video frames ( 3 ), which will be eventually fed into
the DNN-based module to perform the designated analytical
tasks ( 4 ). To make live video analytics possible and more
efficient, step 5 is often added to send real-time feedback
(say, intermediate results or other hints generated out of the
previous frames at 4 ) to guide accuracy-preserving processing
( 2 ) to use fewer bytes for the subsequent frames.

State-of-the-Art. Recent studies are active in exploring dif-
ferent types of feedback to enhance edge-assisted video an-
alytics (detailed in §II). Generally, they are divided into two
categories using implicit feedback and explicit feedback. The
implicit feedback is the intermediate results of DNNs like
the regions of interest (RoIs) of target objects or events. The
implicit feedback is the intermediate results of DNNs like
target objects or events’ regions of interest (RoIs). It is used to
assist the device in transmitting the selected RoIs (subframes)
at high quality and non-RoI subframes at low quality [3]–[9].
The device tunes the video size (of the bitstream) by adjusting
popular parameters like frame per second (FPS), resolution
(R), quantization parameter (QP, a key video codec parameter),
or hybrid (e.g., FPS, R, and QP together). In the second
category, best K configurations are directly returned to control
on-device processing while meeting the accuracy requirement
(say, F1 score higher than a given threshold) [10]–[12]. Such
best configurations cover a small set of tunable parameters
like FPS, R, QP, and DNN models; they are obtained by
periodically profiling a short video clip in the near term. A
special case is to ask the device to transmit only the selected
frames and discard uninteresting frames, e.g., [13]–[16], where
the feedback is used to control FPS explicitly.

Despite their effectiveness, the existing studies fail to exploit978-1-6654-6824-4/22/$31.00 ©2022 IEEE



the full power of on-device processing. As a matter of fact,
video quality, as well as its volume size, can be tuned by
many more parameters except these popular ones like FPS,
R, and QP. For example, each video frame size changes
when adjusting its color, brightness, sharpness, edge contrast,
blurring (spatial smoothing), and so on. In addition to intra-
frame processing, inter-frame processing on motion extraction
and cross-frame prediction also impacts the video size (de-
tailed in §III). A larger number of parameters are available
to compress video more while not hurting the accuracy, but
their potentials are largely unexplored. The second limitation
is that the existing feedback is often generated with humans in
the loop, which impedes full autonomy for prompt feedback
in real-time. Most studies use F1 scores or something alike
to assess their inference accuracy. However, these accuracy
results require the ground truth labels, which have to take
huge manual efforts for training. This limits the power of this
feedback for truly live video analytics.

Our VPPlus work. We devise VPPlus to address the
above two limitations and attempt to make full use of video
processing for more efficient video analytics. We tackle two
technical problems. First, what parameters are useful, and how
should they be used for on-device processing? Second, how
should feedback be automatically constructed from intermedi-
ate results to configure parameters for on-device processing
without humans in the loop?

To answer them, we have first conducted a pilot study to
assess the accuracy and efficiency of a broader range of on-
device processing parameters (here, 19) in typical use scenar-
ios (§III). We have gained new design insights. For example,
some parameters (like brightness and contrast) are able to save
big room for efficiency, but their gains are quite sensitive to
video content. In other words, there are no universal rules to
tune these parameters, and online adaptation is thus needed to
pursue a higher level of efficiency. Inspired by these findings,
we thus design VPPlus, which combines the online outputs
of DNNs and the offline profiles to generate configuration
parameters for on-device processing as the feedback from the
edge to the device. Offline profiling is to learn common pat-
terns which exhibit similar characteristics over diverse video
sources. Online algorithms are to fine-tune the parameters
based on the real-time impacts on near-term video frames
(including the target objects and background). To free humans
out of the loop, our online algorithms leverage the intermediate
results (actually, the confidence levels) of object candidates as
an implicit accuracy measure, instead of the explicit accuracy
results which require manual efforts for the ground-truth
labelings. They work together to complete a feedback loop
with configuration parameters for the subsequent on-device
processing in real-time, as illustrated in Fig. 1 and §IV.

Contributions. We have made three main contributions.
• We have conducted a pilot study to reveal the potentials of

larger configuration space for efficient video analytics (§III).
• We have designed VPPlus to support a broader range

of configuration parameters to tune on-device processing for

Related Feedback Common Para. # of
Studies Type FPS R QP Para.

[12], [22]–[24] No feedback
√

1
[25]

√
1

[10], [11], [26] Explicit
√ √

2
[13]–[16]

√
1

[4], [5]
√

1
[6]–[8] Implicit

√
1

[3]
√ √

2
[9]

√ √
2

VPPlus Explicit
√ √ √

19
TABLE I: Comparison of related studies and our VPPlus work.

fewer bytes and comparable analytical accuracy (§IV).
• We have implemented and evaluated VPPlus with

five object detection tasks using two popular datasets (§V).
VPPlus is effective and efficient in compressing more while
preserving accuracy. It outperforms the start-of-art approaches.

II. RELATED WORK AND THEIR LIMITATIONS

DNN-based analytics. Analytics ( 4 ) is the core module of
edge-assisted video analytics. Its main task is to automatically
recognize temporal and spatial events in video frames for
different purposes like object classification, detection, track-
ing, semantics segmentation, human action recognition, and
so on. This is a very active area with many well-established
algorithms and models (see a survey [17]). All mainstream
solutions are based on DNNs, precisely convolutional neural
networks (CNNs). The popular models include YOLO [18]
(latest YOLOv5 [19]), Faster R-CNN [20], transformers [21],
etc. All these models must be trained offline first. The infer-
ence accuracy often drops if training samples cannot cover
the input video frames (images) well. In this work, we apply
the existing analytics solutions and work on an orthogonal
problem that explores the power of feedback to improve on-
device processing for higher efficiency.

Feedback-guided on-device processing. Efficiency is mainly
realized by on-device processing ( 2 ) with or without feedback
from the edge ( 5 ). Generally, there are three cases: (1) no
feedback, (2) explicit feedback to configure on-device process-
ing, and (3) implicit feedback to assist on-device processing.

Without any feedback, the first approach runs basic pro-
cessing locally to filter out some frames, for example, by
running a light DNN (e.g., Tiny-YOLOv3) [22], [24], ensuring
significant changes in continuous frames [23], [25], or apply-
ing heuristic rules [12]. Their efficiency gain is quite limited
because the optimization is coarse-grained and slow to react.

The second approach is to give configuration parameters that
directly control on-device processing [10], [11], [26]. Their
main idea is to crop a long video into several short clips
and periodically profile the first few seconds of each video
clip to find the best K configurations that satisfy the accuracy
requirement. A special case is to tune FPS by explicitly telling
the device to transmit only the selected frames [13]–[16].
Due to inherent delay (more than several seconds), explicit



feedback can not return in real-time. Moreover, few parameters
(FPS and R) are considered.

The most popular approach is to use intermediate re-
sults of DNNs as implicit feedback to on-device processing.
The common intermediate results are RoIs, which mark the
bounding boxes of the target objects or events. Given RoI
information, on-device processing divides a full frame into
multiple subframes and transmits only the selected subframes
(RoIs) at high quality through adaptive resolution [4], [5],
dynamic QP [6]–[8], or hybrid (adjusting FPS and QP to-
gether [9], adjusting R and QP [3]). It also considers only a
small set of popular parameters, FPS, R, and QP. Moreover,
RoIs offer spatial information of the frames but do not carry
context information. However, we later will show that a lot
of parameters are context-sensitive, which cannot be tuned
without proper feedback.

Limitations. These existing studies (Table I) have two major
limitations. First, they have explored only a small set of tun-
able parameters and leave most unexplored. However, we will
later show that more than 8 parameters can be used to reduce
the video volume size without affecting its analytical accuracy
(§III). Second, the widely used feedback cannot support real-
time tuning of a wide range of parameters. Specifically, most
explicit feedback is generated over the accuracy results (e.g.,
F1 scores, recall rates), which require ground-truth labeling
and cannot be done in real-time without humans in the loop.
Implicit feedback generated from the region-based information
fails to provide enough context information to tune those
context-sensitive parameters (e.g., brightness and sharpness).
Our VPPlus work attempts to address both limitations. We
will elaborate on how VPPlus selects candidate parameters
out of large configuration space (here, 19) and tunes their
values to achieve a better trade-off between accuracy and
compression with no need for human involvement (§IV).

III. PILOT STUDY

In this section, we present a pilot study to assess the impacts
of a larger amount of video processing parameters on the cost-
effectiveness (size-accuracy) of video analytics. We find that
there exists substantial design room which is unexplored.

Experimental settings. We choose object detection, one of the
most popular analytical tasks, to assess the impacts of video
quality on its detection accuracy. We consider three target
objects: airplane, car, and cat, which represent three
detection difficulty levels from easy to hard. The difficulty
level is determined by the characteristics (say, shape, motion,
and background) of target objects: (1) easy if the object in
a simple background (example: airplane), (2) medium if the
object with regular motion and in a complex background
(example: car), and (3) hard if the object with irregular motion
and in a complex background (example: cat). We use a popular
dataset (ImageNet VID 2017 [27]) and randomly select over
50000 frames out of 160 videos for our study. The DNN model
uses YOLOv5s from the PyTorch model zoo [28], which has
been trained for the selected object detection tasks.

Fig. 2: A large video processing space.

Parameter Parameter Values Explanation

FPS Frame rate {1, 2, 3, 6, 10, 30} 30:max FPS
R Resolution {0.25, 0.5, 0.75, 1.0} 1= original/

max resolution
H Hue {red, green, blue}
S Saturation {0, 0.25, 0.5, 0.75, 1, 1.5, 2, 3}
B Brightness {0.25, 0.5, 0.75, 1, 1.25, 1.5} 0=black. B ↑,

luminance↑
G Grayscale {true, false}
SP Sharpness {0, 0.5, 1, 2, 5} 1=original. SP

↑, sharpness ↑
EE Edge Enhance {true, false}
C Contour {true, false}
CT Contrast {0.25, 0.5, 0.75, 1, 1.25, 2} CT↑, contrast ↑
MB Median blur {3, 5} MB↑, blur ↑
GB Gaussian blur {0.25, 0.5, 0.75, 1, 2} GB↑, blur ↑
GoP Group of pictures {50, 100, 200, 350, 400} GoP↑, number

of I-frames ↓
NRF # of refer. frames {2, 4, 6, 8, 10}
MSR Motion search range {8, 16, 24, 32}
IS Intra smoothing {true, false}
CIP Constrained predict. {true, false}
CRF Constant rate {15, 19, 23, 27, 31, 35} CRF↑, size↓
QP Quantization {15, 19, 23, 27, 31} QP↑, size↓

TABLE II: Parameter settings in the pilot study.

We consider all the common parameters available to impact
video processing, as illustrated in Fig. 2. Table II lists their
values tested in our study. The raw video is captured at the
maximum FPS (e.g., 30 fps) and maximum resolution (here,
4K, 3840x2160 in Fig. 2). Note that the maximum resolution
of the raw videos from the dataset is much lower, mostly <
1K. Possible video processing consists of a series of image
transformations/filters (that impact raw pixels at each frame)
and video encoding, which converts pixels into a bitstream. We
use H.264 as the default video codec and use FFmpeg [29]
to encode the processed video frames. In total, we consider
19 parameters, which all are configurable through open APIs
and do not need to revise the implementation codes.

There are 12 parameters which are not used in video codec
but directly transform pixels in each video frame.
• Frame rate (FPS) and resolution (R) are used to down-

sample video frames temporally and spatially.
• Hue (H), saturation (S), and brightness (B) are related

to color attributes perceived by human vision and impact the
tone, intensity, and luminance of a color.
• Grayscale (G) is a special image processing which reserves

the intensity of light only.
• Sharpness (SP), edge enhance (EE), contour (C), and con-

trast (CT) affects the distinguishability of an object. Especially,
SP and EE are used to enhance the edge contrast, C highlights



Fig. 3: Normalized accuracy ratios (y-axis) and compression gains (x-axis) of video processing tuned by eight parameters each (from left
to right): FPS, R, QP, CRF, B, CT, GB, S. In each detection task (airplane, car, or cat), each point is the average result of all the
test video sources when only one parameter setting changes (the value is colored).

the skeleton, and CT is difference in colors.
• Median blur (MB) and Gaussian blur (GB) are used to

remove the noise. MB uses the median of all the pixels in the
kernel area to replace the central one, and GB uses a Gaussian
function to blur the image.

Seven parameters used by video codec are considered. Note
that frames are encoded as different types: I-frame and P-
frame, as shown in Fig. 2(b). An I-frame is a complete image,
while a P-frame (a predicted picture) holds only the changes
in the current frame from the previous frame. The video
codec often allowds several parameters to tune its inter-frame
prediction (motion search) and intra-frame prediction. Finally,
it uses transform encoding, which converts pixel values per
block into a set of transformation coefficients that are further
quantized to compress more.

• Group of Picture (GoP) refers to the number of all the
frames between two adjacent I-frames.

• Number of reference frames (NRF) and motion search
range (MSR) are the number of reference frames and the region
size of nearby pixel exploration for motion search. A larger
value means more performed for motion search.

• Intra smoothing (IS) and constrained intra prediction
(CIP) are two flag parameters to refine intra-frame prediction.
IS is to perform bilinear interpolation to prevent the banding
artifacts in the edge. CIP is set to block the error propagation
from false inter-frame prediction to intra-frame prediction.

• Constant rate factor (CRF) is a knotting parameter to
control compression degrees among different frames.

• Quantization parameter (QP) is the last parameter to
regulate how much spatial details are reserved. When QP is
very small, almost all the details are retained.

We measure cost-effectiveness using two metrics: accuracy
and video volume compression (cost). To reveal the trend of
different parameters in different detection tasks, we use the
normalized ratios instead of their absolute values,

γA =
A[PROCESSED]
A[BASELINE]

, (1)

δV =
V[BASELINE] − V[PROCESSED]

V[BASELINE]
. (2)

Here, A[BASELINE] and V[BASELINE] are the accuracy and
video volume size of the baseline strategy, which uses the
original (default) settings and encodes the test video snippets
via H.264. The PROCESSED ones are obtained with extra
processing tuned by each test parameter. γA and δV assess
the accuracy ratio and compression gain (loss if negative).

(a) Airplane (easy) (b) Cat (hard)
Fig. 4: Accuracy-compression assessment of all the parameters in two
tasks: airplane detection (easy) and cat detection (hard).

FPS R QP CRF B CT GB SP

Airplane A 80% 53% 52% 48% 17% 17% 8% 5%
(easy) B 80% 53% 72% 74% 28% 20% 18% 5%
Car A 65% 23% 52% 35% 19% 7% 13% 6%

(medium) B 65% 52% 71% 75% 38% 38% 13% 6%
Cat A 79% 21% 29% 38% 22% 9% 7% 6%

(hard) B 79% 64% 53% 77% 42% 22% 20% 6%

TABLE III: The optimal compression gains observed while meeting
γA ≥ 98% (A) or γA ≥ 90% (B).

Results. We test all the 19 parameters individually and plot
the results of eight parameters in Fig. 3. Due to space limit,
we choose these eight parameters because they offer greater
video compression potentials without compromising accuracy.
The rest parameters either compress much less (no more than
5%) or hurt accuracy too much (e.g., C and EE even result
in a more than 40% drop in accuracy). To better visualize
their impacts on accuracy, we define two regions, A and B,
with the dividing lines γA ≥ 0.98 and γA ≥ 0.9. Accuracy is
not affected in region A and declines slightly but is tolerable
in region B. To compare their compression potentials, we
plot the tunable space of all the parameters in Fig. 4. We
use two tasks (airplane and cat) and skip the car detection
task due to space limit. A parameter holds the potential to
compress more without hurting accuracy too much, as long
as there exists at least one point in Region A. We further
define the maximal compression potential per parameter as its
optimal gain observed in region A (or B). Table III shows the
optimal compression gains observed in our study. Parameters
are sorted in the descending order of their optimal compression
gains in region A in the easy (airplane) detection task. We
present the top-8 results due to space limit. We have four
main observations.

First, there is no surprise that these well-explored parame-
ters (FPS, R, and QP) yield huge compression potentials. They



are top-3 parameters which compress up to 80%, 53%, and
52% without hurting accuracy (γA ≥ 0.98, region A) in the
easy detection task (airplane). FPS is consistently effective
in all three detection tasks, but R and QP perform slightly
worse when the tasks are harder. For instance, R’s maximal
compression gain reduces from 53% (airplane) to 23% (car)
and 21% (cat). It is easy to understand as the detection is
harder and more visual details are needed. As a result, there is
less compression room to adjust the resolution while retaining
the same/similar accuracy.

Second, there exist other parameters which contribute to
comparable compression gains. CRF (constant rate) can save
more than 35% in all three tasks, which even performs better
than R and QP in car/cat detection. B and CT are other
two parameters which are worth exploring. They can reduce
volume by 7–22% with γA ≥ 0.98. If more accuracy drops can
be tolerable (region B), their compression gains increase to 20-
42%. Note that region B is a relaxed boundary allowing the
inherent variance of the detection difficulty among different
video sources or video frames. It opens enough room for the
online adapatation in the VPPlus design (§IV-B).

Third, we observe win-win patterns in some cases where the
accuracy grows, and video volume size reduces. By checking
the northeastern zones in Fig. 3, we see that FPS, R, B, and GB
can achieve both γA > 1 and δV > 0. We would like to point
out that although GB (Gaussian Blur) does not yield superior
compression gains, it can improve accuracy while reducing the
video volume size.

Last, there are no universal rules to tune parameters for cost-
effective video processing (compression). Most parameters
have distinct accuracy-compression curves across three tasks,
actually even across different frames of the same video source
in the same task. This indicates that the rule can not be simply
learned offline, and online adaptation is required to pursue
larger compression room without hurting accuracy.

IV. VPPLUS : EXPLOIT MORE TO SAVE MORE

We design VPPlus to exploit the potentials exposed in the
pilot study. Fig. 5 shows VPPlus’s architecture and workflow.
At runtime (online), VPPlus changes two modules in edge-
assisted video analytics: on-device processing ( 2 ) and edge-
assisted feedback ( 5 ). Several algorithms run online to gener-
ate real-time feedback based on the near-term inference results
of DNN, with the help of configuration rules gained offline.
Offline profiling is performed in advance to learn the candidate
parameter sets by characterizing their cost-effectiveness, which
will be used to assist the online components to in adapting to
specific video content. The feedback is returned to the device
to guide on-device video processing to compress more without
impacting analytical accuracy.

A. Offline Profiling

Offline profiling is to construct a number of useful configu-
ration rules that are commonly effective in reducing the video
volume while retaining accuracy. Moreover, the generated
profiles should contain a set of configuration choices that offer

Fig. 5: VPPlus’s architecture and workflow.

(a) B + R (b) CRF + R
Fig. 6: Illustration of compound effects. The Pareto optimal points
are selected as profilers.

enough room for fine-grained adaptation, which is task-aware
and video-dependent, performed at runtime (online).

We only assess 19 parameters individually in §III. Intu-
itively, multiple parameters can be used together to compress
more if they work in concert. This depends on the interleaving
effects among these parameters, where they may complement
or intervene with each other. Next, we will characterize and
learn the compound effects in practice and determine how to
select the suitable combinations.

It is not new. [10] has made early attempts and observed
that FPS could be tuned independently of resolution (R). This
can be easily extended to all intra-frame parameters since
FPS does not change the quality of each frame. However,
most intra-frame parameters are not independent and jointly
determine what information is retained in the color space. In
this work, we first tune FPS separately and then consider
adding other parameters for more compression.

We use Fig. 6 to illustrate the compound effects. Each blue
point represents the result of one combinational setting (left:
B + R and right: CRF + R). In the B + R example, we see that
using both performs better than using it alone. However, it does
not hold in the CRF + R example. The combination of CRF and
R can compress more, but the accuracy drops too much. The
Pareto optimal points are obtained through searching across
all the possible combinations in the training set. They are set
as offline configuration profiles.

To accelerate the search for offline profiles, we propose
a novel strategy by combining the beam search and grid
search as shown in Fig. 7. Intuitively, the idea is similar to
the widely used greedy search algorithm: Find the optimal
parameter to achieve the highest compression degree without



Fig. 7: Illustration of offline profiling (Example: cat detection). Light
pink indicates that the configuration results in the result in region B
while dark pink for region A.

hurting accuracy, and then add one more parameter to locate
the best configuration that yields more data reduction. Iterate
this process until covering all the parameters or the accuracy
drop is no longer tolerable.
Beam search. Beam search algorithm is used to greedily select
the top-K optimal candidates for each iteration (represented by
circles in Fig. 7). The reason for choosing multiple candidates
is that the best candidate might be suitable for the current step,
but when we combine it with the other parameters, it may be
a suboptimal choice. Instead, the set of top-K best parameters
tends to remain stable over time. In practice, we select K = 2.
Take Fig. 7 as an example. At the first iteration, we typically
select the best 2 parameters, CRF (27) and B (0.5), as the base
and search for other combinations. Note that changing CRF is
essentially changing QP, but it allows different QP values to
be set within a certain range. Thus we do not consider QP here
even it can save more than B. Only the selected parameters
will be considered at the next iteration.
Gird search. Grid search algorithm is used to construct the
combination in each iteration (represented by tables in Fig. 7).
Specifically, the selected parameter in the last iteration needs
to be considered one level up and down in the current iteration
to ensure that the selection does not stick at the suboptimal
point. Here, we consider B±0.1, CRF±4. Then we select the
one with the largest compression (underlined in the figure) to
start the next beam search iteration.

Finally, the sets of parameters are identified and sorted in
descending order of their compression gains. We construct
profiles for object classes. Each class consists of objects with
similar characteristics (like shape, motion, and background
determined by use scenarios). Each class uses the above
searching procedure to construct its profile, which is stored
at the edge to bound the scope of online adaptation.

B. Online Adaptation

The offline profiles cannot be directly used at runtime.
They are not enough because the compression power of many
parameters varies with video context, as disclosed in the
pilot study ( §III). The object characteristics change over
time in the same video. Even for the same object, different

Fig. 8: Illustration of online feedback.

positions and movements result in distinct detection results.
Use Fig. 8 as an example. This video captures the movement
of a cat indoors. As the cat turns its back to the camera, the
detection algorithm may detect it as a dog, a bear, or even
a bird. Such dynamics make the best parameters learned in
the offline profiling may not perform well. Instead, we have
to make the parameter values to catch up with dynamics
and diversity in video contexts. We thus develop an online
adaptation module to exploit the common rules learned offline
to fine-tune configuration for higher compression efficiency.

The fundamental problem is how to capture such dynamics
and diversity and their impact on detection accuracy. To get
correct detection accuracy results, it often requires the ground
truth, which is labeled manually. However, this approach is not
suitable for live video analytics. We need to provide feedback
automatically without humans in the loop. It is challenging
to obtain (estimate) the detection accuracy results without the
ground truth.

At a high level, we tackle this problem by maintaining a list
of candidate labels, which somehow act as the ground truth
label. In object detection, a label is treated as a candidate if
the confidence value is larger than a given threshold. This
candidate list implicitly infers the possible drop in detection
accuracy. We observe that the candidate labels tend to remain
stable in a dynamic video context. By tracking the change in
the list of candidate labels, we are able to infer whether the
current configuration is proper. As a result, this process can
be performed automatically, which outputs the configuration
feedback to fine-tune local video processing.

Adaptation Pipeline. VPPlus periodically refines the config-
urations using a fixed interval (T = 2s by default), illustrated
in Fig. 8. The interval is determined by the ability of the
detection model. The configurations for models with higher
detection capabilities are updated less frequently. Once the
result is generated by DNN, we first map all the detected
bounding boxes to the corresponding ones in the last processed
frame. This mapping is achieved by considering the bounding
box locations and the corresponding relationships between
the output labels and the candidate lists obtained in the last
processed frame. For each bounding box, we first update
the candidate list based on the DNN output. According to



Algorithm 1 Candidate List Update

1: Input: labeli, Cinew , Ciold (C denotes as confidence value)
2: Output: Candidate: a list of candidate ground truth labels;
V ote: a value suggesting how to change configs.

3: function CANDIDATELIST(Cinew , Ciold ,)
4: Initial Candidate as an empty list, V ote = 0
5: for labeli in Candidate do
6: Li ← αLi + βWi ∗ (Cinew − Cthre)
7: if Cinew ≤ Cthre then
8: if Li ≥ Lthre then
9: V ote← V ote− 2 ∗ Li

10: else
11: delete labeli from Candidate
12: for i = 1, 2, . . . , n do
13: if Cinew ≥ Cthre then
14: if labeli not in Candidate then
15: add labeli to Candidate
16: else
17: if Cinew ≥ Ciold then
18: V ote← V ote+ 1 ∗ Li

19: else
20: V ote← V ote+ 0.8 ∗ Li

21: V ote← V ote/len(Candidate)
22: return V ote, Candidate

the candidate list, we can map the video content to the
predefined class in offline profiling and get the specific sets
of configurations. Last, we fine-tune the configuration to keep
up with the dynamic video context. An updated feedback is
sent back to guide the on-device processing.

Updating the candidate list. We develop Algorithm 1 to
construct and update the candidate list (Candidate) by lever-
aging only intermediate results of DNN. We add an important
variable V ote to indicate whether the current configuration is
feasible. In turn, the trend on the confidence change of each
label impacts V ote. Candidate and V ote are used together
to determine the configuration. The heuristic idea is to add a
big penalty (negative value) to V ote for the case that the label
is likely to be ground truth but with a low confidence value,
indicating the configuration may mislead the detection result.
For each label in Candidate, add different rewards (positive
value) to V ote based on the changing tendency. If the V ote
is positive by traversing the Candidate, it indicates a further
compression can be made.

Specifically, we introduce a Li to denote the likelihood of
the label being the ground truth to determine how detection
may be affected by the configuration. To calculate Li, we
consider the aggregated changes in the confidence value from
the past to the present. Particularly, results for frames closer
to the current frame should play a larger role, so we add
coefficients α, β that recursively reduce the impact of results
from further history. Moreover, the more times in history that
the confidence value of label i is above the threshold, the
higher the probability that this label is ground truth. We use
Wi to denote the normalized number of times among the past
5 times detection that the confidence value of labeli (Ci) is
over the threshold. Back to Fig. 8, for the frame captured at
t+2s, the cat is missed detected as a bird, and the confidence

Algorithm 2 Class Mapping

1: Input: bbox
2: Output: ConfigsSet: a list of suggesting configuration param-

eters
3: function CFGSELECT(Cinew , Ciold , bbox)
4: vote, Candidate = CANDIDATELIST(Cinew , Ciold )
5: NLP Embedding(Candidate) and map to Classj∈{1,2,3}

with the highest semantic similarities
6: if frameDiff ≥ diffthre then
7: update ConfigsSet, increase FPS.
8: if bbox ≤ bboxthre then
9: update ConfigsSet, reduce R tuning range.

10: return ConfigsSet

Algorithm 3 Fine Tuning

1: Input: HistV ote
2: Output: Configs
3: function CFGTUNE(Cinew , Ciold , HistV ote)
4: vote, Candidate = CANDIDATELIST(Cinew , Ciold ,)
5: add vote to HistV ote
6: if detect continuously positive V ote then
7: Aggressively move to the config. with more compression
8: else if detect continuously negative V ote then
9: Aggressively move to the config. with less compression

10: else
11: adjusting current parameters’ values based on V ote
12: return Configs

value of the cat is dropped to 0.15, below the threshold. We
calculate Li for the cat, showing that the cat is likely to be the
ground truth. It will go to line 9 and finally lead to a negative
value, and less compression suggestion is made. The same
judgment goes through for t + 10s, and the confidence value
of the bird is first below the threshold. However, this time
it will go to line 11 and delete bird from Candidate since
almost all the results from t+2s to t+10s do not regard the
object as a bird. Line 12 to line 20 is used to add the new
label into Candidate and based on the trend of confidence
value update V ote. Specifically, a relatively big reward is given
when the confidence value is increased. A small reward is for
the label where the confidence value drops but is still above
the threshold.

Mapping the video context to the offline profiler. In order
to turn the heuristics learned in offline profiling, we use
Algorithm 2 to do the mapping to the offline profiler. Two
strategies are used accordingly. The first is to leverage the
semantic relationship to map the Candidate from Algorithm
1 into three defined categories. The second is to further tune
the pre-defined set based on the properties of the video, such
as resolution and degree of captured motion. To be specific,
We apply average NLP embeddings on the Candidate and
map it to the pre-defined class based on the similarity. For
instance, in Fig. 8, the embedding of Candidate is always
set 1. If it cannot have a determined mapping, the common
setting is chosen. We further limit the searching range of R
and FPS according to the bounding box size and difference
between the frames, respectively. This is because even if we



determine the class of target, the size and moving speed of
the target will greatly affect the detection accuracy. If the raw
captured video has a high resolution (i.e. 4K) and the output
bbox is large, there exists a broader room for R tuning. We
can further set R to 0.11. As assessed by [3], [5], changing
from 4K to 1K (even 720p) will not affect the accuracy. In
contrast, if the bbox is already too small, we will not tune the
R at all. Similarly, if the raw captured video contains a lot
of motion resulting in a large frame difference, high FPS is
considered.

Fine-tuning configuration. Given the dynamics of detection
difficulties within the video, we need to tune the configuration
accordingly. Algorithm 3 shows how VPPlus determines the
specific parameter configuration. In total, there are two modes:
aggressiveness and conservation. The detailed mode is based
on the accumulated DNN behaviors. Specifically, we monitor
the V ote from Algorithm 1 for several iterations (here, 3 by
default). If V ote is in pure positive(negative), the aggressive
mode is triggered. It will not tune the parameter step by step,
and will skip two-level configurations. On the contrary, if V ote
is hybrid, we can change the value within the currently selected
set based on the current V ote. Specifically, if V ote > 0,
the configuration with more compression may be selected;
otherwise, the selection will move one step back to the less
compressed parameter.

V. EVALUATION

We evaluate the effectiveness and efficiency of VPPlus
using three toy tasks and two real-world detection applica-
tions. In all the tasks, VPPlus outperforms the state-of-art
approaches by saving more bandwidth and processing faster
while retaining comparable accuracy.

Datasets and tasks. Our evaluation uses four typical object
detection tasks over two popular datasets (ImageNet VID
2017 [27] and OAK [30]), as detailed in Table IV. In addition
to three single-object detection tasks (airplane, car, and cat)
used in our pilot study, we use the OAK dataset to add two
more realistic tasks to detect multiple objects in two complex
outdoor environments: campus and downtown. All the used
OAK videos are captured by a moving phone used by a
walking person. Both detection tasks cover six objects: car,
person, bus, bicycle, trunk, and motorcycle but with distinct
object density (campus: sparse and downtown: dense).

Prototyping and evaluation metrics. We prototype VPPlus
with a laptop (MacBook Pro 2021) as the device and our
lab server as the edge machine. We implement all the steps
illustrated in Fig. 1, except video capturing (step 1 ). Instead,
all the original video frames from the datasets are streamed
in chronological order to on-device processing 2 ) and then
transmitted to the edge for each analytical task 4 ). Feedback
is sent back at 2 ) to guide on-device processing of the
subsequent frames. Our objective is to reduce the amount
of data, not to address how to transmit it. Therefore, all
transmissions are via the laptop-server connection. We choose
YOLOv5s [28] as the DNN model, as we do in our pilot study.

Dataset ImageNet VID [27] OAK [30]
Task Airplane Car Cat Campus Downtown
Difficulty Easy Medium Hard Harder Hardest
# of frames 12634 14549 21440 11700 10500
# of videos 34 38 55 10 10

TABLE IV: Datasets and tasks for the evaluation.

We compare VPPlus with the BASELINE and two state-
of-art solutions: Chameleon [10] and saliency-based design
(called it Saliency afterward) [9]. Specifically, Chameleon is
the most cited work by giving explicit feedback to configure
on-device processing, while [9] is the most recent study
which yields a significant compression improvement by using
saliency maps as implicit feedback to assist RoI-aware on-
device processing. Through offline profiling, we find that
downsampling to 1 fps is sufficient to retain comparable
accuracy. We thus choose 1 fps as the base setting of VPPlus.
For a fair comparison, Chameleon and Saliency also use 1 fps
(which makes their performance even better).

For a given method, we obtain its accuracy ratio γA and
compression gain δV compared to the BASELINE (the default
setting),

γA =
A[Method]

A[BASELINE]
, δV =

V[BASELINE]-V[Method]
V[BASELINE]

.

Note that γA and δV use the same forms as eqn. (1) and (2);
A[Method] and V[Method] are the accuracy result and the
video size of the given method (VPPlus, Chameleon [10],
or Saliency [9]). To assess the accuracy-compression tradeoff,
we introduce a new metric FAV ,

FAV = (1 + ω2)
δV × γA

ω2 × δV + γA.
(3)

FAV is a weighted score of γA and δV in a general form,
where ω is chosen such that γA is considered ω times as
important as δV [31]. Specifically, γA and δV contribute
equally to FAV when ω = 1. We find that when ω = 3,
the score is fully dominated by the accuracy ratio, which
underestimates the compression gain. We thus empirically set
ω = 2 in our study. A larger FAV score stands for a better
compression-accuracy tradeoff.

A. Showcase: Cat Detection

We first use a showcase example to illustrate how VPPlus
works and demonstrate the benefits of our VPPlus solution.
In this example, we use a 12-second video clip which captures
a cat indoors (Fig. 9). The detection is challenging because the
cat turns its back to the camera. Even worse, the cat is black,
and its features (object shapes) are hard to distinguish, which
lowers The detection results match our expectations. In this
example, only frame t + 4 successfully detects the cat in the
BASELINE setting.

In this example, VPPlus achieves the mean Average Pre-
cision (mAP) of 84.5% while reducing half of the size (from
748KB to 378KB, Table V). We see that both Chameleon
and VPPlus slightly increase the accuracy, showing that
target-specific on-device processing can improve the detection



Fig. 9: Examples of intermediate detection results over the consecutive frames by online algorithms: top (original) and bottom (VPPlus).

(a) VPPlus (b) Chameleon [10] (c) Saliency [9]
Fig. 10: Comparison in the cat detection task: VPPlus outperforms Chameleon and Saliency.

Volume mAP γA δV FAV

BASELINE 748 KB 83.9% – – –
Chameleon [10] 562 KB 85.6% 1.02 0.25 0.63
Saliency [9] 435 KB 78.0% 0.92 0.42 0.74
VPPlus 378 KB 84.5% 1.01 0.50 0.84

TABLE V: Compression and accuracy results in the showcase.

accuracy even when reducing the video quality (volume size).
Chameleon maximizes accuracy as it explicitly guides on-
device processing by choosing the most appropriate config-
uration based on F1 score (a metric of precision and recall).
However, its compression gain is the smallest (0.25) because
only limited parameters (FPS and R) are considered. Salience
does compress more (0.42, slightly smaller than 0.50 by
VPPlus), even though it only explores FPS and QP only.
This is because Salience uses the relatively low-quality frames
(here, QP=32) to obtain the saliency maps and utilize them to
identify the most appropriate RoIs where the change directly
impacts the detection result. Then they send the subframe
defined by RoI at a higher quality. However, the saliency map
is constructed using the gradient of the output to the input,
and its performance depends heavily on the class with the
highest confidence value, namely the output label. If the model
gives incorrect labels or even does not generate bounding
boxes, the defined RoI may be wrong, resulting in a loss of
accuracy. In this example, this problem occurs at frame t+8.
As a result, it hurts detection accuracy more than VPPlus
and Chameleon. Overall, VPPlus performs best, which is
reflected in its highest FAV score (maximal δV and almost
best γA).

In this example, we would like to emphasize that VPPlus
does not require the ground truth but keeps adjusting configu-

ration parameters timely and accurately as if the ground truth
were provided as the feedback. To demonstrate our advantage,
we calculate the F1 score (calculated based on ground truth)
for each processed frame as well in Fig. 11c. Clearly, we see
that our configurations are updated consistently with those
that use the change in F1 score (ground truth) to directly
determine the next configuration. Its effectiveness is validated
by constantly increasing F1 scores, which indicates the degree
of precision is continuously increased or retained. Regarding
compression, the combination of multiple parameters is ap-
plied to compress more starting from frame t + 2; distinct
configurations (downsample to a lower resolution and use
lower brightness) are set to gradually increase the degree of
compression. The compression strategy takes a step back for
frame t+8 because our model considers current compression
is too aggressive. The cat is regarded as a strong candidate,
but it has a relatively low confidence value. VPPlus thus
downgrades the compression degree for the next frame.

B. In All the Tasks

Cost-Effectiveness. We extend the above case study to a large-
scale evaluation and confirm VPPlus outperforms Chameleon
and Saliency in all five tasks.

We first show their comparison in the cat detection task
(hard) in Fig. 10. Due to space limit, we omit the results
in the other three tasks. We have three observations. First,
Chameleon performs best in accuracy but fails to compress
a lot. Actually, it achieves comparable accuracy with the
BASELINE. Second, Saliency achieves a large degree of
compression at the cost of a larger accuracy drop. There
are many instances with γA < 0.9 (or even < 0.5). Third,



(a) Compression gain (b) Accuracy ratio (c) FAV scores
Fig. 11: Comparisons in all the five detection tasks. DT is short for Downtown.

VPPlus achieves a good tradeoff. We notice that there are
some instances with a large accuracy drop in both VPPlus
and Saliency. This is because both have to implicitly infer
the detection accuracy. It is hard to guarantee the correctness
of inference without the ground truth. Inevitably it might
hurt accuracy in case the detection is really challenging. To
fairly compare these methods, we want to compare their
performance for most videos, not all the videos. We consider
95% confidence level and see the accuracy ratio of VPPlus
is [0.94,1.02], while [0.83,0.95] for Saliency. This implies that
VPPlus guarantees most videos do not suffer from a more
than 6% accuracy loss. Overall, VPPlus achieves a better
accuracy-compression tradeoff in the cat detection task.

Fig. 11 further shows the statistical results in all the five
tasks. In terms of FAV scores, VPPlus outperforms the other
two in all the tasks. We further take a closer look at where
this benefit comes from. On average, the compression gain of
VPPlus is 20-50% higher than Chameleon with only a 3-6%
accuracy drop. Note that Chameleon uses the ground truth to
do periodical profiling, which ensures high accuracy. Com-
pared to Saliency, VPPlus does not compress a lot in three
toy tasks but saves a lot in the two real-world detection tasks
(campus and downtown). Moreover, Saliency’s compression
gains are achieved at the cost of accuracy reduction, which
results in the worst compression-accuracy tradeoff (namely,
the lowest FAV scores). In sum, VPPlus achieves the best
compression-accuracy tradeoff, particularly in the two real-
world detection applications.

Given the different performances across the tasks, we want
to point out the impact of capture setting and video contexts.
First, we observe the overall largest compression gain achieved
by the OAK dataset. This is because the videos are captured at
high resolution (720p), compared with the ImageNet dataset
(most 360p). This thus leaves a large room to tune resolution
to save more. Second, the compression gain is heavily affected
by the video context. In the same-quality raw videos (airplane,
car, and cat using ImageNet dataset), more compression can
be made when the task is relatively easier because videos
have a clean background and the detection is easier. Third,
context switches may lead to a loss of accuracy. In the OAK
dataset, the contexts are consistent over time for the downtown
scenario; however, more dynamic contexts are captured on
campus (from the campus building to the street), changing
the target objects’ distributions. Correspondingly, VPPlus’s

YOLOv5 Saliency [9] VPPlus
TPF TPF (%) TPF (%)

Airplane 263 ms 482 ms 83% 274 ms 4.2%
Car 224 ms 449 ms 100% 245 ms 4.6%
Cat 237 ms 470 ms 98% 246 ms 3.8%
Campus 270 ms 510 ms 89% 321 ms 19%
Downtown 277 ms 560 ms 102% 341 ms 23%

TABLE VI: The extra overhead (the average time per frame (TPF))
of VPPlus is small, much smaller than Saliency.

accuracy preservation (γA) is higher in the downtown than the
campus one since it needs to use historical data to assist the
runtime configuration updates; the delay between the update
algorithm and scene switching leads to the drop in detection
accuracy. The same situation applies to Saliency. Moreover,
we notice that VPPlus’s γA has a larger variance compared
to the rest two methods in the downtown detection task. This
is because the mapping procedure is more challenging with
dense and tiny object detection.

System overhead. We measure system efficiency in terms of
the processing time per frame. Table VI shows the average
processing time of baseline (YOLOv5), Saliency, and our
VPPlus solution. We see that the extra time for VPPlus
is small (no more than 5%) in three single-object detection
tasks (airplane, car, and cat). Only in the detection in dynamic
scenarios (campus and downtown), VPPlus adds about 20%
extra time. This is because there are multiple objects in the
video frames, which takes more time for object mapping in
order to find the matched pairs. We want to point out that
our VPPlus solution is much faster than Saliency since the
saliency map can only be obtained from backpropagation,
which almost doubles the time because YOLOv5 needs to
traverse twice (back and forth).

VI. CONCLUSION AND FUTURE WORK

In this work, we present our attempt to explore the poten-
tials of video processing to make video analytics more cost-
effective. We aim to compress video more without hurting its
analytical accuracy. In addition to a small set of well-explored
parameters, we find that other parameters are also useful but
largely outlooked. We thus design, implement, and evaluate
VPPlus. We show that it is promising to exploit this larger
space in real-time for truly live video analytics.

There are several remaining or open issues in VPPlus.



Finer granularity. We use the majority principle to determine
the configuration for the whole frame when multiple objects
are detected. We can further exploit RoIs for fine-grained
compression. The technical problem that needs to be solved
is how to map to the likely outdated feedback information to
identify RoIs since the frame rate we used is relatively low.

Adaptive resolution. Constantly changing resolutions make it
difficult to directly use the existing video codec. To use the
existing codec, we group the consecutive frames with the same
resolution into the video segments. Our future work will focus
on determining whether to directly use image transmission or
to devise new video technologies for encoding that can be
compatible with varying resolutions and frame rates.

New video codec. The community is exploring a brand new
way for video codec, which is more friendly to video analytics,
like MPEG-7 [32]. The advances are orthogonal to our efforts
and can open up new room with new parameters and codec
APIs exposed. We leave it as our future work.

More DNN models. We admit that offline profiling should
change with new DNN models and training datasets. There
are new DNN designs that recently exploit graph neural
networks (GNN) (e.g., [33]) and transformer (e.g., [34]). We
are extending our work to support these new models. We will
extend our work to support these new models in the future.

More analytical tasks. There are many other video analytics
tasks such as human action recognition, event counting, and
semantical segmenting. We plan to explore the power of a
larger configuration space on these tasks in the near future.
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