
OPA: One-Predict-All For Efficient Deployment
Junpeng Guo∗ Shengqing Xia∗ Chunyi Peng

Department of Computer Science, Purdue University, West Lafayette, IN, USA
{guo567, xia170, chunyi}@purdue.edu

Abstract—Deep neural network (DNN) is the de facto standard
for running a variety of computer vision applications over mobile
and embedded systems. Prior to deployment, a DNN is specialized
by training to fit the target use scenario (depending on computing
power and visual data input). To handle its costly training and
meet diverse deployment needs, a “Train Once, Deploy Every-
where” paradigm has been recently proposed by training one
super-network and selecting one out of many sub-networks (part
of the super-network) for the target scenario; This empowers
efficient DNN deployment at low training cost (training once).
However, the existing studies tackle some deployment factors like
computing power and source data but largely overlook the impact
of their runtime dynamics (say, time-varying visual contents and
GPU/CPU workloads). In this work, we propose OPA to cover all
these deployment factors, particularly those along with runtime
dynamics in visual data contents and computing resources. To
quickly and accurately learn which sub-network runs “best” in
the dynamic deployment scenario, we devise a “One-Predict-All”
approach with no need to run all the candidate sub-networks.
Instead, we first develop a shallow sub-network to test the water
and then use its test results to predict the performance of all
other deeper sub-networks. We have implemented and evaluated
OPA. Compared to the state-of-the-art, OPA has achieved up to
26% higher Top-1 accuracy for a given latency requirement.

I. INTRODUCTION

Deep neural network (DNN) has been widely applied in
various computer vision tasks over heterogenous mobile and
embedded systems, transforming our daily life with thrilling
applications such as autonomous driving, searching what you
see (e.g., Google Lens), smart home, security surveillance,
drone delivery, remote healthcare, and to name many [1].

A DNN is a powerful tool for computer vision inference
because it uses a huge amount of trainable parameters at
multiple processing layers (see Fig. 2). Prior to deployment,
each DNN is specialized through training over pre-selected
data, in order to learn a computational model that mimics how
the brain perceives and understands visual data in the target use
scenario. While effective, such a train-then-deploy paradigm is
extremely costly because one DNN can not fit all. New training
is required for each new use scenario, which is impacted by a
wide variety of deployment factors including but not limited
to source camera capabilities (e.g., capturing resolution, lens
type, the field of view), visual data contents (e.g., traffic
signs at daytime or at night), computing hardware (e.g., GPU
cluster/GPU/CPU), available resource dynamics (e.g., stable or
unstable GPU usage), as well as inference quality requirements
(say, acceptable accuracy and/or latency). Obviously, a DNN
for real-time (say, within 50 ms) road sign classification that

∗
Co-primary authors.

Fig. 1: The “Train Once, Deploy Everywhere” paradigm is realized
by Once-For-All (OFA) which performs generic training at the
start and searches for a specialized subnet for the deployment.

runs on a self-driving car should be different from the one for
searching what you see on smartphones. Considering rich real-
world diversity, the conventional train-then-deploy paradigm
hardly scales up with efficient deployment.

To tackle this problem, a new paradigm of “Train Once,
Deploy Everywhere” has been recently proposed [2]. The
core idea is a Once-For-All (OFA) framework, as illustrated
in Fig. 1. It typically involves two steps: generic training
and specialization (DNN search). First, OFA only needs to
train one super-network, which can cover a bunch of many
specialized sub-networks (subnets, explained in §II). Then, the
deployment is to search for a specialized subnet that “best” fits
the target scenario. The main advantage is that OFA explicitly
searches in the subnet space rather than re-training a DNN for
the new target scenario. DNN search is much more efficient
compared to compute-intensive training.

Following [2], a number of recent studies have expanded the
“Train Once, Deploy Everywhere” family [3]–[15]. They all
are centered on DNN search that looks for a specialized subnet
by taking into account various deployment factors. These fac-
tors, except inference requirements, are roughly classified into
(1) source data and (2) computing power, along at different
levels of runtime dynamics. The first OFA work [2] considered
both but without any runtime dynamics. Dynamic-OFA [15]
extended OFA by adding dynamic workload and computing
resources into consideration. Several follow-up studies focused
on computing power only, either satisfying the constraints on
hardware capabilities [3], [4] or adapting to runtime computing



Fig. 2: Illustration of different dimensions in one super network
that are used to compose all the subnets.

resources [5]–[7]. On the other hand, other groups consider
source data only and use an early exit mechanism to handle
various data contents [8]–[14]. They all need to meet a latency
requirement where inference completes within a given time
window from several tens of milliseconds to a few seconds.
Table I compares the representative studies.

However, none of the existing studies have supported all the
factors. Previous studies show that the best-fit subnet should
change when computing resources vary (e.g., GPU becomes
overloaded without sufficient resources to run the pre-selected
subnet) or visual contents change (e.g., detecting traffic signs
at backlight is much harder than at full light). There is no
surprise that the best-fit subnet should change when both vary
at runtime. We assess the benefits of putting more (if not
all) factors together in our motivation study (§III). It brings a
considerable accuracy gain (> 6%) for the target deployment.

There is no surprise that it is a very challenging task. Essen-
tially, the task requires learning the performance (accuracy) of
every candidate subnet for any given deployment scenario, and
then picking the best fit. Exhaustive search is computationally
prohibitive by running every candidate subnet in the given
deployment scenario. All previous approaches that predict the
performance of candidate subnets can not work well because
they are conditioned on some, but not all factors.

To tackle this challenge, we propose OPA (One-Predict-All),
which only needs to run one (special) subnet and use its results
to predict how other subnets perform instead of running all
these subnets under the target deployment. We find it feasible
because we leverage a “shallow” subnet as a pioneer to test
the water. Compared to those deeper subnets, this shallow
subnet uses fewer layers (here, 2 stages instead of 5 stages).
Testing the water is thus done quickly, which is acceptable
(given the latency requirement). Moreover, we will show that
the testing time is not wasted; The deeper subnet selected
later can continue where the shallow subnet stops, completely
inheriting the intermediate results obtained by this shallow
subnet. We find that this shallow subnet is able to predict
the accuracy of other deeper subnets because their inference
accuracies are highly correlated. It is not hard to understand
because the inference accuracy is inherently impacted by these
deployment factors (e.g., it drops when visual contents are hard
to recognize). This is what we mean by “test the water”.

Turning this idea into a practical solution, OPA has to
address several technical challenges. First, it is hard to know
the accuracy results when testing the water because there is
no ground truth available in real time. OPA comes up with
an accuracy estimator to infer the accuracy of the pioneer
subnet over only the intermediate results (more precisely,

Representative Computing Power Source Data QoS
Studies HW Resource CC Content Req.

(offline) (runtime) (offline) (runtime )

OFA [2]
√

⊗
√

⊗ Latency
Dynamic-OFA [15]

√ √ √
⊗ Latency

Chamnet [3]
√

⊗ ⊗ ⊗ Latency
LegoDNN [7]

√ √
⊗ ⊗ Latency

BranchyNet [11] ⊗ ⊗
√ √

None

OPA (our work)
√ √ √ √

Latency
TABLE I: Comparison of representative studies and our work.
CC: camera capabilities. HW: hardware.

the confidence values). Second, the search space is huge. To
reduce the extra cost of running the pioneer subnet, we narrow
down the search space and only search for the subnets that
are supersets of the pioneer subnet. We devise a quick online
search algorithm to start the search near the best candidate
subnet, which is profiled offline. Third, testing the water using
a shallow subnet still takes time, though it is faster than using
a deeper subnet. We develop a zero-waste strategy where the
deeper subnet directly and completely inherits the intermediate
results obtained by the shallow subnet and continues to run the
rest unshared layers. More details are elaborated in §IV.

We have implemented OPA on top of PyTorch and evaluated
it under various scenarios, using two computing hardware
(GPU and CPU), dynamic computing resources, and different
data groups associated with multiple latency requirements. We
choose image classification as our showcase application. Com-
pared with state-of-the-arts, OPA improves Top-1 classification
accuracy by 6.6% – 9.0% when working independently on
the IMAGENET dataset and achieves up to 26% improvement
when computing resources are saturated (§V).

II. BACKGROUND AND RELATED WORK

One super-network and many subnets. In a full DNN
architecture (denoted as a super-network in OFA [2]), there
are many trainable parameters. Different combinations of these
parameters customize a batch of subnets, each specialized for
its target deployment scenario. Fig. 2 illustrates one super-
network and its many subnets using MOBILENET V3, one of
the most popular DNN models [16]. It consists of multiple
stages (here, 5 stages). Each stage is composed of several
stacked layers, and the number of layers is defined as its depth.
Each layer applies a few kernel filters to the input. Among
all the filters, convolution kernels are the most popular ones,
which are also referred to as convolutional neural networks
(CNNs). Various kernel sizes and expansion ratios will con-
struct different subnets. In this work, the depth is ranged in
{2, 3, 4}, the kernel size in {3, 5, 7}, and the expansion
ratio in {3, 4, 6}; The input image resolution ranges from
128 to 224 with a stride of 20. As a result, there are up to
320 ∗ 320 ∗ 35 ∗ 5 ≈ 6 ∗ 1021 subnets.
Related work and limitations. Existing studies search
for a specialized subnet to meet different deployment re-
quirements. The deployment factors can be roughly grouped
into two categories: computing power and source data. Early
studies focus on selecting the optimal subnets based on the
computing power provided by different hardware, such as
GPU clusters at the edge server, GPU at mobile systems,



(a) 6% accuracy gap (b) High correlation (c) Best pioneer subnet selection
Fig. 3: A pilot study to motivate One-Predict-All.

Subnet A B C D E F G H I J

R-squared 0.62 0.61 0.67 0.69 0.67 0.68 0.71 0.70 0.65 0.61
Latency (ms) 69 70 71 72 73 74 75 76 77 78

TABLE II: Comparison on R-squared and latency.

and CPU at embedded systems [2]–[4]. To keep up with the
dynamics of computing power, several studies further monitor
resource availability at runtime and then update the subnet
search accordingly [5]–[7], [15]. Among them, Dynamic-
OFA is one remarkable work that proposes a predictor-guided
search process [15]; specifically, an accuracy predictor takes
the subnet’s architecture as the input to predict its inference
accuracy without actually running it, which thus accelerates
the search process. However, this approach suffers from less
accurate results when data contents considerably change over
time, likely resulting in an improper or even poorly-performed
subnet. In front of the other factor group on source data,
some studies consider the impact of only source data and
select different subnets per frame or a few frames (over a
short time) [8]–[14]. They all adopt an early exit mechanism
that stops running the model as long as the requirement is
satisfied and thus skips the rest of the model search. However,
these studies require enumerating all supported subnets during
the training with their specific exit branches. Consequently,
it is computationally prohibitive to support a broad range of
many subnets. Moreover, it is costly to support varying latency
requirements because their exit policies must be pre-trained
over the given latency requirements.

Table I compares the most related work. In a nutshell, these
prior studies consider some deployment factors and largely
ignore their runtime dynamics, which impedes the DNN search
for efficient deployment in practice.

III. MOTIVATION

In this section, we use a pilot study to motivate the need
for taking more deployment factors into account. To handle
all deployment factors, we propose an idea of One-Predict-
All: we run a shallow subnet (called a pioneer subnet) to test
the water and predict the performance of other deeper subnets
under the given use scenario. We not only demonstrate the
potentials of this approach but also present the challenges of
integrating this idea into the practice.
Ideal subnet selection. Ideally, the subnet selection should
take all deployment factors into account and be done in a fine-
grained manner to accommodate both static heterogeneous
and runtime dynamics. To demonstrate its potential gain

over prior work, we use image classification as our showcase
application to conduct the following study. We randomly select
5K images from the IMAGENET dataset [17] and divide them
into groups. Each group contains 100 images; the group size
impacts the accuracy and overhead of the subnet search; here,
we choose 100 because it reaches a good trade-off between
the accuracy and the overhead in this study; more group
sizes will be evaluated in §V. Constrained by a huge amount
of possible subnets, we cannot enumerate them to find the
optimal one. Without loss of generality, we test with a subset
of five-stage subnets to demonstrate the substantial gain of the
optimal selection over the one selected by existing approaches.
Specifically, we run these subnets over the first ten image
groups (labeled from 1 to 10) over GPU. No other background
applications are running over GPU. We sort these subnets
in the descending order of inference latency and choose ten
representative ones (labeled from A to J) with their latency
roughly evenly distributed between the smallest and largest
ones (under the 78 ms latency requirement, Table II).

Fig. 3a shows Top-1 accuracy of these ten selected subnets
per each image group. Note that Top-1 accuracy is the most
popular metric for evaluating image classification. We also
plot the results using the optimal subnet (marked in the pink
dashed line) and the one selected by Dynamic-OFA (marked
in the gray line). We choose to compare with Dynamic-OFA
because it is one of the most recent studies which adapts
to time-varying computing power [15]. The ideal selection
chooses the subnet with the highest accuracy per group out
of 10 candidate subnets, while Dynamic-OFA chooses an
identical subnet across distinct image groups (here, subnet G).
Evidently, Dynamic-OFA performs worse than the ideal one,
with an accuracy gap of about 6%; It is because Dynamic-OFA
selects one fixed subnet no matter how source data changes;
It fails to handle diversity and dynamics in source data, which
sacrifices the accuracy when image contents vary significantly.
We notice that the actual gain is likely higher because this
study considers only ten representative subnets; There are
many more candidate subnets and the optimal one should be
better, at least no worse than the ideal one used in this study.

To pursue higher accuracy, DNN search should consider all
static and dynamic deployment factors on computing power
and source data. However, it is not easy in practice. A straight-
forward approach requires an exhaustive search of running
all candidate subnets under the target deployment scenario,
which is computationally prohibitive. We next explore three
opportunities to make it practical and efficient at runtime.



Opportunity 1: A pioneer subnet can test the water and
predict the performance of other subnets under the de-
ployment scenario. The good news is that there is no need to
run all candidate subnets under the target deployment; Instead,
running a pioneer subnet suffices. We observe that there exists
a strong correlation among the accuracy results of distinct
subnets, as illustrated in Fig. 3a. We further measure pairwise
correlation coefficients between all ten subnets in Fig. 3b.
All the coefficients are above 0.7, which implies that it is
technically feasible to run one subnet to predict how others
perform. Such a high correlation is attributed to the progressive
shrinking training algorithm used by OFA [2]. It first trains the
super-network and then progressively fine-tunes the network
to support smaller subnets that share weights with the larger
ones. As a result, most subnets are consistently impacted by
varying source contents (e.g., the accuracy goes down when
the group is harder). However, there is no single winner; The
best subnet varies per group.

Inspired by this, we run one subnet and use its accuracy
result to predict the accuracy of other subnets. The accuracy
prediction uses a simple linear regression. We demonstrate its
feasibility as follows. We enumerate all ten subnets. In each
test, we pick one as the pioneer subnet to predict how the other
nine subnets perform. We randomly select 75% of 5K images
for model fitting (training) and use the remaining 25% for
testing. Table II shows the prediction performance (accuracy)
in terms of the R-squared value. We have two observations.
First, all the R-squared values are relatively high (>0.6). It
indicates that One-Predict-All is technically feasible. Second,
the prediction performance does vary with different subnets. It
implies that a careful search for the pioneer subnet is required.
Opportunity 2: A shallow subnet, instead of a deep
subnet, can act as the pioneer one. The better news is that
the above prediction does not need a deep (five-stage) subnet.
We find that a shallow subnet can also act as the pioneer
to test the water. We test with various shallow subnets with
their stage sizes from one to three and present the results
in Fig. 3c. Since the subnet complexity grows with more
stages, we randomly choose more subnets as the stage size
increases. Specifically, we choose 7 one-stage subnets (S1),
13 two-stage subnets (S2) and 20 three-stage subnets (S3).
Given one subnet, we use two measures – R-squared value
and latency – to assess its prediction performance for five-
stage subnets which are candidates of the DNN search. We
find that, in general, the prediction accuracy (namely, the R-
squared value) grows with more stages. However, with a larger
stage size, a pioneer subnet pays a higher latency cost. As the
prediction is often constrained by the latency requirement, an
optimal choice should pursue a good trade-off between the
R-squared value and latency. In this study, the best one out
of 40 candidates is a two-stage subnet (circled in Fig. 3c).
Its R-squared value is 0.69 and the latency takes 36.5 ms.
We notice that a shallower subnet does not necessarily runs
faster. For instance, running a five-stage subnet with only 20
neurons per stage is still faster than a two-stage subnet with
400 neurons per stage. The latency depends on the complexity

of the subnet (the number of trainable parameters). The more
parameters, the more powerful for higher inference accuracy,
but it runs slower (at the cost of higher latency).
Opportunity 3: No extra latency occurs for running the
shallow pioneer subnet. Its intermediate results can be fully
reused by the deep (five-stage) subnet which is finally used.
Running a shallow pioneer subnet to test the water is faster
but still takes time. Seemingly, it incurs extra overhead and
latency as we have to run one more pioneer subnet in addition
to the final subnet used for the visual inference task. The good
news is subnet inheritance, where the results obtained by a
shallow pioneer subnet can be fully inherited by a deeper
subnet as long as both share the same shallow stages. The
deeper subnet continues where the shallow one stops and runs
the remaining stages. By this means, testing the water becomes
part of running the final deep subnet; There is no extra latency.
More precisely, we find that the extra latency is used to load
one layer’s results, which takes several milliseconds. We note
that pioneer subnets with fewer stages allow for a larger search
space, which more likely contains the best-fit subnet.
Our idea: One-Predict-All. We propose One-Predict-All,
which uses a shallow subnet to predict “all”, thereby acceler-
ating the search for the best-fit deep subnet. However, there
are two technical challenges to turn this idea into reality.
Challenge 1: The accuracy of the pioneer subnet is hard to
get in real-time because the ground truth is not provided.
In principle, the accuracy of the pioneer subnet requires the
ground truth, which is manually labeled and not available in
real time. Recent studies propose to replace the ground truth
labels with the results from a golden teacher’s model for video
analytics [18], [19]. However, the golden teacher’s model uses
a complex architecture (a large number of parameters) to
ensure high accuracy (say, > 0.9) and can not work well
to label a small fraction of data in real-time; Moreover, the
approach is effective over stable source data (e.g., similar
background and lighting) and cannot work well with varying
source contents, which is our target scenario. Even worse, it
slows down the processing as it has to execute two computing
tasks in parallel (one for the golden teacher’s model, the other
for the target inference task). In order to learn the ground
truth, we find that the latency almost doubles, increasing from
36.5 ms to 65 ms). As a result, we need an alternative solution
to obtain (estimate) the accuracy at a small cost.
Challenge 2: The vast subnet space makes it hard to search
quickly. The optimal subnet varies with data contents and
available computing resources that change over time. Such
runtime dynamics require an online search as learning in
advance is not possible. While the subnet performance is
predictable, it still takes time to search for the optimal one due
to the many subnet candidates. Hence, another problem is how
to quickly find the subnet which can directly inherit the output
of the pioneer subnet and retain high inference accuracy.

IV. DESIGN OF OPA

We propose OPA to integrate the idea of One-Predict-All
on top of the existing OFA framework. The core idea is to



Fig. 4: OPA’s architecture and work flow.

choose a shallow pioneer subnet that is able to well predict
both the accuracy and latency of candidate subnets under the
current use scenario and then apply it to accelerate the search
for the best-fit subnet at runtime. To tackle the aforementioned
two challenges, we propose an accuracy estimator and a novel
search algorithm. Fig. 4 depicts the basic components and
working flow. The modules added by OPA are marked in blue.

At a high level, it starts with offline training and then runs an
online search for the specialized subnet at runtime, following
the “Train Once, Deploy Everywhere” paradigm. OPA trains
a super-network using the progressive shrinking algorithm
proposed in [2]. Different from previous studies, OPA also
profiles how each shallow subnet predicts the performance of
deep subnets, which is later used to pick a pioneer subnet for
runtime search. In this study, we find that a two-stage shallow
subnet works well for a good trade-off between accuracy and
latency. At runtime, we first run the pioneer subnet to test the
water. To quickly determine an appropriate deep subnet for
visual inference, we develop an accuracy predictor (consisting
of an accuracy estimator and pioneer predictor) and a latency
predictor to estimate how five-stage candidate subnets perform.
We choose the subnet which yields the highest accuracy
while meeting the latency requirement. Eventually, we run the
selected subnet for visual inference. To save time, we adopt
subnet inheritance to continue where the shallow subnet stops.
Namely, we run the remaining layers (bounded by the red
boxes in Fig. 4). We next elaborate on these techniques.

A. Accuracy Predictor and Latency Predictor

We develop two predictors to test the water quickly. Both
predictors use the pioneer subnet’s performance to predict how
other deeper subnets perform without running them.
• Leverage confidence values to estimate the accuracy

of the pioneer subnet. To predict the accuracy of all deep
subnets, we first need to obtain the accuracy of the pioneer
subnet, which is challenging due to the lack of ground truth.
We propose an accuracy estimator to infer the accuracy by
using its intermediate results only. In our prior study, we
observed that the confidence values could be leveraged to learn
how the inference accuracy changes [20]. For the task of
image classification, we extend this idea by directly predicting
the absolute value of Top-1 accuracy. We run a Multinomial
Naive Bayes classifier, where the inputs are the confidence
values, each corresponding to a candidate class, and the output
is either 1 (classified as correct) or 0 (wrong). Its objective is

Fig. 5: Classification likely succeeds when one confidence value
is significantly larger than the others. .

to minimize the zero-one loss for this correct/wrong classifi-
cation. The accuracy of the pioneer subnet is estimated as

Âpioneer =

∑n
i Bayes(Confidence values of image i)

Number of images
. (1)

However, it is not very accurate (45% in our pilot study) by
directly using the confidence values via Eqn (1). We further
closely examine how confidence values are associated with
classification accuracy. Fig. 5 gives three illustrative examples.
We see that a correct classification is often associated with
one strong candidate; Its confidence value is relatively high
(see the airplane and truck examples). A wrong classification
often has several possible classes with comparable confidence
levels. Here, it is hard to tell if the first animal is a dog or
a cat. We see that a dominating class plays a decisive role,
regardless of its absolute confidence value and class name.
As a result, we take a two-step preprocessing to get rid of
useless information while retaining their relative ranks. The
first step is to apply MINMAXSCALER to all the confidence
values in order to magnify their relative relationship after
putting them into the same scale. The second step is to sort
the scaled confidence values in descending order. The two-step
preprocessing is effective, increasing the accuracy to 74%. We
admit that the accuracy is not high enough, and we next show
how to leverage another module (here, a pioneer predictor) to
make up for unsatisfactory accuracy estimation.
• Use a DNN-based pioneer predictor to infer the

accuracy of deep subnets. In the pilot study presented in
§III, we use linear regression to estimate the accuracy of other
subnets given the accuracy of the pioneer subnet. To enhance
the estimation accuracy of candidate subnets and compensate
for the accuracy estimation errors of the pioneer one, we use
a DNN model. Specifically, we use a three-layer feedforward
neural network with 124 hidden units at each layer. This
pioneer predictor uses the estimated accuracy of the pioneer
subnet (the output of the accuracy estimator) and the subnet
architecture to estimate the accuracy of another subnet. To
encode the architecture as the input, we concatenate all the
parameters (including depth, width, kernel size, expand ratios,
and resolution) into a large vector (46 dimensions). Putting
the accuracy estimator and the pioneer predictor together, the
accuracy prediction becomes acceptable. Specifically, the root-
mean-square error (RMSE) between the predicted accuracy
and the actual one of any given subnet is no larger than 0.024.
OPA is able to precisely predict the accuracy of any subnet by
leveraging the intermediate results of the pioneer subnet.
• Measure floating-point operations (FLOPs) to predict

latency. Recent studies show that FLOPs can be used as



(a) Pareto curve (b) Illustration of search
Fig. 6: The heuristic idea behind the search algorithm.

features to predict latency [21], [22]. We get the count of
FLOPs of the pioneer subnet and use a linear approximation
to estimate the latency of a given subnet as

τ̂subnet =
τpioneer

FLOPpioneer
× F (subnet). (2)

Here, τpioneer and FLOPpioneer are the latency and FLOPs
used by the pioneer subnet, and F (subnet) is a function to
estimate the count of the FLOPs of a specific subnet. The good
thing is that FLOPs are fixed for a given architecture and do
not change with different computing power.

B. An Algorithm for Online Search

To quickly determine the “best” subnet with the highest
accuracy while meeting the latency requirement, we develop
a novel search algorithm at runtime. There are two key
tasks: (1) reduce the search space and (2) reach the target
subnet quickly (minimize the iterations). In this work, we
consider the candidate subnets, which are the supersets
of the two-stage pioneer subnet; Thus, we freeze the first
two stages and adjust the remaining 3 stages with up to
12 stacked layers. We reduce the subnet space to around
312 ∗ 312 (kernel sizes and expand ratios for 12 layers) ∗
33 (depths for the 3 stages) ∗ 5 (resolutions) ≈ 3.8 ∗ 1013.

It is not easy to locate the target subnet quickly. Existing
studies [2], [3], [15] adopt a random search algorithm to
find the subnets that meet the latency requirements and use
evolutionary search to keep the one with the highest accuracy.
Even if possible, searching over a huge number of subnets is
inefficient, often taking several minutes or even hours. It is
not acceptable when source contents change fast.

Our intuitive idea is to make the starting point near the
target so that the search can converge quickly to the target.
The starting point should be the subnet whose inference
latency is closest to the requirement. Fig. 6a shows that the
Pareto curve over the latency and accuracy trade-off increases
monotonically (in the pink line). We also plot the actual
accuracy and latency of 150 subnets for a single data group.
Thus, once our starting point is near the QoS requirement,
we can always get closer to the optimal subnet on the Pareto
curve with several iterations.

We next show how to find the subnet whose latency is
close (or the closest) to the requirement without running it.
We leverage the observation that the latency of a subnet is
approximately proportional to its FLOPs, which are fixed for
a specific subnet as its intrinsic attributes. Therefore, we profile
the mapping between different FLOPs and subnets offline and
build a look-up table accordingly. Note that the FLOPs of a
certain subnet are not impacted by the deployment scenario,

Algorithm 1 Online Search used by OPA
Input: Confidence values of the pioneer subnet (conf ), latency
requirement (τreq), subnet lookup table (mapsubnet, key: FLOPs,
value: subnet), latency allowance (∆τ ), FLOPs of the pioneer subnet
(FLOPpioneer), latency of the pioneer subnet under current deploy-
ment scenario (τpioneer), the maximum iteration count (Nmax)
Output: Best subnet architecture (subnet∗)

1: Initialization: subnet∗ = NULL,Amax = 0, n = 0
2: Âpioneer = ACCURACYESTIMATOR(conf )
3: FLOPallowed = (τreq − ∆τ ) · FLOPpioneer

τpioneer

4: key = FINDNEAREST(mapsubnet.keys(), FLOPallowed)
5: subnet base = mapsubnet[key]
6: while n ≤ Nmax do
7: subnet new = GENNEWSUBNET(subnet base, n)
8: Âsubnet new=PIONEERPREDICTOR(subnet new, Âpioneer)
9: τ̂subnet new = LATENCYPREDICTOR(subnet new, τpioneer)

10: if τ̂subnet new + ∆τ > τreq then
11: Continue
12: end if
13: if Amax < Âsubnet new then
14: Amax = Âsubnet new

15: subnet∗ = subnet new
16: end if
17: n = n+ 1
18: end while
19: return subnet∗

so the look-up table profiled once can be used at runtime. We
only need to convert the specific latency requirement (τreq) to
the maximum allowed FLOPs under the current deployment
with the help of τpioneer. Then look up the table to find the
corresponding subnet. To build such a table, we randomly
select 1k subnets and record their FLOPs. We emphasize that
the maximum allowed FLOPs will always change according to
the latency requirement as well as the varying latency of the pi-
oneer subnet, which is the reflection of the current deployment
scenario. Thus the selected subnets will be different. This is
significantly different from [15], whose look-up table always
gives the same output for a given latency requirement. To find
the best-fit subnet, we slightly change the base subnet (starting
point) by randomly tuning several dimensions and select the
one with the highest predicted accuracy as the optimal subnet.

Algorithm 1 shows the pseudo-code for the online search.
At runtime, the accuracy estimator leverages the intermediate
results of our pioneer subnet, namely confidence values, to
estimate its inference accuracy (Âpioneer). Next, we generate
the base subnet (subnet base) as the starting point for the
search via the look-up table (lines 3-5). In detail, given
the transformed latency requirement (75 ms in Fig. 6), we
find the nearest FLOPs stored in the look-up table and get
subnet base. Then, we randomly adjust a few layers (1-3
in our experiment) of the base subnet to generate a new
subnet (subnet new) at each iteration (labeled as yellow
dots in Fig. 6b). After multiple iterations, we choose the one
with the highest accuracy (lines 5-18). Specifically, we alter
either kernel size or expansion ratios for each layer through
GENNEWSUBNET() with a random seed that is associated
with n. Note that we do not change the depth, as it can



drastically change the architecture of the base model and hurt
accuracy. Then for each subnet, the accuracy predictor and
latency predictor are used to predict its performance. Note
that if a subnet needs a longer inference time than required,
we will not consider it anymore. Finally, we select the subnet
marked as a red star in Fig. 6b. It is also marked in Fig. 6a
for comparison. Its accuracy is quite close to the optimum one
though it is slightly smaller. OPA dramatically shortens the
search time compared to the existing studies, where candidate
subnets are generated from scratch for every iteration.

C. Subnet Inheritance

Once the searching algorithm determines the final subnet,
fast switching with little overhead is crucial. This is because
running the pioneer subnets already takes time. It already
occupies a significant portion of time for the given latency
requirement and leaves less time for the final selected subnet
to do inferences, which is unacceptable.

To alleviate this issue, we restrict the pioneer subnet to be
the subset of the final selected one. Our solution is to exploit
the intermediate processing results of the pioneer subnet fully.
Instead of running the complete selected subnet, we inherit
the output of the pioneer subnet’s last convolution layer (the
one before the fully connected layer) and continue running the
remaining three stages. Fundamentally, it functions similarly
to pausing running the selected final subnet in the middle.
This idea only introduces a small overhead (measured in §V),
namely loading the output of the pioneer subnet from memory
into GPU. The only by-product is that the implementation of
this method must satisfy that the final selected subnet is a
superset of the pioneer subnet, which means that the number of
possible subnets for the given input will be reduced. However,
we still support around 3.8 ∗ 1013, which is enough to ensure
that a best-fit final subnet can be found, and we will verify
our accuracy improvement in our evaluation.

V. EVALUATION

We implement OPA on top of PyTorch and extensively
evaluate its effectiveness and efficiency under various settings.
Our key results are summarized as follows.
• OPA improves Top-1 accuracy over the state-of-art ap-

proaches – 6.6% over Dynamic-OFA [15] and 9% over
BranchyNet [11] – while meeting the latency requirement. The
accuracy gain is considerable, given the fact that the accuracy
increases by about only 7% from 2017 to 2021 [23].
• Such accuracy improvement is widely observed in ex-

tensive evaluations with various combinations of deployment
factors. OPA achieves an accuracy gain up to 26% for a single
data group when computing resources are saturated.
• The overhead of OPA is small and tolerable (no more than

20% compared to Dynamic-OFA).

A. Experimental Setup

We deploy and evaluate OPA on the Nvidia TRX 3090, Intel
Xeon CPU, with different latency constraints. We also consider
several backend applications consuming different amounts of

computing resources to showcase the hardware-adaptive nature
of OPA. We use a 3-layer DNN to continually run the pioneer
predictor as one backend application.
Models and dataset. We choose IMAGENET 1K as the
dataset for the showcase application of image classification.
Note that IMAGENET 1K contains image samples of 1K
categories with different resolutions, reflecting different clas-
sification difficulty levels. We use the default training set for
training. For testing, we randomly pick 40% of images for
each category in the validation set, and in total, we consider
20K images. We use the pre-trained super-network (MobileNet
V3, width = 1) by OFA [24] and randomly group 100 images
for the evaluation. We use two measures – Top-1 accuracy and
latency – to assess the performance of OPA.
Comparison with the state-of-the-art. We implement and
compare with two state-of-the-art approaches in the literature:
Dynamic-OFA [15] and BranchyNet [11]. Dynamic-OFA is
the most recent work that considers the dynamics of computing
power. It builds a look-up table storing the mapping between
latency requirements and subnets. It leverages a real-time
monitor (RTM) to monitor the computing power and update
latency requirements. For a fair comparison, we build look-up
tables on the training dataset based on our testbed. BranchyNet
considers the adaptation of contents dynamics. It adds several
early exit branches to the baseline network and will exit when
the calculated score of the current exit branch’s classification
result exceeds a learned threshold. These exit thresholds are
chosen based on the latency requirement. Thus, for different
latency requirements, we need to learn different thresholds.
We train BranchyNet with three exit branches whose latency
are 70 ms, 80 ms, and 100 ms, respectively, on GPU.

B. System Performance

Overall. Fig. 7 reports overall comparisons between OPA
and state-of-the-art. Each point represents the average accu-
racy and latency over all the data groups, and the selected
subnets all satisfy the latency requirement. OPA consistently
improves the trade-off between accuracy and latency by a
significant margin. With similar latency, OPA achieves up to
6.6% accuracy gain over Dynamic-OFA and 9.0% accuracy
gain over BranchyNet for both GPU and CPU. We would
like to emphasize that the full model (namely, the super-
network itself) may not achieve the highest accuracy for all
data. OPA still outperforms the Dynamic-OFA by 4.4%, which
selects the full model when the latency requirement is over
90 ms. This again confirms the need to consider the source
data dynamics. When the latency requirements are between
73 - 80 ms for GPU and 6.3 - 6.7 s for CPU, OPA performs
much better than Dynamic OFA, with at least a 5.6% accuracy
improvement. When the latency requirement is small, there
are fewer candidate subnets, leading to a smaller accuracy
improvement (4.8%). The main reason for the outperformance
is that OPA utilizes running a pioneer subnet (about 36.5 ms
latency on GPU) to help find the best subnet under the real
deployment condition, considering both computing power and
source data. Instead, Dynamic-OFA only relies on the offline



(a) GPU (b) CPU
Fig. 7: Overall comparison of accuracy and latency trade-off.

Related Online Offline
Studies Search time Switch time Training times

Dynamic-OFA 0.08 ms 17 ms Once for all

BranchyNet 7.5 ms — Per latency requirment

OPA 18 ms 2.52 ms Once for all
TABLE III: Comparison of the overhead.

profiled table and overlooks the dynamics of source data.
Moreover, there is a gap between offline profiling and online
condition; thus, it will lead to imperfect subnet selection with
performance degradation.

In addition, compared to BranchyNet, OPA supports more
subnets and conducts a finer-grained subnet search, while
BranchyNet only supports tuning on the depth level. Corre-
spondingly, there are more possibilities for OPA to find the
optimal subnet to achieve high accuracy.
Overhead. We measure the average processing time of
a batch on the GPU for different systems (Table III). At
inference time, BranchyNet has the shortest processing time. It
only supports a few subnets (3 in our settings), and its search
cost is to calculate the entropy score for each exit branch to
determine whether it needs to exit, which only takes about
7.5 ms for 100 images. Although its search cost is small, its
accuracy performance is low. In terms of Dynamic-OFA, the
switching time includes two parts: one is to load the batch
norm for the selected subnet (2 ms), and another is to use RTM
for monitoring and calculating (15 ms). It only needs to check
the look-up table for searching, which takes little time. OPA
introduces an overhead of about 18 ms for online search, and
we apply inheritance to reduce the switching time. The only
cost involved is to load the output of the last convolution layer
of the pioneer subnet. Overall, the extra overhead is tolerable,
which is no more than 20% compared to Dynamic-OFA.

Remarkably, OPA and Dynamic-OFA only need to train
once, and they can produce entire trade-off curves with differ-
ent points over the whole latency range, as shown in Fig. 7.
However, for one latency requirement, BranchyNet has to learn
new exit thresholds for all the exit branches. Thus, it needs
to do experiments multiple times to find suitable thresholds
for different requirements, which incurs a high training cost.
We will next zoom in to see the performance results for each
data group and show our benefits under different computing
power. Note that BranchyNet has the lowest performance, and
we will omit it from the following analysis.
Performance under different hardware devices. Fig. 8a
shows the Top-1 accuracy for two different hardware devices
(GPU and CPU) with four different latency requirements. OPA
outperforms Dynamic-OFA in all the deployment conditions

(the yellow line is higher). We have two observations: first,
a larger latency requirement gives more room to select a
better subnet for each data group. Regardless of the hardware
device, OPA achieves higher accuracy in all data with larger
latency requirements. The improvements in the average Top-
1 accuracy are about 2.1% and 4.3% for GPU and CPU,
respectively. Second, GPU runs much faster than the CPU
for comparable accuracy performance. And CPU may not be
able to keep up with real-time video (or image) analytics.
Specifically, when the device captures images at a high frame
rate (e.g., 30 fps), the required processing speed should be
at least 33 ms per image. However, each image requires at
least 60 ms (6.2 s/100) for OPA. Not to mention running OPA
directly on the capture device, the CPU performance of the
embedded system would be even worse.

To better visualize the accuracy gain of OPA against
Dynamic-OFA for a single data group, Fig. 9a shows the
statistical results. OPA guarantees a positive accuracy gain
against Dynamic-OFA. Specifically, given a sufficiently large
latency requirement, the subnet selected by Dynamic-OFA via
the offline table is consistent with OPA’s (accuracy gain is 0)
if the image is relatively easy to classify. However, when the
image becomes difficult, our advantage will show up, and we
achieve, at most, a 20% accuracy gain. In terms of average
accuracy gain, OPA achieves around 6.8% improvement for a
smaller latency and around 5.6% for a larger latency on GPU.
Given such improvement, we confirm that OPA works well for
all different hardware devices.
Performance under different available computing re-
sources. To test OPA’s adaptability to different available
computing resources, we consider two workloads with dif-
ferent numbers of concurrent applications. Specifically, we
run 1 or 2 applications at the backend. We only evaluate the
GPU since the CPU has limited computing resources and is
generally not chosen when multiple DNNs are running.

Fig. 8b displays the comparison results, from which we
draw the conclusion: running multiple applications parallelly
indeed affects subnet search performance by either scarifying
the accuracy under the same latency requirement or requiring
finding another subnet with higher latency to achieve the same
accuracy. To be specific, running one backend application
achieves 3.3% higher accuracy than two applications for a
given latency requirement of 80 ms. Running one backend
application with a 96 ms latency requirement has the same ac-
curacy performance as running OPA alone with a 78 ms latency
requirement. Both indicate that with more and more concurrent
applications, the available computing power decreases, and the
performance is degraded.

From Fig. 9a, we observe that OPA still achieves accu-
racy improvements against Dynamic-OFA even with differ-
ent available computing resources. Particularly, when more
applications are running, the accuracy gain will be greater.
We obtain, at most, a 26% accuracy gain in the case of
running two backend applications. Our approach performs
better than state-of-the-art when computing resources are
saturated. This is because Dynamic-OFA relies on RTM to



(a) Computing hardware (b) Dynamic computing resources
Fig. 8: Performance under different computing power. Green regions (accuracy > 0.85) are for better comparison.

(a) Computing hardware (b) Dynamic computing resources
Fig. 9: Our accuracy gains under different computing power.

monitor the computing power and change the subnet with trial
and error. Specifically, Dynamic-OFA measures the latency for
the last data group to decide whether it violates the latency
requirement and needs to switch subnets. However, it cannot
guarantee switching to a subnet that could satisfy the current
requirement and need to try multiple times. It may lead to an
eventually unsatisfied latency or a switch to a subnet that is too
small to get promising accuracy performance. Instead, OPA
searches with a good starting point and guarantees quickly
finding the best-fit subnet for a given deployment scenario.

Impact of the batch size. We empirically set 100 as
the batch size for the above evaluation. Here, we show the
impact of different batch sizes on performance (Table IV)
and verify our selection. We calculate Top-1 accuracy for all
the image data and the average overhead for each image. We
observe that a smaller batch size yields better accuracy but
higher overhead. This is because it allows finer-grained data
adaptation. Specifically, when the batch size is 1, it indicates
that for each image, we find its best-fit subnet. Obviously, it
can achieve the highest accuracy. On the contrary, if all the
data use the same model, it will lead to sub-optimal results
(around 0.78). However, a smaller batch size means searching
and switching to the best-fit subnet at a higher frequency.
We have already shown that our cost for a one-time search
and switch is about 21 ms per batch, and the high frequency
will lead to considerable overhead in finishing all the tasks.
Moreover, we find that when the batch size is 2, it will take
250x longer than when the batch size is 500. Thus, a trade-

Batch size 2 50 100 150 200 500

Top-1 Accuracy 0.90 0.82 0.81 0.79 0.79 0.78
Overhead (ms) 10.5 0.42 0.21 0.14 0.11 0.042

TABLE IV: Accuracy and overhead results with varying batch
sizes on GPU with a 76 ms latency requirement.

off is required, and we select 100, which has the minimum
overhead with Top-1 accuracy over 0.80.

VI. CONCLUSION AND FUTURE WORK

In this work, we present our attempt to efficiently deploy
DNNs to run computer vision tasks under diverse and dynamic
scenarios. We propose OPA, which uses the intermediate
results of a shallow subnet to predict how other deeper subnets
perform. We incorporate this idea into the “Train Once, Deploy
Everywhere” paradigm. Extensive evaluations have validated
its effectiveness and efficiency. OPA significantly outperforms
the state-of-the-arts to improve accuracy while meeting the
same latency requirement.

There are several remaining issues as our future work.
◦ Be more responsive. All subnets supported by OPA use

five stages. It takes at least 73 ms to run a batch of images
on the GPU in our study. It implies that OPA does not fit a
task that demands prompt responsiveness. We plan to support
simpler subnets (say, with fewer stages/layers/neurons) to meet
more stringent latency demands.
◦ Adoption with other DNN models and analytical tasks. We

admit that the selected super-network is not the one that yields
the highest classification accuracy. There are new DNN models
that exploit transformer (e.g., [25]) and graph neural networks
(GNN) (e.g., [26]). In principle, OPA can be generalized to
support more convolutions-based DNN models. We plan to
extend our work to support these new models and more video
analytics tasks in the near future.

Acknowledgment. We are grateful to anonymous reviewers
for their constructive comments. This work was partially
supported by NSF grant CNS-1750953.



REFERENCES

[1] J. Chai, H. Zeng, A. Li, and E. W. Ngai, “Deep learning in computer
vision: A critical review of emerging techniques and application scenar-
ios,” Machine Learning with Applications, vol. 6, pp. 100–134, 2021.

[2] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once-for-all: Train
one network and specialize it for efficient deployment,” arXiv preprint
arXiv:1908.09791, 2019.

[3] X. Dai, P. Zhang, B. Wu, H. Yin, F. Sun, Y. Wang, M. Dukhan,
Y. Hu, Y. Wu, Y. Jia et al., “Chamnet: Towards efficient network design
through platform-aware model adaptation,” in IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2019, pp. 11 398–
11 407.

[4] J. Yu and T. S. Huang, “Universally slimmable networks and improved
training techniques,” in IEEE/CVF international conference on computer
vision (ICCV), 2019, pp. 1803–1811.

[5] P. Guo, B. Hu, and W. Hu, “Mistify: Automating dnn model porting
for on-device inference at the edge,” in 18th USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2021, pp. 705–
719.

[6] H. Cai, L. Zhu, and S. Han, “Proxylessnas: Direct neural architecture
search on target task and hardware,” arXiv preprint arXiv:1812.00332,
2018.

[7] R. Han, Q. Zhang, C. H. Liu, G. Wang, J. Tang, and L. Y. Chen,
“Legodnn: block-grained scaling of deep neural networks for mobile
vision,” in The 27th Annual International Conference on Mobile Com-
puting and Networking (MobiCom), 2021, pp. 406–419.

[8] L. Yang, Y. Han, X. Chen, S. Song, J. Dai, and G. Huang, “Resolution
adaptive networks for efficient inference,” in IEEE/CVF conference on
computer vision and pattern recognition (CVPR), 2020, pp. 2369–2378.

[9] Y. Wang, K. Lv, R. Huang, S. Song, L. Yang, and G. Huang, “Glance
and focus: a dynamic approach to reducing spatial redundancy in image
classification,” in Neural Information Processing Systems (NeurIPS),
2020, pp. 2432–2444.

[10] W. Zhou, C. Xu, T. Ge, J. McAuley, K. Xu, and F. Wei, “Bert
loses patience: Fast and robust inference with early exit,” in Neural
Information Processing Systems (NeurIPS), 2020, pp. 18 330–18 341.

[11] S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Branchynet: Fast
inference via early exiting from deep neural networks,” in 23rd Interna-
tional Conference on Pattern Recognition (ICPR), 2016, pp. 2464–2469.

[12] X. Chen, H. Dai, Y. Li, X. Gao, and L. Song, “Learning to stop while
learning to predict,” in International Conference on Machine Learning.
PMLR, 2020, pp. 1520–1530.

[13] J. Xin, R. Nogueira, Y. Yu, and J. Lin, “Early exiting bert for efficient
document ranking,” in Workshop on Simple and Efficient Natural Lan-
guage Processing (SustaiNLP), 2020, pp. 83–88.

[14] B. Fang, X. Zeng, F. Zhang, H. Xu, and M. Zhang, “Flexdnn:
Input-adaptive on-device deep learning for efficient mobile vision,” in
IEEE/ACM Symposium on Edge Computing (SEC), 2020, pp. 84–95.

[15] W. Lou, L. Xun, A. Sabet, J. Bi, J. Hare, and G. V. Merrett, “Dynamic-
ofa: Runtime dnn architecture switching for performance scaling on
heterogeneous embedded platforms,” in IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2021, pp. 3110–3118.

[16] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang,
Y. Zhu, R. Pang, V. Vasudevan et al., “Searching for mobilenetv3,” in
IEEE/CVF International Conference on Computer Vision (ICCV), 2019,
pp. 1314–1324.

[17] “Imagenet large scale visual recognition challenge 2012,” https://
image-net.org/challenges/LSVRC/2012/.

[18] R. Bhardwaj, Z. Xia, G. Ananthanarayanan, J. Jiang, Y. Shu, N. Kar-
ianakis, K. Hsieh, P. Bahl, and I. Stoica, “Ekya: Continuous learning
of video analytics models on edge compute servers,” in 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI),
2022, pp. 119–135.

[19] R. T. Mullapudi, S. Chen, K. Zhang, D. Ramanan, and K. Fatahalian,
“Online model distillation for efficient video inference,” in IEEE/CVF
International Conference on Computer Vision (ICCV), 2019, pp. 3573–
3582.

[20] J. Guo, S. Xia, and C. Peng, “Vpplus: Exploring the potentials of video
processing for live video analytics at the edge,” in IEEE/ACM 30th
International Symposium on Quality of Service (IWQoS), 2022, pp. 1–
11.

[21] S. Reif, B. Herzog, J. Hemp, T. Hönig, and W. Schröder-Preikschat,
“Precious: Resource-demand estimation for embedded neural network
accelerators,” in First International Workshop on Benchmarking Ma-
chine Learning Workloads on Emerging Hardware (MLBench), 2020.

[22] L. L. Zhang, S. Han, J. Wei, N. Zheng, T. Cao, Y. Yang, and Y. Liu,
“nn-meter: towards accurate latency prediction of deep-learning model
inference on diverse edge devices,” in the 19th Annual International
Conference on Mobile Systems, Applications, and Services (MobiSys),
2021, pp. 81–93.

[23] D. Zhang, S. Mishra, E. Brynjolfsson, J. Etchemendy, D. Ganguli,
B. Grosz, T. Lyons, J. Manyika, J. C. Niebles, M. Sellitto et al., “The
ai index 2021 annual report,” arXiv preprint arXiv:2103.06312, 2021.

[24] “Ofa pre-trained model zoo,” https://github.com/mit-han-lab/
once-for-all.

[25] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
B. Guo, “Swin transformer: Hierarchical vision transformer using shifted
windows,” in IEEE/CVF International Conference on Computer Vision
(ICCV), 2021, pp. 10 012–10 022.

[26] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE transactions on
neural networks and learning systems, vol. 32, no. 1, pp. 4–24, 2020.


