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ABSTRACT

Bagging is an ensemble method that uses random resampling
of a dataset to construct models. In classification scenarios,
the random resampling procedure in bagging induces some
classification margin over the dataset. In addition, when
perform bagging in different feature subspaces, the resulting
classification margins are likely to be diverse. We take into
account the diversity of classification margins in feature sub-
spaces for improving the performance of bagging. We first
study the average error rate of bagging, convert our task into
an optimization problem for determining some weights for
feature subspaces, and then assign the weights to the sub-
spaces via a randomized technique in classifier construction.
Experimental results demonstrate that our method is able to
further improve the classification accuracy of bagging, and
also outperforms several other ensemble methods including
AdaBoost, random forests and random subspace method.

Index Terms— Bagging, Classifier ensemble, Probabilis-
tic methods, Classification, Optimization

1. INTRODUCTION

Bagging [1] is a procedure for building an estimator by a re-
sampling and combining technique. In classification tasks,
a bagged classifier is produced by majority voting of several
base classifiers trained on bootstrap samples. In many stud-
ies, bagging decision stumps, trees or neural networks tends
to reduce classification error compared with the original pre-
dictor [1, 2]. In situations with large noise, bagging performs
even better [2].

One way for characterizing the strength of the resulting
classifiers is by classification margin, which has been used in
some previous research [3, 4]. In the procedure of bagging,
the training sets for growing base classifiers are created by
drawing with replacement from the original training set. Ac-
cordingly, the trained base classifiers are inherently random.
In other words, trained classifiers can be treated to be drawn
based on some unknown underlying probability distribution
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from the base classifier space. Classification margin can then
be viewed as the exceedance probability of correct classifiers.
In practical applications, the classification margin of bagging
usually can be estimated by an out-of-bag estimation [1].

As has been observed, classifiers grown from different
feature subspaces behaves diversely. This has been explored
by Ho [5] to improve classification accuracy. For bagging,
when the base classifiers are grown in different feature sub-
spaces, the classification margins in different subspaces are
also likely to be diverse. Thus, it is hopeful to make use of
the diversity to further improve the performance of bagging.
The remaining parts of this paper are organized as follows.
In section 2, we analyze the relationship between the average
error rate of bagging and classification margin, after introduc-
ing some necessary definitions and notations. In section 3, we
propose a weighted subspace approach for improve bagging
performance. In section 4, we present experimental results of
our approach. Conclusions are made in section 5.

2. CLASSIFICATION MARGIN OF BAGGING

Let X be the feature space and Y be the set of class labels.
Let D denote the dataset, and every instance in D is repre-
sented by a feature-label pair (x; y), where x ∈ X, y ∈ Y . In
addition, we assume that samples are generated i.i.d. from an
unknown underlying distribution D over X×Y . For simplic-
ity, we only consider two-class classification problems, i.e.,
Y = {−1, +1}. Throughout this paper, we use I(·), P (·)
and E(·) as the indicator function, probability function and
expectation, respectively.

A classifier can be viewed as a parameterized mapping
from the feature space X to Y . For example, the Fisher linear
classifier for binary classification problems can be parameter-
ized by its projection vector and a separating point. Therefore,
we can write every individual classifier as a parameterized
mapping h(x; θ), abbreviated by hθ for convenience, where
θ is the corresponding parameter for current classifier, and x
is the input feature. Moreover, we denote the majority voting
ensemble of classifier θ1, . . . , θk by mv(x; θ1, . . . , θk).

In bagging, the classifier parameters of the base classifiers



change with the bootstrapped training sets. However, the pa-
rameters are not allowed to take arbitrary value, and must be
restricted to some space of the classifier parameters, denoted
by Θ. We also use the same symbol to represent the base
classifier space since it does not cause additional confusion.
Furthermore, by the bootstrap procedure of bagging, the clas-
sifiers built for voting can be viewed to be drawn i.i.d. accord-
ing to some unknown probability distribution over Θ, and we
write this distribution by ϑ. Now we introduce the definition
of classification margin for parameter space Θ, which coin-
cides with the definition of Breiman for random forests [4].

Definition (margin function): The margin function for
the classifiers in parameter space Θ is a function from X×Y
to [−1, 1]

mr(x, y) .= Pϑ(h(x, θ) = y)− max
j 6=y,j∈Y

Pϑ(h(x, θ) = j). (1)

The classification margin we mention below refers to (1).
When (x, y) is randomly generated, then mr(x, y) is a ran-
dom variable taking value in [−1, 1], and possesses a proba-
bility whose cumulative distribution function (cdf) is denoted
by Fm(·). Thus Fm(α) = PD({(x, y) : mr(x, y) ≤ α}).
In bagging, Fm can be empirical calculated by an out-of-bag
estimation. Once Fm(·) is known, we can immediately calcu-
late the average error rate of bagging by Proposition 2.1.

Proposition 2.1. When bagging k base classifiers, the aver-
age of the ensemble error rate is

∫ 1

−1
B(α, k)dFm(α), where

B(α, k) .=
∑k

i=dk/2e
(
k
i

)
( 1−α

2 )i( 1+α
2 )k−i, dk/2e represents

the minimal integer not less than k/2, and the integral is
Lebesgue-Stieltjes integral.

Proof. The classification error rate of majority voting of clas-
sifiers hθ1 , . . . , hθk

is P(x,y)∼D(mv(x; θ1, . . . , θk) 6= y). The
k base classifiers’ parameters θ1, . . . , θk can be viewed to be
drawn i.i.d. according to some underlying distribution ϑ. For
each (x, y) that mr(x, y) = α, α ∈ [−1, 1], the number of
classifiers in {hθ1 , . . . , hθk

} that correctly classified (x, y) is
then a binomial random variable with parameters k and 1+α

2 .
Thus, the probability that (x, y) is misclassified by majority
voting of hθ1 , . . . , hθk

is

B(α, k) .=
k∑

i=dk/2e

(
k

i

)
(
1− α

2
)i(

1 + α

2
)k−i. (2)

With the aid of Fubini’s theorem,

Eθ1,...,θk∼ϑ(P(x,y)∼D(mv(x; θ1, . . . , θk) 6= y))
= E(x,y)∼D;θ1,...,θk∼ϑ(I(mv(x; θ1, . . . , θk) 6= y))
=E(x,y)∼D(Eθ1,...,θk∼ϑ(I(mv(x; θ1, . . . , θk) 6= y)|mr(x, y)))

= E(x,y)∼D(B(mr(x, y), k)) =
∫ 1

−1

B(α, k)dFm(α).

Since
∫ 1

−1
B(α, k)dFm(α) can be treated as the expecta-

tion of B(α, k), where α is a random variable with distribu-
tion Fm(α), we write

∫ 1

−1
B(α, k)dFm(α) as ED(B(α, k))

for later use.
Bagging classifiers in different feature subspaces is likely

to produce different classification margins. For example, as
illustrated in Fig.1, there are a number of instances whose
margins are notably different from each other, and more-
over, there are even a number of instances that can be easily
correctly classified in one feature subspace but obscure in
the other subspace. Thus, utilizing the diverse classifica-
tion power in feature subspaces is promising to improve the
performance of bagging.

Fig. 1. Scatter plots of classification margin for bagging
C4.5 classifiers on the UCI balance dataset in different
feature spaces, including the original feature space (four-
dimensional), a three-dimensional feature subspace and a
two-dimensional feature subspace. Each point represents an
instance. Red point means that one of the margins of current
instance is positive while the other is negative. The lightness
indicates the difference of margins in the spaces.

3. A WEIGHTED SUBSPACE APPROACH

Throughout this section, we assume that bagging can be cast
in all feature subspaces, and all the classification margins
have been obtained.

3.1. Combining Strategy

To improve the classification accuracy, our goal is to con-
struct a new base classifier space based on some pre-selected
feature subspaces, where the average error rate of bagging
is minimized under the new distribution of classifier para-
meters. We will make the classification margin in the new
base classifier space be a weighted combination of the clas-
sification margins in classifier spaces grown from different
feature subspaces. More specifically, let the base classifier
spaces be denoted by Θ1, . . . , Θn, with their margin functions
mr1(·), . . . ,mrn(·) respectively, and then the new base clas-
sifier space is

⋃n
i=1 Θi, where the margin function mr(·) is a



linear combination of mr1(·), . . . ,mrn(·):
mr(·) = w1∗mr1(·)+w2∗mr2(·)+ · · ·+wn∗mrn(·), (3)

where wi is the weight assigned to Θi. In (3), w′is can be
further restricted to be nonnegative since one can reverse the
output of all classifiers in Θi to make wi nonnegative. In
addition, w′is are made to meet the normalized condition that∑n

i=1 wi = 1. We use the randomized method as shown in
Table 1 to achieve (3).

Table 1. Method for constructing new classifier space
For constructing each base classifier θ,

Step 1. Randomly draw one index s from {1, . . . , n} with
P (s = i) = wi.

Step 2. Draw θ randomly from Θs according to ϑs.

Proposition 3.1. The classification margin in the new classi-
fier space constructed as described in Table 1 is (3).

Proof. By these two steps,

mr(x, y) = P (h(x; θ) = y)− P (h(x; θ) 6= y))

=
n∑

i=1

E[I(h(x; θ) = y)−I(h(x; θ) 6= y)|θ ∈ Θs]∗ P (s = i)

=
n∑

i=1

wi ∗mri(x, y), (4)

which is the desired margin function in (3).

3.2. An Optimization Problem for Determining the Weights

We reformulate the previous ideas into an optimization task.
Since we want to reduce the classification error rate of bag-
ging, it is a natural way to use ED(B(α, k)) as the objective
function. To construct the new classifier space is to solve the
following optimization problem:

min
∫ 1

−1

B(α, k)dFm(α), (5)

whereFm(α)=P (
n∑

i=1

wi ∗mri(x, y)≤α) and
n∑

i=1

wi = 1.

Let the instances of the training set be denoted by (xj , yj),
j = 1, · · · ,m, and then the discrete version of (5) is

m∑

j=1

B(
n∑

i=1

wi∗mr(xj , yj), k) where
n∑

i=1

wi = 1. (6)

Before we go further, we point out a useful alternate rep-
resentation for B(α, k): B(α, k) = binc( 1−α

2 , dk
2 e, bk

2 c+1),
where binc is the normalized incomplete beta function:

binc(t, a, b) .=
∫ t

0

ua−1(1−u)b−1du/

∫ 1

0

ua−1(1−u)b−1du.

This can be shown via integration by part. The representation
is useful for numerical computation purpose, since

(
k
i

)
in (2)

will be large when k is large and a direct computation of (2)
will encounter floating point overflow problems.

3.3. A suboptimal algorithm

The summands in (6) does not posses “good” properties such
as monotonicity or convexity for the free parameters w′is, and
(6) is difficult to be globally minimized. We use an approxi-
mate minimization technique instead.

By the binc representation of B(α, k), for fixed k, as α in-
creases, B(α, k) tends to 0. Thus, we expect that maximizing
the number of instances whose classification margin exceeds
some specified level is helpful for reducing (6). We carry out
this by solving the following problem, for some γ ≥ 0,

min
m∑

j=1

δj , s.t.
n∑

i=1

wi ∗mri(xj , yj) ≥ γ − δj , (7)

n∑

i=1

wi = 1, δj ≥ 0, wi ≥ 0for i = 1, . . . , n, j = 1, . . . ,m.

In (7), δj’s can be viewed as penalty if the resulting mr(xj , yj)
is lower than the prescribed value γ. The optimization prob-
lem is tractable since it is a linear optimization problem and
can be globally minimized efficiently via linear program-
ming. The solution for (7) only depends on γ, and we then
tune γ by grid searching for minimizing (6). The procedure
of our algorithm is given in Table 2.

Table 2. Algorithmic procedure

Estimating mri(·): For each Si ∈ {S1, . . . , Sn}, cal-
culate the empirical margin function mri(·) in
the following way. For each instance (x, y), let
the weak classifiers grown from Si but not us-
ing (x, y) for training be denoted by θ′1, . . . , θ

′
t.

Then mri(x, y) = 1
t

∑t
s=1[I(h(x, θ′s) = y) −

I(h(x, θ′s) 6= y)].

Training base classifiers: For each feature subspace
Si, i = 1, . . . , n, train the base classifiers using bag-
ging.

Optimization: Solving (7) based on mri(·)’s for different
γ’s. Pick one solution w∗1 , . . . , w∗n that minimizes
(5).

Output: Grow k classifiers independently from Si with
probability w∗i .



4. EXPERIMENTAL RESULTS

To demonstrate the effectiveness of the proposed algorithm,
we compare the proposed algorithm with some other well-
known related algorithms, including AdaBoost, bagging [1],
random forest [4], and the random subspace method [5]. We
use the C4.5 decision tree as the base classifier with classifier
number 100. The datasets we used are from the UCI reposi-
tory of machine learning databases [6], which have also been
used extensively in related works. Since we only study the
binary classification problem, we selected the two largest cat-
egories in each dataset for the classification task. For each
dataset, we randomly draw 25 subspaces from the original
feature space with dimension about 2/3 of the dimension of
entire space, and use the classifier spaces grown from these
subspaces as the base classifier spaces.

We use a ten-fold cross-validation for calculating the av-
erage classification error, and the experiments on each dataset
are run 100 times independently. The experimental results are
given in Table 3. We note that for most datasets, the average
error rates of the proposed algorithm are lower than the oth-
ers. Our algorithm achieves the lowest misclassification error
in 13 out of 19 datsets. These validate that

• the classification margins in feature subspaces are di-
verse (otherwise, it is impossible to combine them to
achieve a new better margin);

• our approximate optimization algorithm can success-
fully utilize the diverse classification ability in different
base classifier spaces to achieve lower error rate.

5. CONCLUSIONS

Motivated by the observation of the diversity of classification
margins in feature subspaces, we have studied how to utilize
different classification capability in classifier spaces for im-
proving bagging performance. We have proposed a weighted
subspace approach which constructs a new base classifier
space, where the classification margin is a weighted linear
combination of the classification margins of base classifier
spaces grown from prescribed feature subspaces. The corre-
sponding weights are determined by minimizing an objective
function derived from classification margin.

The experimental results show that the proposed algo-
rithm outperforms some other major ensemble algorithms.
This verifies that the classifier spaces grown by bagging in
feature subspaces behave diversely, and our approach can
make use of the diversity for reducing classification error of
bagging. Although we only consider classifier spaces con-
structed by bagging in different feature subspaces, a closer
look at our algorithms reveals that our algorithm does not put
restrictions on the method for constructing the base classifier
spaces. Thus, the base classifier spaces can be produced not

Dataset A B F R O
Balance 18.70 15.54 14.34 7.91 5.89
Breast Wisc 3.31 4.41 3.53 3.76 2.79
Bupa 30.43 26.66 28.09 28.06 26.57
Credit-g 25.23 25.70 24.61 24.06 22.87
Crx 13.72 13.75 14.28 13.49 11.62
Echocardio 11.10 9.42 9.59 10.17 9.33
Glass 11.70 17.27 12.83 13.47 12.27
Hayes Roth 23.11 21.0 22.09 23.46 18.39
Heart Cleve 19.06 21.21 18.81 17.76 15.58
Hepatitis 16.19 17.12 16.30 16.38 13.06
Horse Colic 17.12 14.49 15.52 20.97 14.60
Ionosphere 6.01 7.29 6.60 5.74 5.49
Pima 26.21 24.26 24.12 25.27 23.73
Promoters 8.53 12.55 9.39 8.55 6.73
Sonar 13.52 23.43 16.29 20.43 18.76
Tic-tac-toe 0.89 3.93 2.79 11.17 3.44
Vehicle 1.72 4.68 2.28 2.80 1.75
Votes 4.90 3.24 3.52 5.60 2.96
Yeast 37.26 32.31 32.53 33.01 32.42

Table 3. Experimental results, comparing the error rate of
AdaBoost(A), bagging(B), random forests(F), random sub-
space methods(R), and our algorithm(O). For each dataset,
we put in emphasis the best algorithm(s).

only by bagging, provided that there are probability distribu-
tions on the base classifier spaces. Therefore, the main results
in this paper remain valid for a wider range of classifier spaces
whenever they are endowed with probability distributions.
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