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ABSTRACT

This paper studies the problem whether the smallest eigenvalue of
constrained linear combinations of symmetric matrices can reach a
desirable value, which actually extends the mathematical problem
of finding a Positive Definite Linear Combination of symmetric ma-
trices(PDLC), and provides a universal framework to maximize the
minimal eigenvalue of linear combined symmetric matrices. For
solving this problem, we cast an equivalent optimization task, and
propose one general algorithm framework that is proved to be glob-
ally optimal and convergent. Both theoretical analysis and experi-
ments under a typical constraint verify our algorithm’s validity and
efficiency.

Index Terms— Matrix multiplication, Optimization methods,
Spectral analysis, Eigenvalues and eigenfunctions

1. INTRODUCTION

The smallest or largest eigenvalue of a matrix plays an important
role in matrix analysis and signal processing, e.g., system stability
and spectrum analysis. Among those applications, finding a Posi-
tive Definite Linear Combination of symmetric matrices(PDLC)[1]
plays active in areas of signal processing, e.g. moving-average pro-
cesses identification [2] and blind source separation [3]. Two al-
gorithms have been proposed to find a PLDC [1][2], but they both
assume that such a positive definite combination must exist. How-
ever unfortunately, in some cases, this assumption does not hold and
their algorithms may fail and waste too much computation resources.
Therefore, we study the existence problem of PDLC in this paper,
and moreover, we propose a more generalized PDLC problem: how
to determine whether a linear combination of symmetric matrices
exists under varying constraints such that the smallest eigenvalue is
larger than the given value, and to obtain one solution if exists.

The rest of the paper is organized as follows: we introduce the
generalized PDLC problem and derive its equivalent optimization
form in Section 2. In Section 3, we propose an iterative algorithm
of two sub-optimization steps and systematically investigate its con-
vergence and stop criteria. Finally, some experiment results are pre-
sented in Section 4, followed by our conclusion in Section 5.

2. PROBLEM FORMULATION

We introduce some basic notations here for quick reference. We use
uppercase boldfaced letters for matrices with (·)t, λi(·), tr(·), ‖·‖,
respectively, for the transpose, the i-th largest eigenvalue, the trace
and the Frobenius norm, and lowercase boldfaced letters for vectors
with ‖·‖ and ‖·‖∞ for the Euclidean norm and the ∞-norm. Let Ã
for A ∈ Rn×n represent A’s vector form where the (k − 1)n + 1 :

kn entries correspond to the k-th row in A. Define 〈A,B〉 for ma-
trices A and B by the inner product 〈Ã, B̃〉; Define max(Λ, σI) =
diag(max(σ, α1), · · · , max(σ, αn)) as a σ+-form for the diagonal
matrix Λ = diag(α1, · · · , αn); S1 − S2 for two sets S1 and S2

denotes the set {s0 | ∃s1 ∈ S1, s2 ∈ S2, s.t. s0 = s1 − s2}.
Let P+

σ , σ ∈ R, denote the set of all the p× p symmetric matri-
ces whose smallest eigenvalue is not less than σ, and A1, · · · ,An

be p× p symmetric matrices, S ⊆ Rn is a compact convex set rep-
resenting particular constraints, and then Θ

.
= {Pn

k=1α (k) ·Ak |
α ∈S} denote all the linear combinations of these symmetric matri-
ces under constraint S. The problem is to determine whether there
exists one linear combined matrix whose smallest eigenvalue is not
less than σ, namely, P+

σ ∩ Θ = ∅ or not, and furthermore, to find
out one element in P+

σ ∩Θ if P+
σ ∩Θ 6= ∅. It is equivalent to seek

”zero” for the following optimization problem:

Minimize F (B,C)
.
= ‖B−C‖ ,B ∈ P+

σ ,C ∈ Θ. (1)

Obviously, if F (B,C) = 0 is achievable, and then the desired com-
bination exists and the optimal B is one desirable solution, otherwise
no such a combination exists. Before we go to determine whether
F (B,C) = 0, let us explore the property of (1) in Lemma 1: the
optimization solution to (1) exists and the optimal B − C, written
by B∗ −C∗, is unique. The proof can be found in Appendix A.

Lemma 1: There exists at least one (B∗,C∗) ∈ P+
σ × Θ, s.t.

‖B∗ −C∗‖ = d∗; moreover, for any optimal (B∗,C∗) (such that
‖B∗ −C∗‖ = d∗), B∗−C∗ is unique, where d∗

.
= inf{‖B−C‖ |

(B,C) ∈ P+
σ ×Θ}.

3. ALGORITHMIC FRAMEWORK AND ANALYSIS

3.1. Optimization Procedure

We adopt an iterative two-step procedure to optimize (1)– minimiz-
ing ‖B−C‖ alternatively with respect to one of the parameters B
and C with the other kept fixed. Let FC (X) : P+

σ → R de-
fined by FC (X)

.
= ‖X−C‖, and GB(X) : Θ → R defined by

GB(X)
.
= ‖X−B‖, and the whole optimization can be divided to

the below sub-optimization problems:

3.1.1. Minimization of FC (X)

The optimal solution for FC (X) can be given by the below propo-
sition, whose proof can be found in [1].

Proposition 1: Let the eigen-decomposition of symmetric matrix
C ∈ Rp×p be given by C = UΛUt, where UUt = Ip×p and Λ

is a diagonal matrix; Construct Λ(σ+) = max(σI,Λ), and then
f(C)

.
= UΛ(σ+)Ut minimizes FC (X).



Moreover, since P+
σ is closed and convex, the optimal X∗ s.t.

FC (X∗)=min FC (X), if and only if X∗ = f(C).

3.1.2. Minimization of GB(X)

Let H .
= span{A1, · · · ,An}, A .

= [Ã1, · · · , Ãn], and PH be
the orthogonal projection operator from Rp×p ontoH. According to
Pythagorean theorem,

GB(X)2 = ‖B− PH(B)‖2 + ‖X− PH(B)‖2 . (2)

Since ‖B− PH(B)‖ is fixed, Minimize GB(X)2 turns to minimize
‖X− PH(B)‖2. Writing X̃ as X̃ = Aα, then

‖X− PH(B)‖2 = αtAtAα− 2αtAtB̃ + const. (3)

That is, the minimization of GB(X) can be reduced to:

minimize αtAtAα− 2αtAtB̃, subject to α ∈ S. (4)

Note that (4) is a typical quadratic optimization problem, which is
globally optimized [4]. Like f(·), the optimal solution for mini-
mization of GB(X) is also unique, and denoted by g(B) for later
use.

3.2. Convergence Property

As is known, iterative techniques can not usually converge to a global
optimal value in multivariate convex optimization. However, our op-
timization method can be shown to finally converge in the below.

Let (B∗,C∗) be one optimal solution of (1), and D∗ .
= B∗−C∗.

Assume the optimization procedure starts from arbitrary C0, and
Bi

.
= f(Ci), Ci+1

.
= g(Bi), Di = Bi − Ci, and di

.
= ‖Di‖.

According to the above optimization procedure,

di+1 ≤ ‖Bi −Ci+1‖ ≤ di. (5)

Furthermore, the convergence property is given as follows:
Proposition 2: 1) Ci+1 = Ci if and only if di = d∗, namely,

the sequence di’s is strictly decreasing until di = d∗ for some i. 2)
limi→∞di = d∗ and limi→∞ ‖Di −D∗‖ = 0.

Proof: 1) If Ci+1 = Ci, then Ci also minimizes GBi(X).
Therefore, ∀C ∈ Θ, 〈Bi −Ci,C−Ci〉 ≤ 0. Similarly, since
Bi = f(Ci), then ∀B ∈ P+

σ , 〈Ci −Bi,B−Bi〉 ≤ 0. Therefore,
‖Bi−Ci‖2 ≤ 〈B−C,Bi−Ci〉. Furthermore, by Schwartz’s in-
equality, ‖Bi−Ci‖ ≤ ‖B−C‖, for all B, C. Thus ‖Bi −Ci‖ =
d∗, i.e., di = d∗. Conversely, if di = d∗, by the uniqueness in
Lemma 1, one can have Ci+1 = Ci.

It is noticed that the sequence di’s is non-increasing from the
optimization procedure. If ∃ i0, s.t. di0 = di0+1, then di0 =
‖Bi0−Ci0‖ ≥ ‖Bi0−Ci0+1‖ ≥ ‖Bi0+1−Ci0+1‖ = di0+1 =
di0 . Thus, ‖Bi0−Ci0‖ = ‖Bi0−Ci0+1‖ = min GBi0

(X), so
Ci0 also minimizes GBi0

(X). By the uniqueness, Ci0 = g(Bi0) =
Ci0+1 and then di0 = d∗.

2) Firstly, we show below that ∀δ > 0, ∃ηδ ∈ (0, 1), s.t.
if ‖f(C)−C‖ − d∗ ≥ δ,

‖f(C)−g ◦ f (C)‖ − d∗ ≤ ηδ(‖f(C)−C‖ − d∗). (6)

Define
Ξδ

.
= {C ∈ Θ | ‖f(C)−C‖ − d∗ ≥ δ} .

Ξδ is compact in Rp×p since f(·) is continuous and Θ is com-
pact. Now consider the map h : Ξδ → R defined by h (C)

.
=

‖f(C)−g◦f(C)‖−d∗
‖f(C)−C‖−d∗ . Clearly, h (·) is continuous and 0 ≤ h (·) ≤ 1.

Since Ξδ is compact, sup {h (C) | C ∈ Ξδ} can be attained, de-
noted by ηδ . Moreover, if ηδ = 1, then ∃C¦ ∈ Ξδ , s.t. h (C¦) = 1,
i.e. ‖f(C¦)− g ◦ f(C¦)‖ = ‖f(C¦)−C¦‖, so C¦ minimizes
Gf(C¦) (X). As the first part of this proposition, ‖f(C¦)−C¦‖ =
d∗, which is contradictory to the definition of Ξδ . Therefore, ηδ ∈
(0, 1) and (6) holds.

Assume d1 > d∗ + δ. Let

Nδ = log(δ/(d1 − d∗))/ log ηδ, (7)

then ∀ i > Nδ , by (6) and the first part of Proposition 2,

di − d∗ ≤ max(δ, η
Nδ
δ (d1 − d∗)) = δ (8)

Hence {di}∞i=1 is a cauchy sequence which converges to d∗. More-
over, since (Di + D∗) /2 ∈ Θ, then

‖Di −D∗‖2 = 2 ‖Di‖2 + 2 ‖D∗‖2 − ‖Di + D∗‖2
≤ 2d2

i + 2d∗2 − 4d∗2 = 2d2
i − 2d∗2.

Therefore, limi→∞ ‖Di −D∗‖ = 0. ¥
Proposition 2 shows that our iterative algorithm is monotonically

convergent to a globally optimal solution, but it is difficult to deter-
mine its convergence rate, that is, to obtain one ηδ in (6). Proposition
3 presents one explicit ηδ in special case of d∗ = 0, and the proof
can be found in Appendix B.

Proposition 3: If d∗ = 0, ηδ can be given by
q

1− δ2

diam(Θ)2
,

where diam (Θ)
.
= max {‖X1 −X2‖ | X1,X2 ∈ Θ}.

3.3. Stop Condition for the Algorithm

We propose a simple criterion to judge whether d∗ = 0, and add stop
conditions for the above optimization to avoid needless computation
and thus to accelerate the algorithm. Firstly, let us introduce the
equivalence criterion of d∗ 6= 0 as the below lemma.

Lemma 2: d∗ 6= 0 if and only if there exists a matrix V ∈ Rp×p

s.t. for ∀B ∈ P+
σ , C ∈ Θ, 〈V,B〉 − 〈V,C〉 > 0.

The proof can be easily derived from the separation theorem of
convex sets, so it is omitted here due to space limitation. Though
Lemma 2 provides an equivalent statement for d∗ 6= 0, it is still not
easy to judge whether such a matrix V exists. Proposition 4 find a
way using D∗ and Di sequences to determine if d∗ = 0.

Proposition 4:
1) For ∀ (B,C) ∈ P+

σ ×Θ, 〈D∗,B〉 − 〈D∗,C〉 ≥ d∗2.

2) For ∀B ∈ P+
σ and some symmetric positive semi-definite

matrix D ∈ Rp×p, inf 〈D,B〉 = σ · tr (D), inf 〈Di,B〉 = σ ·
tr (Di) and inf 〈D∗,B〉 = σ · tr (D∗). Furthermore,

lim
i→∞

inf 〈Di,B〉 = inf 〈D∗,B〉 . (9)

3) If λp (Ci) < σ, then

sup
C∈Θ

λp (C)≤σ+
(σ−λp (Ci))

‖Di‖

 
sup
C∈Θ

〈Di,C〉− inf
B∈P+

σ

〈Di,B〉
!

.

(10)
4) If d∗ 6=0, then ∃N, ∀ i > N s.t.

inf
B∈P+

σ

〈Di,B〉 > sup
C∈Θ

〈Di,C〉 . (11)



5) If d∗=0, then ∀ε > 0, ∃Nε, s.t. ∀i > Nε, λp (Ci) ≥ σ − ε.

The detailed proof can be found in Appendix C. supC∈Θ 〈Di,C〉
in Proposition 4 can be computed by solving the below optimization
problem:

maximize
Xn

k=1
α(k) · βi(k), subject to α ∈ S, (12)

where βi (k)
.
= 〈Di,Ak〉. The optimal value for (12) can be gen-

erally calculated by linear programming, and can be explicitly given
for certain S, e.g. the optimal value is

Pn
k=1 |βi (k)| for S =˘

α ∈ Rn | ‖α‖∞ ≤ 1
¯

. Until now, the algorithmic framework is
summarized in Table 1, with rough upper bounds for the iteration
number of the framework given in (21) and (23).

Table 1. Algorithmic Framework

Input: Symmetric matrices A1, · · · ,An, a desirable value σ0,
and a relaxation factor ε ∈ (0, +∞).

Init: Let σ1 = σ0−ε, σ2 = σ0 − 2ε, A = [Ã1, · · · , Ãn], and
PH = A(AtA)−1A. Set iteration counter i = 0, choose an
arbitrary start point C0 ∈ Θ and compute B0.

Step I: i = i+1; compute PH (Bi−1) corresponding to PH·B̃i−1;
compute Ci by solving (4);

Step II: Compute the eigen-decomposition [Ui,Λi] of Ci; if
λp(Ci) ≥ σ2, then Ci is one matrix whose smallest
eigenvalue larger than σ2 and exit; otherwise let Bi =

UiΛ
(σ+

1 )Ut
i where Λ(σ+

1 ) = max(σ1I,Λ).

Step III: Compute Di = Bi − Ci and ωi
.
=

sup {tr (DiC) | C ∈ Θ} by solving (12); if
(ωi − tr (Di)) < ε ‖Di‖ / (σ1 − λp (Ci)), then by
(10), there is no linear combination with λp ≥ σ0 and exit;
otherwise, loop back to step I.

4. EXPERIMENTAL RESULTS

We will build our experiment scenario under one typical constraint,
the ellipsoid constraint S =

˘
α ∈ Rn | ‖α‖2 ≤ 1

¯
which can be

extended, via scaling, translation and rotation, to the more general
form

˘
α ∈ Rn | (α− α0)

t M (α− α0) ≤ r
¯

, where M is sym-
metric positive definite and r > 0.

Let us derive our algorithm from the algorithm framework in
Table 1. For S =

˘
α ∈ Rn | ‖α‖2 ≤ 1

¯
, the optimal value for (12)

in the i-th step can be explicitly given by ‖β‖, and (4) can be solved
using Kuhn-Tucker theorem (see [4]). Let the Lagrange multiplier
be given by

L(α, λ) = αtAtAα− 2αtAtB̃ + λ(‖α‖2 − 1),

and by Kuhn-Tucker theorem, the solution α∗ is optimal if and only
if ∃λ∗ ≥ 0, s.t.


∂L(α, λ)/∂α = 2AtAα−2AtB̃ + 2λ∗α = 0,

λ∗(‖α‖2 − 1) = 0.
(13)

From (13), (α∗, λ∗) can be given in the below two cases:

1. When ‖PH (B)‖ ≤ 1, λ∗ = 0, and Aα∗ = PH · B̃.

2. When ‖PH (B)‖ > 1, α∗ = (AtA+λ∗)−1At ~B. Moreover,
to minimize ‖PH (B)− α∗‖, α∗ should lie on the bound-
ary of S and thus B̃tA((AtA+λ∗)(AtA+λ∗))−1AtB̃ = 1.
Let AtA be decomposed as AtA =Ut · diag(u1, · · · , un) ·
U, and then

B̃tAU·diag(1/(u1+λ∗)2, · · · , 1/(un+λ∗)2)·UtAtB̃ = 1.

Let the k-th entry in UtAtB̃ be denoted by υk. Thus,

υ2
1

(u1 + λ∗)2
+

υ2
2

(u2 + λ∗)2
+ · · ·+ υ2

n

(un + λ∗)2
= 1. (14)

The left-hand side of (14) is an increasing function w.r.t. λ∗

in [0, +∞), and λ∗ should belong to
h
0,
p

υ2
1 + · · ·+ υ2

n

i
,

and then (14) can be solved efficiently via bisection method,
which performs significantly faster than the quadratic pro-
gramming method.

Experimental results are presented for the algorithm: let p = 10,
n = 50, ε = 0.01σ0, and σ0 = 0.1, 0.2, · · · , 2; the upper triangular
entries of Ai, i = 1, · · · , n, are randomly generated from [−1, 1]
with uniform distribution. For each σ0, 500 trials runs with the max-
imal iteration number set as 200. In all experiments with varying σ,
these trials converge in finite steps and their mean(variant) of iter-
ation number is plotted in Fig. 1(a). Notice that, compared to the
maximal number of iteration, the actual required iteration number
is relative small (about 20∼40), which verifies our algorithm works
effectively and efficiently. Fig.1(b) plots that the ratio of the trials
where one matrix with λp ≥ σ2 exists decreases as σ0 increases,
that is, the linear combination is getting harder to find with σ0 in-
creasing, which also matches with our common sense. Besides, it
should be noticed that our algorithm still works efficiently to detect
whether such combination exists, even when σ0 is large and the ex-
isting assumption in [1][2] does not hold.
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Fig. 1. Experimental statistics versus varying the desirable the small-
est eigenvalue threshold σ: (a) Number of iterations; (b) Number of
trials where one matrix with λp ≥ σ2 exists.

5. CONCLUSION

This paper has proposed an extensive framework to analyze if the
maximum of the smallest eigenvalue linear combinations of finite
symmetric matrices under constraints can exceed the value preset.
We have proved that the optimization framework is global optimal,
and have given upper bounds for the number of iterations required
in the framework. With little modification, the framework can be



used to determine the interval to which the maximum of the smallest
eigenvalues should belong, and if no truncation error takes effect,
the estimation for the maximum can be achieved to whatever accu-
racy needed, with a bisection technique for narrowing the interval.
Since the smallest eigenvalues of matrices is so important in signal
processing and matrix analysis, the proposed framework promises to
be useful.
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Appendix
A. Proof of Lemma 1
Consider Rp×p is a Hilbert Space. In Rp×p, P+

σ is closed and con-
vex, and Θ is compact and convex, so P+

σ −Θ is closed and convex
and F (B,C) is continuous and convex. By the definition of d∗,
there exists a sequence {(Bi,Ci)}∞i=1 s.t. limi→∞ ‖Bi−Ci‖=d∗.

Moreover, ‖(Bi + Bj)/2− (Ci + Cj)/2‖ ≥ d∗. Therefore,
with Pythagoras’s Theorem,

‖(Bi −Ci)−(Bj −Cj)‖2 ≤ ‖Bi −Ci‖2+‖Bj −Cj‖2−4d∗2.

Since limi→∞ ‖Bi−Ci‖ = d∗, {Bi −Ci}∞i=1 is a Cauchy se-
quence. By the closeness of P+

σ −Θ, ∃D∗ ∈ P+
σ −Θ, s.t. D∗ =

limi→∞ (Bi−Ci). Let D∗ be given by D∗ = B∗ −C∗, thus
(B∗,C∗) is an optimal solution for (1). Moreover, D∗ is unique
because, in Rp×p, P+

σ −Θ is closed and convex, and D∗ minimizes
‖D‖ w.r.t. D ∈ P+

σ −Θ (see pp.79 in [5]). ¥

B. Proof of Proposition 3
Let a

.
= 〈f(C)−C,B∗ −C〉 / ‖B∗ −C‖2. Using B∗ is an

optimal solution, ‖f(C)−C‖ ≤ ‖B∗ −C‖, we have a ≤ 1 and

a ≥ 〈f(C)−C, f(C)−C〉 / ‖B∗ −C‖2 . (15)

Since B∗ = C∗, hence a ∈ ˆ‖f(C)−C‖2 / ‖C∗ −C‖2 , 1
˜

and
C + a (C∗ −C) ∈ Θ. By definition of a, 〈f(C)−C− a ∗ (C∗ −
C),C∗ −C〉 = 0. Then

‖f(C)− g ◦ f(C)‖2 ≤ ‖f(C)− {C + a (C∗ −C)}‖2

= ‖f(C)−C‖2 − a2 ‖C∗ −C‖2

≤ ‖f(C)−C‖2 − ‖f(C)−C‖4 / ‖C∗ −C‖2

≤ ‖f(C)−C‖2 (1− δ2

diam (Θ)2
).¥ (16)

C. Proof of Proposition 4
1) Since (B∗,C∗) minimize (1), then we have

〈C∗ −B∗,B−B∗〉 ≤ 0 and 〈B∗ −C∗,C−C∗〉 ≤ 0.

Therefore, 〈B∗ −C∗,B−C〉 ≥ 〈B∗ −C∗,B∗ −C∗〉, that is,
〈D∗,B〉 − 〈D∗,C〉 ≥ d∗2.
2) As a symmetric positive semi-definite matrix, D can be decom-
posed into D = UΛUt and all diagonal entries in Λ are nonnega-
tive. For ∀B ∈ P+

σ , we have

〈D,B〉 = tr(DB) = tr(UΛUtB) = tr(ΛUtBU). (17)

Since UtBU ∈ P+
σ , then the diagonal entries in UtBU are all

larger than σ, that is, tr(ΛUtBU) ≥ σ · tr(Λ) = σ · tr(D); On
the other side, the equality can be achieved when B = Ip×p; Hence,

inf
B∈P+

σ

〈D,B〉 = σ · tr (D) (18)

In the i-th iteration, where Ci = UiΛiUi
t, by Proposition 1, we

can derive Bi = UiΛ
(σ+

1 )

i Ut
i , where Λ

(σ+
1 )

i = max(σ1I, Λi), and
then

Di = UiΛ
‡
iUi

t
, where Λ‡i = max(0, σ1I− Λi). (19)

Obviously, D∗ = limi→∞Di is also positive semi-definite. There-
fore, inf 〈D∗,B〉 = σ · tr (D∗), inf 〈Di,B〉 = σ · tr (Di), and
limi→∞inf 〈Di,B〉 = inf 〈D∗,B〉.

3) For ∀ ζ >

 
sup
C∈Θ

〈Di,C〉 − inf
B∈P+

σ

〈Di,B〉
!

/ ‖Di‖, then

inf
B∈P+

σ

〈Di,B〉 > sup
C∈Θ

〈Di,C〉 − ζ〈Di,Di〉/‖Di‖ .

According to Lemma 2, P+
σ ∩(Θ− ζDi/ ‖Di‖) = ∅, i.e. ∀C ∈ Θ,

λp (C − ζDi/ ‖Di‖) < σ. By Weyl’s inequalities (see [6]),

λp (C) ≤ λp (C − ζDi/ ‖Di‖) + λ1 (ζDi/ ‖Di‖)
≤ σ + ζλ1 (Di) / ‖Di‖ . (20)

Combine (20) and (19), λ1 (Di) = σ − λp (Ci) ; with ζ tending to„
sup
C∈Θ

〈Di,C〉 − inf
B∈P+

σ
〈Di,B〉

«
/ ‖Di‖ , 3) holds.

4) Let µ
.
= diag(Θ), δ

.
= d∗2 ·min((2µ)−1, (2

√
n)
−1

), and

N
.
= log(δ/(d1 − d∗))/ log ηδ + 1. (21)

Then we have ∀i > N, ‖Di−D∗‖ < d∗2min((2µ)−1, (2
√

n)
−1

)
and |tr (Di)− tr (D∗)| ≤ √

n ‖Di −D∗‖ < d∗2/2. By Schwartz
inequality,

sup
C∈Θ

〈Di,C〉 ≤ sup
C∈Θ

〈D∗,C〉+ sup
C∈Θ

〈D−D∗,C〉

< sup
C∈Θ

〈D∗,C〉+ d∗2/2

≤ inf
B∈P+

σ

〈D∗,B〉 − d∗2/2

≤ inf
B∈P+

σ

〈Di,B〉 . (22)

5). By Weyl’s inequalities, λp (Ci) = λp(Bi −Di) ≥ λp(Bi) +
λp(−Di) ≥ σ − ρ (Di) ≥ σ − ‖Di‖. Let

Nε = log(ε/d1)/ log ηε. (23)

If d∗ = 0, by (7)(16), then for ∀i > Nε, ‖Di‖ ≤ ε, so λp (Ci) ≥
σ − ε. ¥


