
ViViSnoop: Someone is Snooping Your Typing
Without Seeing It!

Kun Jin†‡, Si Fang‡, Chunyi Peng†‡, Zhiyang Teng§, Xufei Mao∗, Lan Zhang?, Xiangyang Li?
†Purdue University ‡The Ohio State University

§Singapore University of Technology and Design ∗Tsinghua University ?University of Science and Technology, China

Abstract—In the paper, we present ViViSnoop, a novel video-
assisted keystroke inference attack which snoops the victim
user’s typed input without visually seeing it. Instead, it infers
the typed input from the vibration extracted from the video
capturing the desk where the physical or virtual keyboard is
placed. ViViSnoop is built on the fact that keystrokes on the desk
incur mechanical vibrations which are subtle but still extractable
through computer vision processing. To further exploit subtle
vibration patterns for accurate and reliable keystroke inference,
ViViSnoop incorporates a suite of techniques such as vibration-
specific video processing to enhance raw vibration quality, a novel
virtual sensing array technique to develop fine-grained location
signatures, and a two-phase classifier to achieve high accuracy
and efficiency. Our extensive evaluation shows that ViViSnoop
realizes high-accuracy keystroke inference. ViViSnoop achieves
around 55% single-character accuracy in inferring passwords
(random inputs). In word and sentence inference, it achieves
71.4% and 59.4% accuracy using top-1 choices and even almost
100% and 75% using top-10 choices. This means there is almost
no difficulty in understanding user inputs. It imposes a covert
and serious threat to leak user typing in public/office spaces.

I. INTRODUCTION

Snooping a user’s typed inputs, also referred to as a
keystroke inference attack, is a serious threat of leaking infor-
mation and user privacy. With such snooping, it becomes easy
for the adversary not only to sneak into sensitive information
such as usernames, passwords, credit card numbers, SSNs and
confidential documents, but also to retrieve user activities and
incur unintentional privacy risks.

In recent years, inferring user inputs from contact-free
sensing has been actively studied as an effective means to
keystroke inference attacks, especially by leveraging ubiqui-
tous cameras. Most video-assisted studies (except [1]) assume
that the adversary is able to video-record the victim user’s
input process and thus eavesdrop on keyboard inputs from
the reflections of the screen [2]–[6], or retrieve the taps on
touch-screens via hand movement [7] and finger positions [8],
[9]. However, these attacks require that the camcorder capture
the user input process with little or no visual obstructions
and thus greatly limit their applicability. Sun et al. break this
requirement in VISIBLE by recording and analyzing the video
of the tablet backside [1]. Through analysis of different motion
patterns incurred by touches at different positions, it empowers
a covert keystroke inference for touch screens without direct
views.

Our work is highly inspired by [1], but targets at a generic

ABC Co. Ltd Public Space

Fig. 1: Typical attack scenarios at the cafe (public space,
left), open office (with multiple PCs, middle), and other
public spaces with surveillance cameras (right).

keyboard emanation. It works not only for both physical
keyboards used by laptops and desktops, but also virtual
keyboards used by tablets and phones. Figure 1 illustrates three
typical attack scenarios, in which the victim user types her/his
input on a table and the nearby camcorder is able to record
the surrounding of the victim user without visually seeing the
typing behaviors behind the obstacle such as a laptop lid, a
computer screen and human bodies. Instead of retrieving direct
motion patterns on the backside video [1], we exploit indirect
vibrations occurred on the table, due to keystrokes at different
positions. We notice that the idea of detecting vibrations for
keyboard emanation has been explored in [10] but they use the
victim’s smartphone to record the accelerometer data when it
is placed very close to the keyboard (2 cm apart). However,
our attack is much more realistic and threatening as it does not
require any malware or compromise on the victim’s side. It
is also much less noticeable through a contact-less recording
from a distance.

In particular, we propose ViViSnoop, which snoops the
typing inputs through Vibrations extracted from the Video cap-
tured at a distance. It uses a built-in commodity camcorder like
a smartphone camera, a PC webcam, and even a surveillance
camera, etc.. It records seemingly irrelevant videos capturing
the computer desk surface surrounding the keyboard, with
no need to videotape hand movement, fingertips or anything
directly relevant to user inputs like [2]–[9]. ViViSnoop incor-
porates video processing and machine learning techniques to
extract subtle vibrations and eventually infer the typed inputs.

To achieve this, we have to overcome three main chal-
lenges. First, the vibrations incurred by user keystroke are very
subtle when extracted from the video captured at a distance.
There are many noise sources such as people walking, hand
movements, recording distance and angle, and the camera
sensor physical limitations. All these require effective methods
to detect and extract high quality vibrations. To this end, we
enhance vibration extraction through vertical projection and
noise filtering based on mechanical characteristics, Second,978-1-5386-0683-4/17/$31.00 © 2017 IEEE



the vibration patterns caused by distinct keystrokes are very
close and hard to distinguish. To retrieve fine-grained (cm-
level) keystroke signatures out of subtle vibrations, we pro-
pose a novel virtual sensing technique that retrieves multiple
vibration signals caused by the same keystroke but observed
at different desk positions (aka virtual sensors). We further
exploit the delta among different observations to develop a
more “directional" feature vector. Last but not least, individual
keystroke detection is still not very accurate, especially in a
small training set. It further limits the accuracy of inferring
text inputs. We address this issue through a hierarchical
classification in which we roughly classify the close keys
into clusters at the coarse-grained phase and then exploit the
linguistic relationship in order to improve the final inference
accuracy.

We have conducted extensive experiments to evaluate
ViViSnoop using three physical keyboards and a virtual key-
board on an iPad mini 1. Our experiment results show that
ViViSnoop poses a serious threat in public/office spaces. It
infers a single keystroke with an average accuracy of 50%,
which outperforms the most relevant state-of-the-art methods
(36% in [1], 25% in [10]). For text inference, ViViSnoop
detects passwords (random inputs) with around 55% single-
character accuracy, and recover words with 71.4% accuracy
using top-1 choices and 100% accuracy using top-10 choices.
To infer real-world sentences, ViViSnoop achieves top-1, top-5
and top-10 accuracy at 59%, 68% and 74% so that there is
almost no difficulty in understanding the main user input. We
also validate that ViViSnoop still performs effectively under
various settings.

II. VIDEO PROCESSING PRELIMINARIES

In this section, we introduce two well-established computer
vision techniques which are used to extract vibrations from
captured videos by ViViSnoop.

Phase-based optical flow estimation. This technique
extracts and characterizes object motions in a video stream
using phase information. For any area of interest in one frame,
the phase variation is learned from the changes between the
consecutive frames. While no movement occurs during the
elapsed time between consecutive frames, the area remains the
same and the phase is constant. Otherwise, the phase variation
reflects the motion captured by the video.

Steering pyramid decomposition. This is a standard
technique to perform texture analysis and synthesis. It is used
to compute subtle vibration incurred in this work by extracting
phase variations. Because multiple objects in one image may
have different sizes and cannot be analyzed through a single
scale, the steering pyramid decomposition thus decomposes
the images according to different scales and orientations. They
use certain complex-valued filter banks [11], [12]. Each video
frame is thus decomposed into complex-valued sub-bands
corresponding to different spatial scales r and orientations
θ . Each sub-band at spatial location (x,y) at time t can
be represented as a complex image, A(r,θ ,x,y, t) · eφ(r,θ ,x,y,t),
where A(r,θ ,x,y, t) is its local amplitude and φ(r,θ ,x,y, t) is
its local phase at this sub-band. That is, steering pyramid

decomposition helps to separate the phase from the amplitude
of each local sub-band along the corresponding scale r and
orientations θ . Therefore, the current frame i and the reference
frame i0, the phase variation at this sub-band can be extracted
as

∆φ(r,θ ,x,y, i) = [φ(r,θ ,x,y, i)−φ(r,θ ,x,y, i0)]mod 2π. (1)

This phase variation is approximately proportional to the
displacement of the image objects and can be used to detect
motions in video frames [13], [14].

III. ViViSnoop OVERVIEW

In this section, we present the adversary model and the
high-level attack framework of ViViSnoop.

Adversary model. We consider a victim user with a laptop,
desktop, tablet or even a phone. She types her input using a
physical keyboard or a virtual keyboard (on the touchscreen
of the tablet/phone) placed on a desk. The adversary appears
in her proximity (in a range of feet or meters) and is
equipped with a commodity camcorder. Such scenarios are
very common in public spaces and office spaces. For example,
Figure 1 illustrates three typical scenarios: (1) the victim uses
his/her laptop (tablet/phone) at a cafe, hotel lobby, public
library, museum or other public space where someone with
a smartphone is nearby; This is a commonplace scenario in
our daily life. (2) the victim uses one of many desktops in
an office, lab, campus, or other public space, while another
desktop is used by the adversary; (3) the victim uses her laptop
(tablet/phone) in public spaces where a surveillance camera
is deployed and the adversary has access to the recorded
videos. We assume that the desk is used exclusively by one
victim user. The extension to multiple persons is left for future
studies.

The attacker cannot go too close (within decimeters) to
the typing victim because she is alert to shoulder-surfing
attacks; The attack camcorder is built-in, such as a phone
rear-camera, a front PC webcam and a surveillance cam-
era, and is thus hardly noticeable when it is in use at a
distance. The attacker can record the surroundings of the
victim user, but has no need (ability) to record the victim’s
typing, fingertips, or hand movements. The captured video
contains the desk surface with certain texture patterns. The
attack requires nothing from the victim’s side: there is no need
to install malware or compromise the victim’s device. Note
that under these assumptions, all other inference attacks are
not applicable except VISIBLE [1]. The difference between
ours and VISIBLE is that ViViSnoop works for any physical
and virtual keyboard, whereas VISIBLE targets the virtual
keyboard of a tablet. Moreover, VISIBLE requires the victim
user to hold the tablet with a holder while the backside is
recorded whereas in ViViSnoop, the keyboard is placed on the
desk and the desk surface is recorded.

Attack framework. ViViSnoop spies on what the victim
user is typing without visually seeing it. It infers her typed
inputs from the video capturing the desk on which the key-
board is placed. Figure 2 depicts its high-level ideas in the
four steps.



Typed keys 
(words)

Step4: keystroke & text inference

Keystroke 
Detection

Vibration
Extraction 

& 
Enhance-

ment

Step2: vibration extraction

…
…

Step1: video recording Step 3: feature selection

δ
Y

Training

Grouping Key
Inference

Text
Infer
ence

…

Virtual Sensing Array

…

2-Level Classification

Without Seeing
what you’re typing

δ

Fig. 2: ViViSnoop’s architecture and operation flow.

Step 1: Video recording. The adversary first records a video
capturing the desk where the victim user is typing on the
keyboard. The video does not capture user movements or
finger positions on the keyboard.

Step 2: Vibration extraction. The adversary then extracts
vibration signals from the captured video frames. We apply
the existing video processing techniques for motion detection
and perform additional mechanisms (such as noise filtering
and vertical projection) to enhance the vibration quality. We
also perform keystroke detection to determine whether typing
occurs. The rest steps run only when a keystroke is detected.

Step 3: Feature selection. For the third step, the adversary
selects features from the extracted vibration signals. However,
we find that those vibrations caused by different keystrokes
(positions) are still too close to distinguish one from the other.
The existing approaches fail to locate features for reliable
keystroke distinction. To this end, we devise a novel virtual
array sensing technique that extracts multiple vibrations at
different positions of the desks caused by the same keystroke.
By deriving the difference (∆) among those vibrations for one
keystroke, we can create location-sensitive signatures as the
feature vector.

Step 4: Keystroke and text inference. Finally, we infer the
typed keys and texts using a two-level classifier. Instead of
individual keystroke detection, we first do a coarse-grained
classifier for several key groups each of which contains keys
difficult to distinguish. Afterwards, we infer the specific key
out of its group by leveraging meaningful combinations of
characters using a dictionary and the relationship between
adjacent words in a sentence. This mechanism has proven to
be efficient and robust with a small set of training samples and
low-accuracy individual key detection. The first-level classifier
is trained using the dataset from the attackers, who imitate
the victim’s input or from the victim, e.g., her typing input
of several sentences is captured when the attacker wanders
around her for a short time.

IV. TECHNICAL DETAILS

We next elaborate on technical details at each step. In
this section, we consider one scenario setting as shown in
Figure 3a, where an Apple Bluetooth wireless keyboard is
placed on a wooden table (1.25m wide) in a meeting room
and the adversary uses the rear camera of an iPhone 6S which
is mounted on a tripod around 1.5 meters away. More scenarios
are considered in the evaluation (§V).

A. Video Recording and Vibration Extraction

Our attack works under the principle that each keystroke
causes certain vibration on the desk though they are subtle
and visually unnoticeable to the naked eye. This phenomenon
has been validated and exploited for keyboard inference at-
tacks [10], but the vibrations are collected and decoded by
the accelerometer at the victim’s smartphone nearby (about
2 cm apart). Contrary to the prior work, ViViSnoop extracts
vibrations from videos captured at a distance (several meters
away). Thus the first challenging task is to determine whether
and how we can extract suitably strong vibration signals
through video processing.

To extract subtle motions in the video, we apply the classic
computer vision processing techniques introduced in §II. In
particular, we first select one sub-area in the video frame
which corresponds to the desk surface containing certain tex-
ture patterns. We then apply Steering Pyramid Decomposing
technique to retrieve the phase variances between sequential
frames and the reference frame along different scales and
orientations, as illustrated in Figure 3b. For each subband
at spatial location (x,y), we calculate its phase variance as
Eqn.(1). We then sum up all the pixel-level phase variances
to estimate the total phase variance of the sub-area which
approximates the motion contained. The texture is required to
extract the pixel-level motion information because no changes
can be extracted when all the pixels are the same regardless
of movement or not. This requirement is easy to meet since
most tables (such as wooden desks) contain natural textures.
The texture factor is discussed later in §VII. Eventually, we
obtain the raw vibration as a weighted sum of phase variance
at different scales r and orientations θ as

V [i] = ∑
r,θ

φ(r,θ , i) = ∑
r,θ

∑
x,y

A(r,θ ,x,y, t)2
∆φ(r,θ ,x,y, i). (2)

where the local amplitude of A(r,θ ,x,y, t) represents the
measure of texture strength. This process is similar to motion
extraction in [1], [13]. The bottom plot of Figure 3b visualizes
the vibration extracted using the visualization approach (mag-
nified by 15 times) [15]. Figure 4a (top) plots the observed
vibrations when the key ‘q’ is pressed. Clearly, although we
are able to extract vibrations, they seem too subtle and noisy.

To enhance the extraction quality, we perform vertical
projection and noise filtering based on the vibration character-
istics. Contrary to the prior work where the vibration is directly
collected by the accelerometer at a very close smartphone [10],
the vibration signal is implicitly extracted from the videos
captured at a distance and thus suffers from more sources
of noise in practice. Its quality is affected by many factors
including illumination conditions, recording distance and an-
gles, camcorder capability and settings such as frame rate,



(a) One test scenario

t

i+1

i-1

…

i

Visualization of extracted vibrations
v[i] v[i+1] …

(b) Illustration of vibration extraction
Fig. 3: Vibration extraction from the video captured at a
distance.

resolution, ISO and zoom configurations. Moreover, ViViSnoop
targets a realistic setting where the keyboard is firmly held
at a certain position as a holder is used for the tablet in
VISIBLE [1]. Consequently, the tiny disturbance caused by
environment factors such as human walking, talking and light
variation further degrades the extracted vibration quality.

Vertical projection. We find that the vertical decomposi-
tion is closely relevant to the vibration caused by keystrokes.
Figure 4a plots the decompositions along the horizontal and
vertical orientations. Apparently, no clear vibration signals are
observed in the horizontal one. This is not hard to understand
from the viewpoint of the mechanical process. In practice,
each key press is almost vertically downward; Consequently,
it incurs the strongest disturbance in the absolute upward
direction. However, as the camera may be placed at arbitrary
recording angles, the question is how to derive the upward
vibration from video processing.

We reveal that a vertical projection (decomposition) ex-
tracted from the 2D video frames is proportional to the
absolute upward vibration. Let us assume the camera is placed
at any recording angle η relative to the upward direction.
We retrieve the vertical decomposition from video processing
as Vvertical . As the camera has an angle view at η , the
projection from Vvertical to Vupward , the one along the absolute
upward direction is Vvertical ·cosη . When the camera stays still,
η is almost constant. Consequently, it is reasonable to use
the vertical composition extracted from video processing to
represent the absolute upward vibration. That is, the vibration
signal extracted is the local motion signals decomposed in the
vertical orientation at all scales,

Vvertical [i] = ∑
r

φ(r,π/2, i). (3)

Noise Filtering. We further find that the vibration signals
are polluted by certain low frequency noises not caused by
keystrokes. Figure 4b shows the FFT coefficients in the fre-
quency domain. We can see that the frequency corresponding
to the vertical vibration caused by keystrokes is about 23Hz.
It is determined by its inherent mechanical characteristics.
In contrast, the low frequency ones are background noise
caused mainly by the environment such as floor vibration due

-1

0

1

-1

0

1

0.5 1 1.5 2
time (s)

-1

0

1

(a) Temporal signals

0
0.1
0.2

0
0.05
0.1

20 40 60
frequency (Hz)

0

0.02

0.04

(b) Frequency analysis
Fig. 4: Vibration extracted for one keystroke ‘q’. Three
rows represent the original vibration signal computed
without decomposition (top), the horizontal decomposition
(middle) and the vertical decomposition (bottom).

to human walking, flicker noise in video capturing [16] and
slight light variation. To this end, we run a high pass filter
to remove low frequency noises and strengthen the vibration
signal quality.

Keystroke detection. We then perform keystroke detection
to determine whether a keystroke occurs. A keystroke is
detected as long as the certain signal is significantly larger than
the background noise. We first calculate the energy threshold
of background noise signals (its mean plus α× standard
deviation as an upper bound estimate). We use the sliding
window and calculate whether the signal energy is larger than
β× noise energy threshold. In this work, we empirically set
α = 4, β = 3 and all keystrokes are reliably (100%) detectable
in the evaluation.

B. Feature Selection

Given the vibration signals extracted from a contact-
free visual channel, the next challenging task is to find the
proper features which enable fine-grained keystroke distinc-
tion. Ideally, each different keystroke should generate unique
signatures for the subsequent keystroke and text inference.
Unfortunately, despite the aforementioned enhancement efforts
in §IV-A, we find that the vibrations caused by different
keystrokes are too close to distinguish one from the other.

We apply the common approaches of feature selection and
show all work poorly. In particular, we derive the vibration
signal in the time-domain, frequency-domain and spectrum-
domain and retrieve its temporal, spectral and cepstral features
such as kurtosis (peak) values, root-mean-square values, FFT
coefficients, mel-frequency cepstral coefficients (MFCCs) as
the feature vector. These features have been widely used in
previous keystroke inference studies, e.g., [10], [17], [18]. We
measure the distance of all the (anchoring, testing) pairs where
each key uses 5 anchoring samples and 5 testing samples.
We calculate the correlation coefficients of feature vectors
to measure the similarity of two sequences. Due to space
limitation, we present only the results for 9 keys and the
results for all the alphabetical inputs from ‘a’ to ‘z’ to convey
similar findings. Figure 5a shows how close each keystroke is
to another. A nice keystroke signature feature should exhibit
small self-distance but large distance from others. However,



q s e c t b u k p
q
s
e
c
t

b
u
k
p

0

0.05

0.1

(a) Existing approaches
q s e c t b u k p

q
s
e
c
t

b
u
k
p

0

0.1

0.2

0.3

(b) Our approach
Fig. 5: Comparison of feature selection.

we can see that most keys are very close to others and it is
difficult if not impossible to identify unique keystrokes.

Virtual sensing array. To address this, we devise a
novel virtual array sensing technique that extracts multiple
vibrations at different positions of the desks caused by the
same keystroke. Figure 6 illustrates our idea. We notice that
every visual object can be taken as a “sensor” to extract the
vibration caused by the keystroke. We thus leverage video
processing of multiple visual texture objects (sub-areas of one
frame) to measure vibrations observed at different positions,
without the need to deploy real sensors there. We further
harness the tiny distinction between those vibrations to make
each keystroke more “directional”.

Specifically, for each keystroke, we collect a set of vibra-
tion signals Vxy(‘key’), each corresponding to one observation
extracted through the visual object at position (x,y). Figure 6b
shows several vibration samples observed at different loca-
tions. We notice that they are slightly different. This is because
when the vibration propagates, the energy will also propagate
and dampen with it [19]. Thus it can be exploited to derive the
relative positions of the keystroke and the sensor. For example,
for the keystroke of ‘q’ (closer to the left side), all the left
sensors at 01,11,21 observe different vibrations from those
right sensors at 0k,1k,2k. These distinctions help to indicate
that the keystroke is closer to the left rather than the right.
In this way, by comparing the tiny difference between the
vibrations at the two sensing positions, we can roughly locate
the relative position of one keystroke. Finally, through multiple
pairwise comparison with virtual array sensing, we can derive
a position signature for each keystroke.

We thus extract the keystroke feature as a vector of relative
energy. Each relative energy is defined as

δi, j(
′key′) =

ei

e j
=
||Vxi,yi(

′key′)||2

||Vx j,y j(′key′)||2
, (4)

which represents the difference observed by two visual sensors
at position i and j. Note that the number of virtual sensors
depends on the selection of image objects in one frame.
Ideally, there is no cost to increase the number of sensors
as long as each sub-area contains basic texture pattern for
vibration extraction. However, in practice, the extraction using
a smaller subarea is less accurate as fewer pixels are used.
We assess the impact of the sensor number and their layout
in the evaluation. We find that our approach is quite effective

11

01 02 03 04 05 … 0k

21 2k
1k

(a) Virtual sensing array

{Vxy(‘key’)}à {δxy(‘key’)}

21

11

2k

1k

01 02 03 0k...

(b) Slightly different vibrations
observed at various positions

Fig. 6: Feature extraction through a virtual sensing array.

and reliable as long as the number of sensors is large enough
(e.g., using sensors at two rows).

Figure 5b shows a large improvement in the effectiveness
of the proposed feature selection. We calculate the distance
among the same 9 keys, each using a vector of relative energy.
The results for the other keys are similar. Clearly, we can see
that this feature vector has greatly enhanced the distinction
among different keystrokes. Some keys like ‘q’, ‘c’ and ‘q’
are obviously distinguishable. We also notice that some keys,
like ‘q’, ‘s’ and ‘e’ are still hard to differentiate from each
other while they are distinguishable from other keys. We will
address this in the next inference step.

C. Keystroke and Text Inference

In the final step, we use the vibration features at multiple
desk positions extracted from one video recording to infer
typed keys and texts. Like most prior studies, we follow
the standard approach that first uses a classifier to detect a
candidate key as the typed key input and then to exploit the
relationship of adjacent characters in one word and the one of
the words in one sentence to infer the typed texts. To train
the classifier, we use the dataset collected by the attacker
intimating the victim’s input, or directly from the victim user
when the attacker has a chance to capture the typing input
for a short while (e.g., the attacker wanders around and stays
close for a minute or so while the victim user is typing).

However, our study reveals that this approach suffers
from one problem. Its inference accuracy counts heavily on
individual keystroke detection accuracy which is sensitive to
the training dataset size. Most prior studies perform poorly
with a small training set (e.g., < 20) and usually require
50-100 or more training samples for each keystroke in their
experiments. Nevertheless, it is challenging or even unrealistic
to obtain a large number of training samples similar to the
victim’s typing.

To enhance the inference efficiency and robustness, we
propose a two-phase classifier. We first cluster some close
keystrokes into groups and run a coarse-grained classification
among the groups. We then infer a single keystroke out of its
group by leveraging linguistic relationships among characters
and words. This design is driven by our observation that most
keystroke detection errors are not random. Take Figure 5b
as an example, the input of ‘q’ is mistakenly detected as
‘s’ and ‘e’, but not any arbitrary one. The main reason is
the most physically adjacent keystrokes have similar features
which are not sufficient to distinguish each other but are
often distinct from other keystroke sets. Intuitively, we expect



that grouping helps to make a nice knob between individual
keystroke detection and the use of linguistic relationships
among multiple keystrokes. When the ambiguity raised by
grouping is addressed by text inference at the second phase,
it can potentially boost efficiency, robustness and accuracy in
keystroke inference.

We next present how to cluster keystrokes and adapt the
keystroke and text inference to the groups.

Clustering. Clustering aims to achieve a good tradeoff
between detection accuracy at the first phase and the additional
burden raised at the second recognition phase. The larger the
number of groups is, the lower the detection accuracy but the
lower recognition burden is, and vice verse. In an extreme
case, one group means no keystroke detection (100% accurate)
and the inference is mainly through random guess. Another
extreme case is one key per group where no clustering is
used, and the inference runs as usual. In ViViSnoop, we run a
recursive algorithm to locate a reasonable number of clusters.
We start with one and increase the number of clusters until
the group detection accuracy does not degrade too much. To
classify them, we select Linear Discriminant Analysis (LDA)
classifier because it has been applied widely in small-size
dataset [20].

Inference of labelled sequences. We further infer the
inputs given a sequence of possible inputs. We extend the
original keystroke input to its grouping label. For example,
let us assume ‘d’ belongs to G3 (“d” → G3), ‘a’ → G1, ‘r’
→ G3, ‘k’ → G5. Hence, the word “dark” can be expressed
as “G3G1G3G5”.

Afterwards, we further infer the matched texts and final-
ize keystroke inputs based on grouping labels. It is more
challenging because clustering creates more choices for word
matching. For example, the constraint labels for “dark” and
“hard” are both G3G1G3G5. To address this, we adopt the long
short-term memory (LSTM) language model [21], [22]. LSTM
is a kind of recurrent neural network (RNN), which decides
the current output based on the current input and historical
outputs. Given the labelled sequence seqt and previous words
w1, w2, . . . , wt−1, we derive the probability of next word wt
at time t as

P(wt |seqt ,w1, . . . ,wt−1) =

{
0, tag(wt) , seqt

P(w|ht−1,Θ),otherwise
(5)

where Θ is a parameter of LSTM language model and ht−1
is a vector representing the subsequence w1,w2, . . . ,wt−1. We
further run the beam-search algorithm to locate a sequence
of decisions. At every step, a fix-sized beam is maintained
for potential candidates in the descending order of sequence
probabilities. Once the beam is full, the one with the highest
probability will survive. At the next step, an incoming word
will be integrated every word survived in the previous beam.
Beam-search is proven to achieve reasonably good top-k
results [23].

V. EVALUATION

We evaluate the performance of ViViSnoop through exten-
sive experiments in three aspects: (1) effectiveness of design

components in micro-benchmark experiments, (2) accuracy of
single keystroke inference and the impact of various environ-
mental factors and ViViSnoop’s configurations, and (3) overall
accuracy of text inference.

Experiment setting. The attack side uses an iPhone 6s
which has a 12-megapixel rear camera supporting 1080p HD
video recording up to 60fps and slo-mo video recording up
to 240fps. The victim side uses three physical keyboards (by
Dell, Arteck and Apple) and one virtual keyboard displayed
on an iPad Mini 1 (13.4 cm × 20 cm). We consider only 26
alphabetical keys in this evaluation. By default, we use the
Apple Bluetooth keyboard placed at the center of the desk
edge and the iPhone 6S placed 1m away, at a roughly 5o

degree which can capture the desk surface surrounding the
keyboard. The basic experiment setting is shown in Figure 3a.
We also evaluate the impacts of environmental factors such as
different keyboard placement, recording distances and angles
and illumination conditions, as well as the ViViSnoop’s param-
eters including the recording rate, number of virtual sensors,
cluster number and the size of training samples. By default, the
camcorder runs at 60fps and we use two-layer virtual sensors.
The training uses 10 strokes for each key, 260 keystrokes in
total from the victim user. We also test with more participants
and use their samples to train the classifier for others.

Keystroke Single Clustering Word
Detection Keystroke (5 groups) Top-1 Top-10

100% 50% 89% 71.4% 100%
TABLE I: Micro benchmark results at each step.

Effectiveness of design components. Table I shows the
performance of each step while we test with a 27-word dataset
used in prior works [1], [24]. We have four observations. First,
ViViSnoop is able to detect the occurrence of keystrokes (Step
2) without any error; this is because ViViSnoop can extract
good quality vibrations through video processing. Second,
ViViSnoop achieves an average accuracy of 50% in single
keystroke inference. Moreover, it outperforms prior studies (
[1]: 36%, [10]: 25.9%). Figure 7 compares their single-key
inference accuracy. It indicates that feature selection through
the virtual sensing array is quite effective and offers more fine-
grained keystroke distinction. Third, we further improve the
accuracy to 89% as we cluster certain error-prone and close
keystrokes into clusters (here, we use 5 clusters). Later we
also examine how clustering affects the first-phase accuracy
(Figure 8c). Finally, we infer the typed words with the help
of the LSTM model. It achieves 71.4% and 100% accuracy
using the top-1 and top-10 choices, respectively.

A. Single Keystroke Inference Accuracy

We further examine single keystroke inference accuracy
through an extensive evaluation of its impact factors. Note
that no studies achieve extremely high accuracy at this stage
(somehow resolved by the use of the language model later),
50% is considered to be a very good benchmark.

• Design factors. We first investigate three design choices
of the visual sensor numbers, the recording frame rate, as well
as the size of the training set. In theory, there are numerous



 0

 0.5

 1

a b c d e f g h i j k l m n o p q r s t u v w x y z avg

A
cc

u
ra

cy
(sp)iPhone[9] VISIBLE[1] ViViSnoop

Fig. 7: Comparison of single-keystroke inference accuracy.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60

A
cc

u
ra

cy

# of training of each key

3-layer
2-layer
1-layer

(a) Single: number and layout of sensors

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60
A

cc
u
ra

cy
# of training of each key

120 fps
60 fps
30 fps

(b) Single: frame recording rate

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7  8

A
cc

u
ra

cy

# of clusters

120 fps
60 fps
30 fps

(c) Group: frame recording rate
Fig. 8: Single keystroke inference accuracy and group accuracy under various design factors.

47.1%

50.1%

50.1%

42.9% 42.9%

42.9% 42.9%

(a) Keyboard placement

Keyboard Acc(%)
Dell 46.3%

Arteck 50.5%
Apple 50.1%
iPad 51.8%
(b) Keyboards

 0

 0.2

 0.4

 0.6

450300200150 30

A
cc

u
ra

cy

Illumination (lux)

(c) Light conditions

 0

 0.2

 0.4

 0.6

0.7 1 1 1 1.31.6 2

5
o

30
o

60
o

A
cc

u
ra

cy

Distance (m)

(d) Distance & Angle

 0

 0.2

 0.4

 0.6

1 2 3 1 2 3 4

A
cc

u
ra

cy

SameDifferent
(e) Participants

Fig. 9: Single keystroke inference accuracy under various environmental factors.

visual sensors on the desk. We align these “sensors” row by
row and each row is referred to as a “layer”. Each layer usually
contains 8 to 12 visual sensors. We vary the number of sensors
from one layer to three layers. The size of training set varies
from 5 to 60 for each key, where the total samples for each key
is 100. The training set is randomly selected and the rest are
used as the testing samples. We also test with three common
recording rates (30fps, 60fps and 120fps), which are supported
by most smartphone and monitoring cameras. We expect to
examine the impact of video quality.

Figure 8a and 8b show their impacts on single keystroke
inference accuracy. Clearly, with more visual sensors, a larger
training set and a higher frame rate can improve accuracy. In
particular, we make three observations. First, given a larger
training set, the inference accuracy is greatly improved. With
60 training samples, ViViSnoop achieves 60–78% accuracy
(60fps) and 50% accuracy (30fps). However, a large training
set may make our attack impractical. With fewer training
samples, the accuracy decreases but is still quite effective
(compared with the existing studies). Given 5 training sam-
ples, the accuracy remains 35–40% (60fps, 1-3 sensor layers)
and 25–50% (30-120fps, 2 sensor layers). In the following
experiments, we use 10 training samples by default. Second,
more sensors help to boost inference accuracy, although the
help is less obvious with a larger training set. On the other
hand, it implies that our virtual sensing array can compensate
for insufficient training samples by providing finer-grained
keystroke features. We choose 2-layer sensors afterwards. Last,
the video recording rate also plays a critical role. This is
because information is lost when we record at a low sampling

rate. We also evaluate the impact on group accuracy in
Figure 8c. We can see that the accuracy gap caused by
different recording rates can be compensated by the clustering
technique. This helps ViViSnoop to be more resilient to less
accurate single keystroke inference. In this study, we choose
60fps as the default frame rate which can be met by most
commodity camcorders and select 5 as the final cluster number
with 89% group inference accuracy.

We next examine the impacts of environmental factors
such as keyboard placement, keyboard types, light conditions,
recording distance and angles, and the number of participants
involved.

• Keyboard placement. We place the keyboard at different
positions of desktop including the center edge, the center and
the side of the desk. Figure 9a shows that ViViSnoop works
for any position though the accuracy is slightly higher at the
center of the desk edge.

• Keyboard types. Table 9b shows the average accuracy
of three physical keyboards of Dell wired keyboard (KB216),
Arteck stainless steel portable bluetooth keyboard and Apple
Bluetooth keyboard, and a virtual keyboard on an iPad Mini
1. The accuracy varies from 46% to 51%, which indicates that
ViViSnoop is widely applicable. We find that the accuracy of
the Dell keyboard is a bit lower than the other three because
the alphabet keys are all mainly on the left side, and its layout
makes it a little harder to recognize.

• Illumination conditions. We find that ViViSnoop works
quite reliably under normal light conditions at lab (450 lux),



 0

 0.5

 1

top1 top3 top5top10top25

A
cc

u
ra

cy
Burger[25]
Visible[1]

ViViSnoop

(a) Comparison with prior stud-
ies

 0

 0.2

 0.4

 0.6

 0.8

 1

 7  8  9  10  11  12  13

A
cc

u
ra

cy

Word length

top-1
top-3
top-5

top-10

(b) Accuracy vs. length

Fig. 10: Word inference accuracy.

office (300 lux), and Starbucks (200/150 lux). Here, the accu-
racy declines to 16% only under dim illuminations (30 lux).
This matches with our expectation because the video fails to
capture enough details without sufficient illumination.

• Recording distances and angles. We test five distances
at 0.7m, 1m, 1.3m, 1.6m and 2m and use zoom-in when the
distance is larger than 1.3m. We also test with three angles
5o,30o and 60o at 1m and the accuracy fluctuates slightly at
50%, 48.9% and 44.5%. It shows that ViViSnoop still works
as long as it can capture the desk surface though the accuracy
decreases a bit when the captured desk surface is slightly apart
from the keyboard at other angles. The distance plays a more
critical role. The accuracy degrades from 50% to 37% at a
distance of 2m. This reflects the impact of camcorder limits
on ViViSnoop. When the distance increases, the video quality
degrades even with the zoom-in use.

• Participants. We also examine the impact of different
participants and training sources. We have four participants
and each has 10 strokes for each key as training samples and
30 strokes for test. Figure 9e shows the results using the mimic
training from different users and the training from the same
victim users. In a different category, we use the training set
from 1, 2, 3 users to predict the other 3, 2, 1 users’ typed inputs
Clearly, ViViSnoop works consistently for different victims and
the accuracy in the same category remains around 49%. The
accuracy degrades using the training samples from others but
it can be compensated as the number of attackers increases.
When 3 participants are involved to recover one victim’s
typing, the accuracy increases to 37%.

B. Overall Text Inference Accuracy

We use various text inputs including passwords (random
inputs), words and sentences to evaluate the overall accuracy.

• Password. Password inference is one of the most threat-
ening and challenging attacks, because passwords have no
regular patterns and in most cases are totally random. We test
with the password dataset published by SkullSecurity [25].
Table II shows, for 50K passwords, the average accuracy of
each character is 55.8%, comparable to (slightly better than)
the individual keystroke inference (§V-A). This implies that
LSTM is of little help in improving the inference accuracy for
random inputs.

• Word. We use 27 words with length varying from 7 to
13 to evaluate the word inference accuracy as Berger [24] and
VISIBLE [1] also do. Figure 10 shows that our approach

Typed: our friends at the university of texas are planning 
Recovered: two friends at the university of texas are planning 

our (top-2)
T:   conference on energy economics and finance in february
R:  conference in bloody economics and finance in decrepit

energy(top-5,cloudyàclergy àmzoudi)
T: of next year
R: of next year

Fig. 11: One example of email sentence recovery.

outperforms prior studies. Our first choice (top-1) accuracy
achieves 71.4% in average, which is even higher than their
top-5 accuracy (still below 50% in [24] and [1]). Moreover,
we can retrieve all the words within top-10 choices. We
further show the accuracy with regard to the word length in
Figure 10b. Our approach has lower accuracy for longer words
because more grouping labels are introduced to longer words
and incur more sources of errors.

#. passwords 20 100 1000 10000 20000 50000
Avg-accuracy (%) 55.6% 61.0% 57.9% 56.6% 56.3% 55.8%

TABLE II: Inference accuracy of password characters.

• Real-world sentences. We finally use the Enron Email
Dataset (600K emails) [26] to evaluate ViViSnoop’s impact in
real-world. We select the same sentences used by VISIBLE [1]
and Figure 11 shows one recovered result. The first recovered
row shows the top-1 choice word and the red one is a
wrong one; The one in the second row is the top-n choice.
In this example, our top-1 choice recover 17 words out of
20 words, with an accuracy of 85%, which is much higher
than VISIBLE [1], 10%. For top-5 choice accuracy, ours can
recover 19 words (except “february”) with an accuracy of 95%.
We further test with more sentences. We randomly select 100
sentences (1845 words) out of the dataset. ViViSnoop achieves
the average accuracy of 59.3%, 68.4%, 74.9% using top-1, top-
5, top-10 choices on average (Table III). This indicates that
ViViSnoop imposes a serious threat to information leakage and
user privacy since even ordinary people have no difficulty in
understanding the main idea of the emails.

Top-1 Top-3 Top-5 Top-10
59.3% 63.6% 68.4% 74.9%

TABLE III: Inference accuracy of words in sentences.

VI. RELATED WORK

We now introduce the prior work most related to ViViS-
noop.

Video-assisted attacks. ViViSnoop belongs to this category
which applies computer vision techniques to infer user inputs
from the video captured. However, most prior studies require
to visually capture the user input results or their typing
processing. They retrieve the content on the screen through
the surrounding reflections like user eyes [2], tea pots [3],
and sunglasses [5], or infer the user inputs through hand
movement [7] or fingertips [6], [8], [9] during the typing.



The most relevant work is VISIBLE [1] which captures
the backside of the tablet and does not require capturing the
victim user’s input process. However, our work differs in three
aspects. First, we target any (physical or virtual) keyboard
placed on the desk. Second, we extract indirect vibrations on
the desk rather than direct motions caused by keystrokes. This
is more challenging to ensure good quality. Third, we develop
a suite of video processing, feature selection and classification
techniques tailored to the ViViSnoop scenarios.

Non-video based attacks. Another most relevant work is
(sp)iphone [10] which also exploits vibrations for keyboard
inference attack. But it uses the accelerometer from the victim
phone closely near the keyboard. It is less challenging to
extract vibrations; Moreover, this requires to install a malware
on the victim’s phone and allow unprotected network access
to disseminate the sensing data to the attacker. There are
other inference attacks that exploit non-video source like the
accelerometer and/or gyroscope data (e.g., [27], [28]) and
acoustic signals (e.g., [17], [24], [29]). But their attack models
are the same as [10], and are not applicable in our scenarios.

VII. DISCUSSION AND CONCLUSION

In this paper, we propose ViViSnoop, a video-assisted
keystroke inference attack which reveals the user’s typing on
a keyboard placed on the desk through recording a seemingly
irrelevant video, without visually seeing the typing process.
Instead, it infers the keystroke through the vibrations on
the desk retrieved from the captured video. It is much less
noticeable as video recording can be stealthily done with no
stringent constraints on angles and distance. It is threatening
and ready to launch as it does not require any malware or
compromise on the victim side. We thoroughly evaluate its
performance and show high accuracy and probability to infer
passwords, words and sentences.

There are several limitations and countermeasures against
ViViSnoop. First, it performs poorly at a large distance. This
attack can be avoided when the user is alert to anyone or
any possible camcorder nearby. Second, it relies on incurred
vibrations on the desk and certain textures to extract them.
The victim user can easily avoid such attacks without placing
the keyboard on the desk. It would be safe to use other desks
without incurring any vibrations, or use a desk without any
visual patterns. Third, we consider only 26 alphabet letters in
this work. Other keys like numbers, space, and combinations
with special keys (e.g., shift, ctrl) will raise a more challenging
task which is our ongoing work.

REFERENCES

[1] J. Sun, X. Jin, Y. Chen, J. Zhang, R. Zhang, and Y. Zhang. Visible:
Video-assisted keystroke inference from tablet backside motion. In
NDSS, 2016.

[2] M. Backes, M. Dürmuth, and D. Unruh. Compromising reflections-or-
how to read lcd monitors around the corner. In IEEE S&P, 2008.

[3] M. Backes, T. Chen, M. Duermuth, H. Lensch, and M. Welk. Tempest
in a teapot: Compromising reflections revisited. In IEEE S&P, 2009.

[4] D. Balzarotti, M. Cova, and G. Vigna. Clearshot: Eavesdropping on
keyboard input from video. In IEEE S&P, 2008.

[5] R. Raguram, A. M. White, D. Goswami, F. Monrose, and J.-M. Frahm.
ispy: automatic reconstruction of typed input from compromising
reflections. In ACM CCS, 2011.

[6] Y. Xu, J. Heinly, A. M. White, F. Monrose, and J.-M. Frahm. Seeing
double: Reconstructing obscured typed input from repeated compro-
mising reflections. In ACM CCS, 2013.

[7] D. Shukla, R. Kumar, A. Serwadda, and V. V. Phoha. Beware, your
hands reveal your secrets! In ACM CCS, 2014.

[8] Q. Yue, Z. Ling, X. Fu, B. Liu, K. Ren, and W. Zhao. Blind recognition
of touched keys on mobile devices. In ACM CCS, 2014.

[9] Q. Yue, Z. Ling, W. Yu, B. Liu, and X. Fu. Blind recognition of text
input on mobile devices via natural language processing. In Proceed-
ings of the 2015 Workshop on Privacy-Aware Mobile Computing, pages
19–24. ACM, 2015.

[10] P. Marquardt, A. Verma, H. Carter, and P. Traynor. (sp) iphone:
decoding vibrations from nearby keyboards using mobile phone ac-
celerometers. In ACM CCS, 2011.

[11] E. P. Simoncelli, W. T. Freeman, E. H. Adelson, and D. J. Heeger.
Shiftable multiscale transforms. IEEE Transactions on Information
Theory, 38(2):587–607, 1992.

[12] J. Portilla and E. P. Simoncelli. A parametric texture model based on
joint statistics of complex wavelet coefficients. International Journal
of Computer Vision, 40(1):49–70, 2000.

[13] A. Davis, M. Rubinstein, N. Wadhwa, G. Mysore, F. Durand, and
W. T. Freeman. The visual microphone: Passive recovery of sound
from video. ACM Transactions on Graphics, 33(4):79:1–79:10, 2014.

[14] T. Gautama and M. M. Van Hulle. A phase-based approach to the
estimation of the optical flow field using spatial filtering. IEEE
Transactions on Neural Networks, 13(5):1127–1136, 2002.

[15] N. Wadhwa, M. Rubinstein, F. Durand, and W. T. Freeman. Phase-
based video motion processing. ACM Trans. Graph., 32(4), 2013.

[16] E. Milotti. 1/f noise: a pedagogical review. arXiv preprint
physics/0204033, 2002.

[17] T. Zhu, Q. Ma, S. Zhang, and Y. Liu. Context-free attacks using
keyboard acoustic emanations. In ACM CCS, 2014.

[18] J. Wang, K. Zhao, X. Zhang, and C. Peng. Ubiquitous keyboard
for small mobile devices: harnessing multipath fading for fine-grained
keystroke localization. In ACM MobiSys, 2014.

[19] A. A. Shabana. Theory of vibration: an introduction, volume 1.
Springer Science & Business Media, 1995.

[20] A. Sharma and K. K. Paliwal. Linear discriminant analysis for the small
sample size problem: an overview. International Journal of Machine
Learning and Cybernetics, 6(3):443–454, 2015.

[21] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[22] T. Mikolov, M. Karafiát, L. Burget, J. Cernockỳ, and S. Khudanpur.
Recurrent neural network based language model. In Interspeech,
volume 2, page 3, 2010.

[23] Y. Zhang and S. Clark. Syntactic processing using the generalized
perceptron and beam search. Computational linguistics, 37(1):105–151,
2011.

[24] Y. Berger, A. Wool, and A. Yeredor. Dictionary attacks using keyboard
acoustic emanations. In ACM CCS, 2006.

[25] Skullsecurity. https://wiki.skullsecurity.org/.
[26] Enron email dataset, 2015. https://www.cs.cmu.edu/ẽnron/.
[27] E. Owusu, J. Han, S. Das, A. Perrig, and J. Zhang. Accessory: password

inference using accelerometers on smartphones. In HotMobile, 2012.
[28] Z. Xu, K. Bai, and S. Zhu. Taplogger: Inferring user inputs on

smartphone touchscreens using on-board motion sensors. In WiSec,
2012.

[29] D. Asonov and R. Agrawal. Keyboard acoustic emanations. In IEEE
S&P, 2004.


