

CMES: Collaborative Energy Save for MIMO 802.11 Wireless Networks

Ioannis Pefkianakis¹, Chi-Yu Li², Chunyi Peng³, Suk-Bok Lee⁴, Songwu Lu² Technicolor Paris¹, UCLA², OSU³, Hanyang University⁴

Presented by Alexander Afanasyev

Emerging wireless

Call for transition to **gigabit wireless**

MIMO gigabit wireless

Frequency

Space (Multiple Input Multiple Output, MIMO): Multiple antennas (N_t, N_r)

MIMO exploits the space dimension to increase speed from *megabit* (*54Mbps* in 802.11a/g) to *gigabit* (*>6Gbps* in 802.11ac)

MIMO: Spatial diversity

• MIMO: Multiple antennas at the sender (N_t) and receiver (N_r)

- Spatial diversity transmits the same stream from each antenna
 - More reliable transmission
 - Packer error rate: $P_e = 1/SNR^{Nt \cdot Nr}$

MIMO: Spatial multiplexing

• MIMO: Multiple antennas at the sender (N_t) and receiver (N_r)

- Spatial multiplexing (SM) transmits <u>multiple independent</u> streams simultaneously
 - Increased data rate
 - Capacity: $C = min\{N_t, N_r\} \cdot W \cdot log_2(1+SNR)$

State of the Art 802.11 MIMO energy save

- Existing proposals seek to save energy <u>at the receiver</u> They adopt 3 guidelines:
 - Guideline 1: Activate antennas to increase speed
 - Snooze (CoNEXT' 11)
 - Guideline 2: Deactivate antennas to save power
 - IEEE 802.11n SMPS
 - Guideline 3: 1-side antenna management to save energy
 - MRES (ICNP' 11), EERA (MOBICOM' 12)

Activate antennas to increase speed

Is speed the right metric?

Legacy offers 29.7% energy savings over MIMO at the receiver

Cause of MIMO Poor Performance

- MIMO circuit blocks consume power *proportional to the number of antennas*
- <u>Measurements</u> MIMO 802.11n radios:

Speed comes at a cost of increased MIMO power consumption

Deactivate antennas to save power

Is power the right metric?

Application data rate = 50 Mbps (HD video)

Sender

Receiver

<u>MIMO (3x3)</u>: 973.5 mW / 46.35 Mbps → 21 nJ/bit Legacy(3x1): 567.6 mW / 12.52 Mbps → 45.3 nJ/bit

MIMO offers **53.6%** energy savings over legacy at the receiver (MIMO speed compensates for MIMO power consumption)

⇒Need to consider Watt/performance

One-sided energy management

<u>Receiver-optimal may not be energy optimal for the:</u> <u>a) transmitter, b) system (transmitter+receiver)</u>

<u>System' s optimal (1x2)</u>: 1446.8 mW / 3 Mbps

→ 482.3 nJ/bit

Transmitter-receiver collaboration is required for system-wide energy savings

CMES: Collaborative MIMO Energy Save

Identify the system's energy optimal antenna setting

- Metric: Power / Goodput (*Joule / bit*)
- Power (P_w) is the sum of processing (P_p) and circuitry (P_c) power $- P_w = T_{Active} \cdot P_{w,Active} + T_{Idle} \cdot P_{w,Idle} + T_{Sleep} \cdot P_{w,Sleep}$
- Goodput is calculated by sampling the available antenna settings
 - CMES can identify the energy optimal without sampling all the available antenna settings

Scalable, Optimal Sampling

For a fixed number of transmit or receive antennas there is only a single local energy minimum

- <u>Algorithm</u>
- Fix the receive antennas (Nr)
 Start with Nr=1
- Identify energy optimal with sequential probing
- Prune the remaining settings
- Increase Nr and repeat the steps

Implementation/Evaluation

Implementation

- 802.11n commodity devices
 - 2-antenna receiver / 3-antenna AP
 - Static/mobile, TCP/UDP, various RAs
- Experiments
 - Single client AP (implementation)
 - Large scale trace-driven simulations

Comparing approaches

- 3x2 fixed setting
 - <u>Metric</u>: Speed

- MRES, Tx Best, Nash
 - 1-side strategies
 - MRES: receiver's energy optimal
 - Tx Best: transmitter's energy optimal
 - Nash equilibrium

Experimental results

- <u>Various settings:</u> static/mobile, TCP/UDP, various practical RAs
 - Energy savings over existing algorithms: 4.8% 59.7%

Conclusions

- Time to rethink energy save over MIMO
 - Consider MIMO power and MIMO speed
 - Enable collaboration between transmitter and receiver
- **CMES**: collaborative, *energy optimal* antenna selection
 - Models energy as a tradeoff between transmitter-receiver power consumption and goodput
 - Excludes in advance energy hungry antenna settings

CMES: A step towards **green** MIMO wireless