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On Recursive Oblique Projectors
Chun-Yi Peng and Xian-Da Zhang, Senior Member, IEEE

Abstract—This letter proposes a recursive oblique projector. To
understand better the recursive oblique projector, we provide a ge-
ometrical interpretation of recursive computation and present a
brief numerical example.

Index Terms—Adaptive filter, innovation matrix, oblique projec-
tion, recursive computation.

I. INTRODUCTION

S INCE the 1980s, oblique projection has found wide appli-
cations in engineering. Especially in recent years, oblique

projection has drawn lots of attention in signal processing
[1]–[4].

The projection operators (i.e., projection matrices or projec-
tors) can be divided into orthogonal and oblique projectors, and
any orthogonal projector is idempotent and Hermitian, while the
oblique one is idempotent and not Hermitian. It is well known
that the orthogonal projector is a special example of the oblique
projector, and the recursive orthogonal projector plays a key
role in adaptive signal processing [6]. Unfortunately, there is no
recursive oblique projector that severely limits applications of
the oblique projector in adaptive signal processing. The aim of
this letter is to fill in this gap. To facilitate better understanding,
we provide a geometrical interpretation of the recursive oblique
projector and present a brief example of its application in blind
adaptive multiuser detection in wireless communications.

II. RECURSIVE OBLIQUE PROJECTORS

We use uppercase and lowercase boldfaced letters for ma-
trices with , , , and denoting the transpose,
Hermitian, inverse, and Moore–Penrose pseudo-inverse opera-
tors, respectively. Calligraphic letters denote subspaces, and
represents the -dimensional complex Euclidean space. For a
given matrix , its row and column spaces are represented by

and Col , respectively. In this letter, we mainly con-
sider the case of column spaces and use the calligraphic letter
for the column space Col in most cases. For a given space

, and denote the corre-
sponding orthogonal projectors on and , where is the
orthogonal complement of , and is the inner
product of and . For two given subspaces and ,
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denotes the corresponding oblique projector onto along .
The oblique projection onto along of any vector
is computed by . The symbol or denotes
the direct sum of and , and for their intersection.

The idea of oblique projection and its applications in signal
processing is well known [1]. Consider the matrices and
with column spaces Col and Col .
When and are disjoint, that is, , the oblique
projector onto along can be computed as [1]

(1)

where the two subspaces and are called the range and null
spaces of the projector , respectively.

It is well known that for the matrix , the orthogonal
projector onto the subspace Col
has the recursion formulae [6]

Col (2)

Col (3)

These formulae play an important role in adaptive signal pro-
cessing [6], such as adaptive least square lattice filter [5]. The
importance of the oblique projectors in signal processing appli-
cations compelled us to ask for the big picture: How do you ef-
fectively compute the oblique projectors and from

and ? The following theorem provides a solution.
Theorem 1: If and Col , and the two

column subspaces and Col are disjoint, then new
oblique projection operators are given by

(4)

(5)

where Col with .
Proof: Since the column subspaces and are disjoint, it

is known from (1) that the oblique projector can be written
as

(6)

Since is Hermitian and idempotent, (6) is simplified to

Col (7)
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Substituting and in (2), then
. Hence, we have Col

and can rewrite (2) as

Col Col Col
(8)

Calculating , we have

(9)

Combining (7), (8), and (9) and denoting ,
we get

(10)

namely

(11)

In the following, we use (11) to prove (4). It is known from
(11) that any vector satisfies

. In other words

(12)

Since and are the range and null spaces of the projector
, respectively, and the subspace is

the direct sum of the two subspaces, we have

(13)

Equations (12) and (13) yield the result

which implies that

or , i.e., (4) is true.
By the oblique projector property

and (4), we immediately have

which is (5). This completes the proof of Theorem 1.
The three remarks on Theorem 1 are given next.
Remark 1: If the subspace is orthogonal to , then the

oblique projectors and are equal to and ,
respectively. Denote ; then, is

simplified to and , and thus, (4) and (5) reduce
to (2) and (3). In other words, the recursion update of orthogonal
projectors is a special case of Theorem 1.

Remark 2: Theorem 1 can be understood from the viewpoint
of the innovation process, which plays a key role in the Kalman
filtering theory. As an extension of the innovation process, in
the case of the orthogonal projector, given a data matrix , its
mean-square estimate in the subspace Col is given
by , and hence, we can refer to the error matrix

as the innovation matrix of the original data matrix
in the subspace and the subspace Col as the in-

novation subspace in orthogonal projection. Similarly,
is the mean-square estimate of the data matrix in the sub-
space along the disjoint subspace , and we can view

in Theorem 1 as the innovation matrix of the data
matrix in along and Col as the innovation sub-
space in oblique projection.

Remark 3: From a subspace point of view, the vector space
, where , , and represent

the expected signal (range), structured noise (or interference),
and unstructured noise subspaces, respectively. From Theorem
1 and , we have

That is to say, the innovation matrix of the data matrix in
along consists of the structured noise component

in and unstructured noise component
in . Clearly, the innovation matrix

if the contribution of the structured noise component
reduces to become negligible as compared to the unstructured
noise. In this case, , and the
oblique projector reduces to

(14)

which is just the projection matrix of .
Theorem 1 is only available for the column spaces, but its ver-

sion in the row spaces can be easily derived. In row spaces, the
orthogonal projector is given by . In
a similar way in [1], the oblique projector onto the row
spaces Row along Row can be defined as

(15)

and (15) can be rewritten as

(16)

Then, the oblique projection of any vector is given by
. The following corollary is a version of Theorem 1 in

the case of row spaces.
Corollary 1: If and , and the two

row subspaces and are disjoint, then we have
the following recursive formulas:

(17)
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(18)

where Row with .
Proof: The proof is straightforward. Using Row

Col , it is easy to show that

Col Col (19)

From Theorem 1 and (19), can be rewritten as

Col Col

Col Col Col Col

Similarly, we can show (18).

III. GEOMETRICAL INTERPRETATION

For a geometrical interpretation of the recursive construction
of oblique projectors described by (4) and (5), consider the re-
cursive quantities of oblique projectors in Fig. 1, where sub-
spaces are represented by directed lines or planes, whereas ma-
trices or data are represented by vectors with specific lengths.

For example, the directed lines , and plane de-

note the subspaces , and , and the vectors and

denote the added data matrix and arbitrary data ,
respectively. Assume without loss of generality that lies in the
subspace .1

As illustrated in Fig. 1(a), where are perpendicular to

plane , and and are, respectively,

the parallel decomposition components of along the di-

rected lines and , the vectors , , and repre-
sent the projections , , and , respectively.
Similarly, the oblique projections and can be

represented by and in parallelogram , respec-
tively. That is, when the range subspace expands to
from , the updated components of oblique projections are de-

noted by and . In Figs. 1(b) and (c), we show that

and .

In Fig. 1(b), the vectors and in the parallelogram
represent the projections and , re-

spectively, and thus, represents the ma-

trix . With and ,
the plane represents the subspace .

To obtain the oblique projection , let and

; then, , i.e.,

(20)

1Because the component of y in the complementary subspace (H�S�V)
does not affect the projections inH�S�V , we can obtain the orthogonal pro-
jection of y onto the subspaceH�S�V and then calculate the corresponding
oblique projections using P y, if y 62 (H� S � V).

Fig. 1. Geometrical representation of recursive oblique projectors.
(a) Illustration of oblique projections. (b) Illustration of E y in (4).
(c) Illustration of E y in (5).

Hence, , which shows that equals the
orthogonal projection . Then, the parallel decomposi-

tion component obviously equals the oblique projection

, i.e., . Now, we have
, which is a geometrical demonstration of the recursive

relation of (4) in Theorem 1.

In a similar way, can be easily found in the

oblique prism in Fig. 1(c). Since

and , then illustrates the orthogonal projection
, i.e., , which is a ge-

ometrical interpretation of (5) in Theorem 1.

IV. BRIEF NUMERICAL EXAMPLE

As a brief numerical example of the recursive oblique pro-
jectors, let us consider the blind adaptive multiuser detection.
In a code-division multiple access (CDMA) channel, users
transmit simultaneously over a shared channel, with different
signature vector . For the desired user 1 with signature vector

, its linear detector has two canonical representations [7]

Type I subject to (21)
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and [8]

Type II (22)

where the columns of the matrix span the null space of
, i.e., .
By [3], the blind multiuser detector can be expressed in the

form of oblique projectors as follows:

(23)

where is other users’ signature matrix.
Let span , span , and

span in (5); then, , , and
then, we have

(24)

which unifies Type I and Type II canonical representations for
blind multiuser detection. From (24), we can get the optimal
adaptive filters associated with Type I and Type II canonical
blind detectors, respectively, given by

(25)

and

(26)
Since , we have

, which means the two types of

canonical representations for blind multiuser detection are in
complete agreement.

V. CONCLUSION

This letter has proposed a recursive oblique projector that
contains the well-known recursive orthogonal projector as a spe-
cial example. The recursive oblique projector has a clear geo-
metrical interpretation. As a brief numerical example, we have
applied the recursive oblique projector to derive a unified blind
adaptive multiuser detector that gives, respectively, the optimal
adaptive filters of the two well-known canonical representations
for a linear detector. The principal angle associated with the re-
cursive oblique projector is an interesting problem and remains
to be studied.
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