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Abstract The Open Spectrum approach to spectrum access
can achieve near-optimal utilization by allowing devices to
sense and utilize available spectrum opportunistically. How-
ever, a naive distributed spectrum assignment can lead to
significant interference between devices. In this paper, we
define a general framework that defines the spectrum access
problem for several definitions of overall system utility. By
reducing the allocation problem to a variant of the graph col-
oring problem, we show that the global optimization problem
is NP-hard, and provide a general approximation methodol-
ogy through vertex labeling. We examine both a centralized
strategy, where a central server calculates an allocation as-
signment based on global knowledge, and a distributed ap-
proach, where devices collaborate to negotiate local channel
assignments towards global optimization. Our experimental
results show that our allocation algorithms can dramatically
reduce interference and improve throughput (as much as
12-fold). Further simulations show that our distributed al-
gorithms generate allocation assignments similar in quality
to our centralized algorithms using global knowledge, while
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incurring substantially less computational complexity in the
process.

Keywords Spectrum management . Open spectrum . User
collaboration . Resource allocation

1. Introduction

Wireless devices are becoming ubiquitous, placing increas-
ing stress on the fixed radio spectrum available to all ac-
cess technologies. To eliminate interference between differ-
ent wireless technologies, current policies allocate a fixed
spectrum slice to each technology. This static assignment
prevents devices from efficiently utilizing allocated spec-
trum, resulting in spectrum holes (no targeted devices in lo-
cal area) and very poor utilization (6%) in other geographic
areas [14]. Studies have shown that reuse of such “wasted”
spectrum can provide an order of magnitude improvement
in system capacity.

These results further motivate the Open Spectrum
[2,6,12,18,25,28] approach to spectrum access. Enabled by
software defined radio (SDR) technology [5,15,23], Open
Spectrum allows unlicensed (secondary) users to share spec-
trum with legacy (primary) spectrum users, thereby “creat-
ing” new capacity and commercial value from existing spec-
trum ranges. Based on agreements and constraints imposed
by primary users, secondary users opportunistically utilize
unused licensed spectrum on a non-interfering or leasing ba-
sis. Open spectrum system designs must also deal with spec-
trum heterogeneity, where spectrum available to secondary
devices fluctuates with both location and time due to move-
ment and traffic variations of primary users. A user seizing
spectrum without coordinating with others can cause harmful
interference with its surrounding neighbors, thus reducing
available spectrum.
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While maximizing spectrum utilization is the primary
goal of open spectrum systems, a good allocation scheme
also needs to provide fairness across devices. To the best of
our knowledge, the question of how best to address these two
goals in the context of spectrum allocation for open spectrum
systems has not been previously addressed. In this paper,
we describe our work in defining a general framework for
spectrum allocation in open spectrum systems, and present
centralized and distributed approaches to optimize spectrum
allocation for utilization and fairness. The key contributions
of this paper are four-fold:

1) Spectrum allocation framework and utility. We describe
a graph-theoretic model that describes efficient and fair
access in open spectrum systems. We also define three
policy-driven utility functions that combine efficient
spectrum utilization and fairness.

2) Reduction to graph coloring and lower-bound proof. We
show how the optimal spectrum allocation problem can
be reduced to a variant of the graph coloring problem,
proving that it is NP-hard. We also prove a lower bound
on the maximal utilization problem where fairness is not
considered.

3) Centralized and distributed approximation. We describe
a vertex labeling mechanism which we use to build both
centralized and distributed approximation algorithms.

4) Simulation of efficiency and complexity. We use extensive
simulations to quantify the impact of these spectrum al-
location algorithms on network access, while comparing
the distributed and centralized approaches in efficiency
and complexity.

The rest of the paper is organized as follows. We begin in
Section 2 by describing the context of open spectrum systems
and its associated challenges. Next in Section 3, we provide
a mathematical modelling of open spectrum access, define
three key utility functions and describe a reduction of the
allocation problem to graph coloring. Then in Section 4, we
describe a set of centralized and distributed approximation
algorithms to optimize our utility functions. We describe our
simulation results in Section 5, and derive a theoretical lower
bound for maximal spectrum utilization in Section 6. Finally,
we summarize related works in Section 7, and conclude in
Section 8.

2. Access in open spectrum systems

We begin by describing the spectrum allocation problem in
the context of Open Spectrum systems. Open spectrum sys-
tems allow unlicensed devices (who we refer to as secondary
users) to make use of spectrum unused by legacy spectrum
devices (primary users), thereby “creating” new capacity and
commercial value from existing spectrum. Secondary users

utilize licensed bands on a non-interfering or leasing basis
based on agreements and constraints imposed by primary
users. They can detect predefined spectrum signatures or
footprints of primary users automatically, through operator-
initiated broadcasts, or by accessing a central database. A
recent example of this approach is the FCC’s recent report
on the feasibility of allowing unlicensed devices to oper-
ate in TV broadcast spectrum ranges at locations and times
when it is under-utilized. Secondary users can detect the
presence of a sound carrier in NTSC (analog) TV systems
or a pilot tone in ATSC (digital) TV systems, and operate
without interfering with TV broadcasts (primary users in this
case). While the goal is to maximize utilization, secondary
users must not interfere with the normal operation of primary
users.

In open spectrum systems, primary users’ mobility and
traffic variations result in the fact that the available spectrum
observed by secondary devices fluctuates with both loca-
tion and time. We call this property spectrum heterogeneity.
In addition, the interference constraint and the reward (i.e.
throughput, connectivity) obtained on each spectrum band
could be different due to non-uniformly partitioned spec-
trum bands, differences in power constraints and associated
technology. Spectrum heterogeneity also results from varia-
tions in device radio capabilities. For example, a new radio
device might have integrated Ultra Wide Band (UWB) and
IEEE 802.11a/b/g interfaces while an older device only sup-
ports 802.11b. In general, spectrum heterogeneity refers to
variations in spectrum availability, interference constraints
and rewards on each spectrum band.

The key to efficient utilization of open spectrum is to
find an appropriate distribution of channels among secondary
users while minimizing interference. When two simultane-
ous transmissions overlap in spectrum and physical location,
both can fail.1 Hence, a user seizing spectrum without coor-
dinating with others can cause harmful interference with its
neighbors and degrade overall spectrum usage. For a simple
example, consider a ring of nodes around a center node. If
the center node uses its entire available spectrum, its will
interfere with and disrupt all transmissions coming from its
neighbors. In contrast, network controlled spectrum access
can optimize network-wide spectrum utilization by forcing
secondary users to behave in a collaborative fashion. Specif-
ically, the network needs to define and enforce a set of rules
to encourage utilization and minimize interference. Finally,
spectrum allocation should be fair to ensure that each device
gets a certain amount of spectrum under normal conditions,
i.e. avoid starvation.

1 While multi-packet reception and other interference cancellation al-
gorithms can minimize the impact of interference, in this paper we
assume for simplicity that interference causes both transmissions to
fail.
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Fig. 1 Spectrum availability changing with the presence of primary users. (a) Topology (b) availability of channel/color A; (c) availability of
channel/color B

In this paper, we consider the case where the collection
of available spectrum ranges forms a spectrum pool, divided
into non-overlapping orthogonal channels.2 Secondary users
select communication channels and adjust transmit power
accordingly to avoid interfering with primary users. Each
secondary user keeps a list of available channels that it can
use without interfering with neighboring primary users. The
spectrum access problem becomes a channel allocation prob-
lem.

2.1. Example scenario

In this section, we illustrate the concept of spectrum hetero-
geneity in open spectrum systems with a sample scenario.
We also demonstrate how the presence of a primary user
impacts not only which channels are available to nearby sec-
ondary users, but also the power used on available channels,
and the resulting range and throughput on those channels.

Figure 1 illustrates an example deployment where inac-
tive broadcast (TV) spectrum is utilized to provide wireless
connections to a residential community. The broadcast spec-
trum is divided into two channels (marked by A and B). In this
example, broadcast stations (x) are primary users and wire-
less access points (I, II and III) are secondary users. Each
primary user x occupies one channel m which is associated
with a protection area with radius dP (x, m). Any radiation
from secondary users falling into it would interfere with the
primary user. Each secondary user n can adjust its interfer-
ence range. dS(n, m) by tuning its transmit power on channel
m to avoid interfering with primary users. We assume that
a secondary user n can use the same channel m as a nearby
primary user x only if dS(n, m) ≤ Dist(n, x) − dP (x, m),

2 Channel division can follow the format of TDMA, FDMA, CDMA
or a combination of them.

where Dist(n, x) is the distance between n and x. In gen-
eral, interference range dS is bounded by the minimum and
maximum transmit power, i.e. [dmin, dmax]. Note that in this
paper we assume that each secondary user (wireless ac-
cess point) can use technologies like Orthogonal Frequency
Division Multiplexing Access (OFDMA) to utilize multi-
ple channels to provide connections for devices within its
coverage area.

In our example in Fig. 1(a), primary user x uses
channel A. Its protection area is shown as a dotted circle
around x. Each secondary user adjust its dS on channel A
to avoid interfering with x. Secondary user II is within the
protection range of x, and therefore cannot use channel A. If
II was outside of x’ range, but its dS < dmin, it still cannot
use channel A. Figure 1(b) shows the case when no primary
users are present on channel B.

For each secondary user, tuning its transmission power to
adjust dS directly impacts its range or coverage. For exam-
ple, the coverage area of a wireless access point is propor-
tional to d2

S . Increasing the range with a larger dS value also
increases the probability of interfering with a neighboring
secondary user. For each channel, if two secondary users’
interference areas overlap, then they conflict and cannot use
the channel simultaneously. In this paper, we assume that
secondary users use a fixed power control scheme to adjust
their transmit power to the maximum permissible level to
avoid interfering with primary users. Thus we see how the
presence of primary users on a channel can impact secondary
users’ channel availability and transmission power, which in
turn defines its coverage, throughput and interference con-
dition with neighboring secondary users. This is the full
impact of spectrum heterogeneity. Note that the secondary
user can be a wireless access point or a transmission link
in an ad hoc network. Note that there is no power control
among secondary users, and interference mitigation is done
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through conflict free spectrum allocation. The interaction of
power control and spectrum allocation will be investigated
in a future study.

Finally, in order to adjust its dS correctly to avoid inter-
ference with primary users, secondary users need to detect
if and how much its transmission range overlaps with that
of a primary user. Detecting this dynamically is a challeng-
ing open problem, since a secondary user can only listen for
carrier signals inside the primary user’s transmission range.
Here we assume secondary users can use out-of-band mech-
anisms to get the location and power of primary users, and
use that to calculate its ideal dS . Similarly, secondary users
can use similar mechanisms to get the location and power of
neighboring secondary users, and use it to determine whether
it will interfere with neighboring transmissions.

3. Optimized allocation for a fixed topology

The two key goals of a spectrum allocation algorithm in open
spectrum systems are spectrum utilization and fairness. Spe-
cific combinations of these two goals form different utility
functions that can be customized for each type of network
application. In this section, we define a theoretical model to
represent the general allocation problem, and describe three
utility functions that trade off spectrum utilization and fair-
ness. We then show a reduction from the optimal allocation
problem to a variant of a graph-coloring problem.

3.1. Allocation model and utility functions

In our model, we assume that environmental conditions such
as user location, available spectrum are static during the time
it takes to perform spectrum assignment. This corresponds
to a slow varying spectrum environment where users quickly
adapt to environmental changes by re-performing network-
wide spectrum allocation. Therefore, we focus on a model
for a fixed topology.

We assume a network of N secondary users indexed from
0 to N − 1 competing for M spectrum channels indexed 0
to M − 1. Each secondary user can be a transmission link
or a broadcast access point. The channel availability and
rewards for each secondary user can be calculated based on
the location and channel usage of nearby primary users. We
define the key components of our model as follows:
Channel availability: L = {ln,m |ln,m ∈ {0, 1}}N×M is a N by
M binary matrix representing the channel availability: ln,m =
1 if and only if channel m is available at user n. Using
the example in Section 2 , if dS(n, m) < dmin then ln,m = 0,
otherwise ln,m = 1.
Channel reward: B = {bn,m}N×M , a N by M matrix repre-
senting the channel reward: bn,m represents the maximum
bandwidth/throughput that can be acquired (assuming no in-

terference from neighbors) by user n using channel m. Using
the example in Section 2 , the reward can be the coverage of
a secondary user using a channel:

bn,m = dS(n, m)2, dmin ≤ dS(n, m) ≤ dmax, (1)

or the capacity using a channel (assuming the signal to noise
ratio (SNR) is a function of dS(n, m)):

bn,m = log(1 + f (dS(n, m)), dmin ≤ dS(n, m) ≤ dmax. (2)

Obviously, bn,m = 0 if ln,m = 0.
Interference constraint: Let C = {cn,k,m |cn,k,m ∈
{0, 1}}N×N×M , a N by N by M matrix, represents the
interference constraints among secondary users. If
cn,k,m = 1, users n and k would interfere with each other if
they use channel m simultaneously. The constraint depends
on channel availability, i.e., cn,k,m ≤ ln,m × lk,m and
cn,n,m = 1 − ln,m . In this paper, we use a binary geometry
model where two users conflict if they are located within
certain distance of each other. In particular, cn,k,m = 1 if
Dist(n, k) ≤ dS(n, m) + dS(k, m). Again, this constraint
is channel specific: two users might be constrained on
one channel but not another. A detailed pseudo code
for generating channel availability, channel award and
interference constraint is shown in Appendix I.

This model provides an approximation to the effects of
interference in real wireless systems. It captures the way
interference is manifested in wireless environments with-
out delving into complex detection and decoding algo-
rithms and protocols. We are currently investigating the
impact of non-binary interference metric on the proposed
approach.
Conflict free channel assignment: A = {an,m |an,m ∈
{0, 1}, an,m ≤ ln,m}N×M is a N by M binary matrix that rep-
resents the assignment: an,m = 1 if channel m is assigned
to user n. A conflict free assignment needs to satisfy all the
interference constraints defined by C, that is,

an,m + ak,m ≤ 1, ifcn,k,m = 1,∀ n, k < N , m < M. (3)

Let �(L , C)N ,M denote the set of conflict free spectrum
assignments for a given set of N users and M spectrum bands
and constraints C.
Radio interface limit: Cmax represents the maximum number
of channels that can be assigned to a secondary user. The
assignment at each user n needs to satisfy

∑M−1
m=0 an,m ≤

Cmax.
User reward: � = {βn = ∑M−1

m=0 an,m · bn,m}N×1 represents
the reward vector that each user gets for a given channel
assignment.
Network utilization: The channel allocation is to maximize
network utilization U (�).
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Given the model above, we can define the spectrum assign-
ment problem by the following optimization function:

A∗ = argmax
A∈�(L ,C)N ,M

U (�). (4)

We can obtain utility functions for specific application types
using sophisticated subjective surveys. An alternative is to
design utility functions based on traffic patterns and fairness
inside the network. We consider and address utility in terms
of single-hop flows, since they are the simplest format in
wireless transmissions.

� Max-Sum-Reward: This maximizes the total spectrum uti-
lization in the system regardless of fairness. The optimiza-
tion problem is expressed as:

Usum =
N−1∑

n=0

βn =
N−1∑

n=0

M−1∑

m=0

an,m · bn,m . (5)

� Max-Min-Reward: This maximizes the spectrum utiliza-
tion at the bottleneck user, or the user with the least allotted
spectrum. The optimization problem is expressed as:

Umin = min
0≤n<N

βn = min
0≤n<N

M−1∑

m=0

an,m · bn,m . (6)

Roughly, Max-Min-Reward driven allocation gives the
most poorly treated user (i.e. the user who receives the
lowest reward) the largest possible share, while not wast-
ing any network resources. This is the simplest notion of
fairness.

� Max-Proportional-Fair: Consistent with prior work
[9,13,16,22], we consider and address fairness for single-
hop flows. The corresponding fairness-driven utility opti-
mization problem is expressed as:

Ufair =
N−1∑

n=0

log(βn) =
N−1∑

n=0

log

(
M−1∑

m=0

an,m · bn,m

)

. (7)

The essence of proportional fair is that if for any other
feasible assignment A′ and the associated β ′

n , the aggregate
of proportional changes in user reward is zero or negative:
i.e.

N−1∑

n=0

β ′
n − βn

βn
≤ 0.

To make it comparable to Umin and Usum, we modify the
fairness utility to

Ufair =
(

N−1∏

n=0

βn

) 1
N

=
(

N−1∏

n=0

M−1∑

m=0

an,m · bn,m

) 1
N

. (8)

Note that under the same assignment, 1
N Usum ≥ Ufair ≥

Umin.

3.2. Color-sensitive graph coloring

Our approach to solving this complex optimization problem
is to reduce it to a variant of the graph coloring problem by
mapping spectrum channels into colors, and assigning them
to users (vertices in a graph). Past work has demonstrated the
effectiveness of using conflict graphs to model interference
[10,19,28]. Our work extends the model to a multi-color
conflict graph by taking in to account the impact of primary
users on secondary users’ interference condition.

We define a bidirectional graph G = (V, L , E), where V
is a set of vertices denoting the users that share the spec-
trum, L is the available spectrum or the color list at each
vertex; defined in Section 3.1, and E is a set of undirected
edges between vertices representing interference between
any two vertices. For any two vertices u, v ∈ V , a m-colored
edge exists between u and v if cu,v,m = 1. The edges de-
pend on the interference constraint C (see Section 3.1 ),
which is determined by the spectrum usage of nearby pri-
mary users and the transmit power of user u and v on
channel m.

The spectrum allocation problem is equivalent to coloring
each vertex using a number of colors from its color list to
maximize system utility. The coloring scheme is constrained
by that if a m colored edge exists between any two vertices,
they cannot simultaneously use color m. This is a variant
of the traditional graph coloring problem. In the traditional
problem, graphs are colorless, colors have the same reward,
and two connected vertices only have one colorless edge; in
our problem, vertices can be connected via multiple colored
edges. We call this problem color-sensitive graph coloring
(CSGC).

Figure 2 illustrates the reduced CSGC graph that corre-
sponds to the network from Fig. 1. Channel A is available to
secondary user I and III, so that in the corresponding CSGC,
vertex I and III have A on their color list. Since the transmis-

B

I

III

A

II

(A, B)(B)

(A, B)

B B

Fig. 2 An example CSGC graph for Fig. 1
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sion areas of I and III on channel A overlap, they can conflict
on channel A, and there is a color A edge between I and III.
Channel B is available for three users and they all conflict
with each other. Hence, B is on each vertex’s color list and a
color B edge exists between any two vertices. Overall we can
use a conflict graph G to model the network setup of each
deployment of primary and secondary users, reducing spec-
trum allocation to a graph coloring problem. We note that
CSGC only optimizes color assignment for a fixed topology.
If the topology changes (e.g. due to user movement), the
graph coloring algorithm needs to be repeated.

4. Spectrum allocation algorithms

The optimal coloring problem is known to be NP-hard [7].
In this section, we apply existing graph coloring solutions
to present heuristic based approaches that produce good ap-
proximations for our problem.

4.1. Approximation via labeling

In [19], the author proposes progressive minimum neighbor
first (PMNF) as a sequential heuristic solution to graph col-
oring for generalized channel assignment. He shows that the
worst case performance of PMNF significantly outperforms
other heuristic approaches. The algorithm assigns each ver-
tex a unique label, colors the vertex with the highest label
with the lowest indexed color without violating the con-
straints. The algorithm removes the colored vertex and asso-
ciated edges from the graph, and repeats until all the vertices
are colored. In PMNF, the objective is to minimize the total
colors required to color each vertex, hence the basic idea of
the algorithm is to color the “most difficult” vertices first.
This way the vertices are labelled proportional to the size of
their neighborhood.

We apply a similar approach to our problem, we need
to consider conflict constraints in addition to different color
lists and color rewards at each vertex. The colors are assigned
iteratively, as shown in Fig. 3. A vertex is “saturated” if its
channel assignment has reached Cmax. In each stage, the
algorithm labels all the non-saturated vertices with a non-
empty color list according to some policy-defined labeling
rule. We define each labeling rules later in this section. The
algorithm picks the vertex with the highest valued label and
assigns the color associated with the label to the vertex. The
algorithm then deletes the color from the vertex’s color list,
and also from the color lists of the constrained neighbors. It
also deletes all the edges of the assigned color from the the
vertex in the color graph, so the interference constraint of a
vertex keeps on changing as other vertices are processed, and
the labels of the colored vertex and its neighbor vertices are
modified according to the new graph. The algorithm enters

Labeling
For each vertex n in G

Select color(n), calculate label(n)

Coloring
Find n*=argmax label(n) 

Assign color(n*) to vertex n*

Updating Topology

Remove color(n*) from vetex n*’s color list
Remove color(n*) from the color list of any 
neighbor who has a color(n*) edge with 
vertex n*, delete the associated color(n*) 
edges 
Delete vertices with empty color list and the 
associated edges
Delete saturated vertices and the associated 
edges
For each standalone vertex (without any 
edge), assign colors with the largest reward 
until it saturates, and delete the vertex

G empty?
No

Yes

END

Fig. 3 Flow chart of coloring

the next stage until every vertex’s color list becomes empty
or every vertex saturates.

Note that our graph coloring problem wants to maxi-
mize utility while the conventional graph coloring problem
[19,24] wants to minimize the number of colors used. While
the labeling rule in our approach is different from PMNF, the
intuition is similar. We choose to color the “most valuable”
vertices first, i.e. the vertices that contribute to the system
utility the most. In particular, it can be shown that when
Cmax = M , the problem of maximizing sum reward is equiv-
alent to a combination of maximum weighted independent
set (WIS) problem on each color. In [21] the authors show
that a greedy approach is a tight 1

�(G) -approximation of WIS,
where �(G) is the maximum degree of the graph. The au-
thors propose an iterative approach to repeatedly select the
vertex u from the graph G with maximal b(u)

dG (u)+1 , where b(u)
is the bandwidth and dG(u) is the degree of u in G. The algo-
rithm then deletes u and its associated edges from the graph
G. Here b(u)

dG (u)+1 approximates the contribution of u to sum
reward in its local neighborhood.
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4.2. Centralized vs. distributed network architectures

The algorithm we describe above assumes a central alloca-
tion server with knowledge about all users in the system. In
this section, we discuss the challenges facing the centralized
version of the algorithm, and describe a distributed version
of the algorithm.

4.2.1. Centralized architecture

In a centralized architecture, a central spectrum server makes
decisions on channel assignment. The server collects loca-
tion, power, spectrum and interference information from both
primary and secondary users, and runs the assignment algo-
rithm to distribute channels among secondary users. It then
broadcasts the assignments on a predefined channel. Sec-
ondary users listen to the broadcast and communicate using
their assigned channels.

While a central server can optimize across network-wide
information, there are two serious limitations to this ap-
proach. First, this approach requires a communication path
between the spectrum server and all secondary users, i.e. all
users need interference-free access to a pre-assigned dedi-
cated control channel, possibly in a licensed band. In ad-
dition, as networks grow in density, a pre-defined control
channel will limit the bandwidth available for control mes-
sages. Second, the server processing complexity will scale
at least polynomially with the number of devices. Any cen-
tral spectrum server will quickly become a computational
bottleneck.

4.2.2. Distributed architecture

As an alternative to the central spectrum server, secondary
users can use a distributed algorithm to determine its own
spectrum assignment. It must use only locally available infor-
mation. Gathering and disseminating information to a large
neighborhood not only incurs high delay, but also limits the
scalability of the network.

The distributed algorithm works as follows. Each sec-
ondary user detects the presence of primary users to de-
termine its own channel availability and transmission con-
straints. It then coordinates with nearby neighbors to deter-
mine channel assignments in an iterative fashion. In each it-
eration, each user labels itself according to one of the policy-
driven labeling rules described in Section 4.3, and broadcasts
the label to its neighborhood.3After collecting all the labels
from its neighbors, the secondary user with the maximum

3 This requires a coordination scheme so that secondary users can com-
municate with each other without interfering primary users. A detailed
study on this subject can be found in [26]

Table 1 Summary of labeling rules

Utility/rule type Collaborative Non-collaborative

Max Sum Reward CSUM NSUM
Max Min Reward CMIN NMIN
Max Prop. Fair CFAIR NFAIR

label within its neighborhood selects the associated chan-
nel and broadcasts its selection. The neighbors who conflict
with this user on this channel remove the channel from their
respective available lists. After collecting assignment infor-
mation from surrounding neighbors, each secondary user
updates its list of available channels and recalculates its
label. The process is repeated until each user’s available
channel list is empty or users are satisfied. Through these it-
erative broadcasts, this algorithm allows cooperation beyond
a node’s immediate neighbors, producing effects similar to
global optimization through cooperative local actions dis-
tributed throughout the system.

4.3. Labeling rules

We have described both centralized and distributed alloca-
tion algorithms based on iteratively coloring nodes using
label values. In this section, we define a number of label-
ing rules that correspond to each of the utility functions
described in Section 3.1 for both centralized and distributed
algorithms. For distributed algorithms, we use collaborative
rules that consider the impact of interference on neighbors
when labeling. Table 1 summarizes how the proposed rules
correspond to utility functions.

For each vertex n, its m color-specific degree, Dn,m , is
the number of conflict edges it shares with its neighbors
for color m. This is the number of neighbors who cannot
simultaneously use m with n, i.e.:

Dn,m =
N−1∑

k=0,k 	=n

c(n, k, m) · ln,m · lk,m . (9)

Dn,m is a good measure of the impact to neighbors when
a color is assigned to a vertex. Now we describe the rele-
vant labeling values organized by the utility function they
optimize for.

Max sum reward

Collaborative-Max-Sum-Reward (CSUM): This rule aims to
maximize the sum reward defined in (5). When a vertex n is
assigned with a color m, its contribution to the sum reward in
a local neighborhood can be computed as bn,m/(Dn,m + 1)
since some of its neighbors cannot use this color. We propose
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to label the vertex n according to

labeln = max
m∈�n

bn,m/(Dn,m + 1),

colorn = arg max
m∈�n

bn,m/(Dn,m + 1)
(10)

where �n represents the color list available at vertex n at this
assignment stage. This rule considers the tradeoff between
spectrum utilization (in terms of selecting the color with the
largest reward) and interference to neighbors (in terms of
degree). This rule is collaborative, since it takes into account
the impact to neighbors.
Non-collaborative-Max-Sum-Reward (NSUM): This rule
aims to improve the sum of reward without considering the
impact of interference to neighbors. The vertex with the
maximum reward will be colored, i.e. a vertex n is labeled
with

labeln = max
m∈�n

bn,m,

colorn = arg max
m∈�n

bn,m .
(11)

When colors are homogeneous, this corresponds to a random
labeling. Compared to CSUM, this rule is relatively selfish.
It is non-collaborative, since each vertex only considers its
own reward and ignores impact on the overall system.

Max min reward

Collaborative-Max-Min-Reward (CMIN): This rule tries to
distribute colors uniformly among vertices to improve the
minimum reward that a vertex can get, while considering
interference to neighbors. This rule tries to solve Max-Min
optimization as defined in (6). In each stage, a vertex n is
labeled according to

labeln = −
N−1∑

m=0

an,m · bn,m,

colorn = arg max
m∈�n

bn,m/(Dn,m + 1).
(12)

where an,m represents the reward obtained at n before this
assignment stage. Note that unlike CSUM and NSUM, the
label depends on the reward obtained in previous stages. In
each stage, the vertex with the minimum accumulated reward
will be colored with the color that maximizes utilization
while considering interference. If two vertices have the same
label, then the vertex with larger maxm∈�n bn,m/(Dn,m + 1)
value gets a higher label.
Non-collaborative-Max-Min-Reward (NMIN): This rule is
a non-collaborative version of CMIN where the impact of
interference is not considered in the vertex labeling and col-

oring, i.e.

labeln = −
N−1∑

m=0

an,m · bn,m,

colorn = arg max
m∈�n

bn,m .

(13)

In each stage, the vertex with the minimum accumulated
reward will be colored with the color that has the largest
reward. If two vertices have the same label, then the vertex
with larger maxm∈ln bn,m is assigned with a higher label.

Max proportional fair

Collaborative-Max-Proportional-Fair (CFAIR): This rule
aims to achieve a specific fairness among vertices, cor-
responding to (8). It is well known that proportional fair
scheduling assigns resource to the user with the highest
rn/R̂n , where rn represents the reward generated by using
a time slot and R̂n is the average reward that the user n has
received in the past [3,17]. The concept of proportional fair
scheduling is applied to this problem by viewing colors as
time slots. In each stage, each vertex n is labeled according
to

labeln = maxm∈�n bn,m/(Dn,m + 1)
∑M−1

m=0 an,m · bn,m

,

colorn = arg max
m∈�n

bn,m/(Dn,m + 1). (14)

where labeln represents the ratio of the maximum
interference-weighted reward from using a color and the
accumulated reward in past stages. This rule is in general
different from the traditional proportional fair rule as it cap-
tures the difference in the impact of interference generated
by a color assignment.
Non-collaborative-Max-Proportional-Fair (NFAIR): This is
a non-collaborative version of the CFAIR rule. Each vertex
n is labeled according to

labeln = maxm∈�n bn,m
∑M−1

m=0 an,m · bn,m

,

colorn = arg max
m∈�n

bn,m .
(15)

When all the channels have uniformed bandwidth, i.e. bn,m =
1, this rule becomes NMIN rule.

5. Simulation results and discussions

In this section, we conduct experimental simulations to quan-
tify the performance of open spectrum systems, and validate
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the proposed spectrum allocation algorithms. We start by ex-
amining the appropriateness of the labeling rules designed
for different utility functions. We then compare the perfor-
mance of collaborative and non-collaborative approaches to
a baseline approach, and study the impact of system settings
on utility performance. We also compare the performance of
centralized and distributed implementations and their asso-
ciated complexity.

We conduct our simulations under the assumption of a
noiseless, immobile radio network. We randomly place a
number of primary and secondary users in a given area
(10 × 10). Each primary user randomly selects one chan-
nel to utilize from a pool of channels (e.g. 10 channels).
For simplicity, we assume that primary users have uniform
protection ranges, i.e. DP = const . Given the location and
channel selection of primary users, each secondary user n
adjusts its transmit power (and hence interference range)
on each channel m, i.e. dS(n, m) to avoid interference with
primary users. Channel availability, reward and interference
constraints are derived according to Section 3. By default, we
assume that there are 10 channels, 20 primary users and 10
secondary users. We set Cmax = 10, DP = 2, dmin = 1 and
dmax = 4. Each deployment of primary and secondary users
produces a topology and a colored conflict graph. We study
the statistical performance of spectrum allocation in terms
of the average system utility over 500 deployments.

We modify the definition of two utility functions to fa-
cilitate the simulations. We use mean reward instead of sum
reward in the following simulations, i.e.:

Umean = 1

N

N−1∑

n=0

βn, (16)

so that all three utilities are within the same scale. In addition,
the fairness based utility defined in (8) becomes 0 if there
exists a secondary user without any channels assigned, i.e. a
starved user. For a better illustration of the performance at
non-starved users, we modify (8) into:

U =
(

N−1∏

n=0

(βn + 1e − 4)

) 1
N

. (17)

by assuming a baseline reward of 1e − 4 at each secondary
user. Overall, the results are indexed Mean Reward, Min
Reward and Fairness respectively.

5.1. Labeling rules and utilities

We start by examining the relationship between the proposed
rules and the utility functions. For this purpose, we use the
centralized implementation and the default setting defined
above. Figure 4 illustrates the system utilities corresponding
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Fig. 4 System utilities under different labeling rules for various
topologies
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to each of the 40 topologies chosen randomly. The results
confirm that each proposed collaborative rule outperforms
others in optimizing the respective targeted utility function.
From their definitions, we see that the CFAIR rule is a com-
bination of CSUM and CMIN rules. Hence, CFAIR’s per-
formance is in between that of CSUM and CMIN in both
Mean Reward and Min Reward. In terms of Min Reward
and Fairness, CMIN and CFAIR have similar performance
while CSUM performs poorly. This is because both utilities
are critically limited by the “poor” users. Those users are
located in crowded areas and near primary users, and hence
have many edges and small color list in the corresponding
conflict graph. CMIN and CFAIR rules grant priority to these
users by taking into account the accumulated reward in the
labeling metric. As the priority is mainly determined by the
accumulated reward, these two rules perform similarly. The
same conclusion applies to non-collaborative rules, and we
omit those results because of space constraints.

5.2. Collaborative vs. non-collaborative rules

In this section, we compare the performance of collabora-
tive and non-collaborative rules. We also introduce a base-
line random labeling approach which assigns a random label
between 0 and 1 and selects a color randomly from the color
list. For easy notation, we will use CA, NCA, and RAND to
represent collaborative, non-collaborative and random rules.
It is well-known that the performance of graph coloring de-
pends heavily on the topology of the conflict graph. Hence,
only through comprehensive evaluations under different net-
work settings can we thoroughly understand the problem.
Next, we present simulation results evaluating the impact
of four system parameters: the number of primary users,
the number of secondary users, the maximum transmission
power dmax of secondary users and the number of channels.

5.2.1. Impact of the number of primary users

We start by quantifying the performance of labeling rules
under different configurations of primary user deployment.
Note that the configuration of primary users determines chan-
nel availability, reward and interference constraints seen by
secondary users. In the simulated system, increasing the
number of primary users or increasing the protection range
dP would both expand the primary protection area, and force
affected secondary users to reduce their power and thus dS .
The impact is two-fold. First, the number of available chan-
nels, and channel reward at secondary users are reduced, de-
grading spectrum utilization. Second, the interference among
secondary users decreases, improving the possibility of spec-
trum reuse by multiple secondary users. The final impact

on system utility depends on the tradeoff between the two,
which in turn depends on the settings of channel reward and
interference constraints. Figure 5 shows that in the current
setting, increasing the number of primary users would de-
grade all three utilities. Similar trends can be obtained by
increasing dP , and those results are omitted due to space
constraints.

Compared to CA and NCA, RAND rule performs poorly
in term of all three utilities. This is because both CA and
NCA rules take into account certain property of spectrum
heterogeneity by approximating the contribution of a channel
assignment to system utility. Overall, results in Fig. 5 shows
that CA and NCA rules outperform RAND rule by 30–50%
in terms of Mean Reward, 2–14-fold in terms of Min Reward
and 2–4-fold in terms of Fairness.

Compared to NCA rules, CA rules not only consider
the reward obtained for each individual user, but also the
consequence of interference and its impact on overall sys-
tem utility. The label provides a more accurate characteri-
zation of the user’s contribution to system utility. Figure 5
shows that CA leads to an improvement of 5–30% in Mean
Reward,15–80% in Min Reward and 15–40% in Fairness.

5.2.2. Impact of the number of secondary users

Next, we examine the performance of different rules under
different configurations of secondary user deployment. We
start by varying the number of secondary users in the area,
i.e. user density. Increasing density clearly creates additional
interference constraints, thus increasing the vertex degree in
the conflict graph. Hence, Fig. 6 shows that all three utili-
ties degrade as the number of secondary users increases. In
addition, the performance difference among CA, NCA and
RAND rules is similar to that in Fig. 5.

5.2.3. Impact of the number of channels

We now examine how system utility scales with the number
of channels. Figure 7 quantifies the performance of different
rules as the number of channels changes. We see that in
general all three utilities scale linearly with the number of
channels (at least when the number of channels exceeds 10).
We also observe that the scale depends on the number of
secondary users.

5.2.4. The impact of dmax

We then study the impact of varying the value of dmax. Rais-
ing dmax allows secondary users to transmit at higher dS ,
which leads to improved spectrum utilization for secondary
users who are distant from primary users. However, since
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Fig. 7 Spectrum allocation performance with varying channels
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there is no power control among secondary users,4 this also
leads to additional interference constraints and reduced pos-
sibility of spectrum sharing. Hence, there exists a tradeoff
between improving spectrum utilization and degrading spec-
trum sharing. Figure 8 illustrates the system utilities where
dmax varies from 2 to 8. We see that system utilities are quite
sensitive to variations in dmax. In particular, Mean Reward
increases with dmax, and Min Reward and Fairness reach the
maximum for dmax = 3 and 4 and converge after dmax ex-
ceeds 5. Hence, we should adjust dmax to optimize system
utility, or equivalently, invoke power control to adjust dmax

at each secondary user.
Note that the above results are obtained by assuming

that bn,m = DS(n, m)2. We also examine the impact of dmax

where bn,m is computed differently. Figure 9 illustrates the
system utilities where the channel reward is defined by
bn,m = log(1 + DS(n, m)2). In this case, the gain from im-
proving spectrum utilization becomes less significant. In this
case, CA rules that consider interference to neighbors in
labeling are less sensitive to variations in dmax comparing
to NCA and RAND. Figure 10 illustrates the utility per-
formance where dmax = dmin and bn,m = d2

max. This repre-
sents the case where users transmit at a fixed power, hence
get homogeneous reward by using each channel. Note that
even without reward heterogeneity, CA rules perform sig-
nificantly better than NCA and RAND rules. Results show
that the system performance is sensitive to dmax, and a proper
setting of dmax is essential for good system performance. We
also observe that Mean Reward in general reaches its maxi-
mum value at a higher dmax compared to the other utilities.
This can be explained as follows. Increasing dmax could help
“rich” users who are located in a sparse area, but degrade the
performance of “poor” users who are within close distance
with each other. As Mean Reward depends heavily on “rich”
users, the impact of increasing dmax remains positive until
these “rich” users become “poor” users as dmax increases.

5.3. Comparing to the optimal solution

We now compare the system utility derived from the pro-
posed heuristic based approaches to the optimal value. We
use exhaustive search to find the channel assignment that
maximizes each system utility. Given the complexity of the
exhaustive search scales exponentially with the number of
nodes, we use simple topologies (see Fig. 11) with limited

4 Secondary users can adjust their transmission power and thus dS ac-
cordingly to avoid interference among themselves. This is the conven-
tional power control problem. In this paper, we assume that secondary
users only use power control to avoid interfering primary users. Re-
search on combining power control and spectrum allocation to further
improve system utility will be included in another study.
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Fig. 11 Fixed topology (a) Ring (b) Star

number of nodes and channels. Topo I and II are two ex-
treme topologies: a star topology with one vertex interfering
with the rest and a ring topology with uniformed interfer-
ence condition. Figures 12 and 13 summarize the results for
18 node ring topology and 10 node star topology, assuming
3 channels with throughput 1, 0.81 and 0.64, respectively.
There is randomness in the graph coloring assignment (if
two vertices have the same label, the algorithm randomly
picks one vertex). Hence, results are represented as mean
with 90% confidence interval. We observe that the proposed
collaborative rule based approaches achieve similar perfor-
mance compared to the global optimal. For star topology, the
performance under fairness utility is slightly worse.

We also consider a set of small random topologies as-
suming 5 secondary users, 10 primary users and 5 channels.
The topologies are formed by randomly deploying primary
and secondary users following the procedure in Section 2.1.
We set DP = 2, dmin = 1 and dmax = 4. For a clear illus-
tration, we introduce another performance metric:Relative
difference. This measures the difference of system util-
ity provided by the proposed graph coloring approach and
the global optimum. If the utility obtained through graph
coloring using a particular rule x is T (n) and the global
optimum is Topt , the relative difference is 1 − T (n)/Topt .
When Topt = 0, the relative difference is 0. Table 2 sum-
marizes the Relative difference for different system utilities
averaged over 100 random topologies. Similar to the above,
CA and NCA refer to the collaborative and non-collaborative
rules under different system utilities. We see that there is still
visible difference between the proposed approach and the
global optimum, particularly for min reward and fairness.
Overall, CA provides the best approximation compared to
NCA and RAND.

Table 2. Comparison to global optimum-random topologies

Relative difference (%) Sum Reward Min Reward Fairness

CA 0.08 35 20
NCA 0.25 44 28
RAND 15 76 65
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5.4. Centralized vs. distributed implementation

In this section, we compare the performance of centralized
and distributed implementations. Figure 14 compares the
performance of collaborative rules as the number of chan-
nels varies. We also include a distributed implementation
of “RAND” rule. We observe that the centralized and dis-
tributed implementations of collaborative rules perform sim-
ilarly and significantly outperform the distributed implemen-
tation of RAND rule. There is a visible difference between

two implementations in terms of Min Reward. This is be-
cause Min Reward represents the worst user performance
in the system and thus requires system-wide optimization.
Centralized implementation is designed to maximize the per-
formance of the “poorest” user within the network, while dis-
tributed implementation aims to maximize the performance
of the “poorest” user in local neighborhood.

We also examine the complexity of two implementations.
The major difference between two implementations is that
during each coloring stage, centralized implementation se-
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Fig. 14 Spectrum allocation performance using centralized and dis-
tributed algorithms
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Fig. 15 Number of labeling stages (a) regarding the number of chan-
nels (b) regarding the number of secondary users

lects one user while distributed implementation selects mul-
tiple users. Hence the number of labeling/coloring stage re-
quired for distributed implementations is much less than that
of centralized implementation. Figure 15 compares the num-
ber of labeling stages in both implementations. We see that
distributed implementation cuts the number of stages by al-
most half. For centralized implementation, the number of
stages equals to

∑N−1
n=0

∑M−1
m=0 an,m . Hence, the number of

stages required for Mean Reward is much higher than that
of Min Reward and Fairness. As expected, the number of
stages scales linearly with both the number of channels and
the number of secondary users.

6. Theoretical lower bound

When Cmax = M , seeking channel assignment to maximize
sum reward is equivalent to finding the maximum weighted
independent set problem. The work in [21] shows that a
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greedy approach that selects to color the vertex with max-
imum bn

(Dn+1) outputs an independent set of weight at least
∑

n∈V
bn

(Dn+1) . In this section, we conduct theoretical analysis
on the lower bound of sum reward using the CSum rule and a
centralized implementation, under general Cmax constraints.

For each vertex n, we sort the channel list by the CSum
label bn,m/(Dn,m + 1) in decreasing order. Define π (n, K )
as the collection of up to K highest labeled channels at n.
Define coloring bound

G B(K ) =
N−1∑

n=0

∑

m∈π(n, K )

bn,m

Dn,m + 1
. (18)

In particular, if K = M, π (n, K ) = {0, . . . , M − 1}, and

G B(M) =
N−1∑

n=0

M−1∑

m=0

bn,m

Dn,m + 1
(19)

and if K = 1, i.e. every user can only use one channel,
π (n, Cmax) = arg max0≤m≤M−1bn,m/(Dn,m + 1), and

G B(1) =
N−1∑

n=0

max
0≤m≤M−1

bn,m

Dn,m + 1
(20)

Let

S(Cmax ) �
N−1∑

n=0

M−1∑

m=0

an,m · bn,m, (21)

represent the sum reward obtained using the CSum labeling
rule, which depends on the choice of Cmax.

Theorem 1. Using centralized implementation and CSum
rules, the sum reward is bounded.

S(Cmax) ≥ G B(Cmax). (22)

Theorem 1 expands the lower bounds derived in [21] re-
garding weighted independent set problem (WIS) into the
proposed color-sensitive graph coloring problem with the
constraint Cmax. When Cmax = M , the problem can be re-
duced into finding the maximum WIS on each color graph.
A color m graph is derived from graph G by removing color
m from all the color lists, and removing color m edges. The
proof is straightforward following the work in [21]. For gen-
eral choice of Cmax, we need to jointly consider the color
assignment for all the color graphs, and the results in [21]
are not directly applicable. The detailed proof is shown in
the Appendix I

Corollary 1: The same lower bounds can be obtained using
distributed implementations.

Distributed and centralized implementations differ in
terms of the choice of vertex to be colored in each stage.
In distributed implementations, more than one vertex can
be colored in each stage, but each chosen vertex is associ-
ated with the highest labeling in its neighborhood. Hence,
the selected user’s contribution to the sum throughput can
still compensate for the throughput loss at its conflicting
neighbors. A detailed proof is included in Appendix II. The
derived lower bounds are shown in Figs. 5 to 14.

Theorem 2. Using centralized implementation and CSum
rules, the performance ratio of the proposed approach to the
optimal solution ρ = in fG

SG (Cmax)
αG (Cmax) , where SG(Cmax) is the

sum reward obtained using the CSum labeling rule on graph
G and αG(Cmax) is the optimal sum reward. When Cmax = M,
the performance ratio is bounded by

1

minm maxn Dn,m
≥ ρ ≥ 1

maxm maxn Dn,m
. (23)

The proof is straightforward following the results in [21].

7. Related work

Extensive research exists on the general problem of channel
allocation. Both analytical framework and practical strate-
gies have been proposed. Analytical frameworks in [9,16]
address fairness for single-hop flows, and derive an estimate
of the rate at each flow to achieve Max-Min fairness. How-
ever, there is no guarantee that a feasible scheme exists to
achieve the rate.

Practical strategies have been proposed for sharing a sin-
gle channel.Contention based schemes invoke a random ac-
cess protocol like ALOHA and CSMA, where users con-
tend in time to share a common channel [9,13,16]. While
this scheme provides fairness and utilization on a single
channel system probabilistically, its application to a multi-
channel system requires each user to know how many
and which channel(s) to access. Another approach, con-
flict free time slot scheduling, provides guaranteed chan-
nel usage by reserving time slots for each flow. Solutions
in [1,19,20] assign exactly one time slot to each flow.
This approach can be used in multi-channel systems if
each user uses only one channel. Another solution [22] al-
lows users to use multiple slots/channels to achieve Max-
Min-fair, but does not consider interference from neighbor
transmissions.

Multi-channel assignment strategies were developed
mostly for cellular networks. The work in [11] provides so-
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lutions to assign frequency bands among base stations to
minimize call blocking probability for voice traffic. There is
no notion of fairness as the traffic determines the number of
channels each base station should use. Distributed channel
assignment for OFDM based systems has been studied in [8]
but only for fully-connected networks, where all the flows
interfere with each other.

While most existing approaches allocate channels accord-
ing to a fixed user demand, i.e. call requests or one chan-
nel per user, our goal is to optimize spectrum utilization
across the entire network while taking fairness into account.
In addition, we consider the issue of spectrum heterogene-
ity, where users perceive different channel availability and
different channel interference constraints. For Sum Reward
based utility, and unlimited channel access i.e. Cmax = M ,
the optimization is exactly a Weighted Independent Set
(WIS) problem [21]. However, we generalize the optimiza-
tion to Cmax ≤ M and derive the theoretical lower bound.
We consider a general multi-hop network topology, while
most work on OFDM based channel allocation are based on
fully-connected single hop wireless networks.

8. Conclusion and on-going work

In this paper, we define a general model and utility functions
for optimizing utilization and fairness in spectrum allocation
for open spectrum systems. By reducing the optimal allo-
cation to one of Color-Sensitive Graph Coloring (CSGC),
we show that it is an NP-hard problem. While taking into
account spectrum heterogeneity, we describe a set of ap-
proximation algorithms for both centralized and distributed
approaches to spectrum allocation. Our experimental results
show that not only can our algorithms drastically improve
network performance by reducing interference, but our
distributed algorithm provides benefits comparable to the
centralized approach while drastically reducing computation
complexity.

While we propose several computationally efficient dis-
tributed allocation algorithms in this paper, we assumed a
static network environment and focused on optimizing a
snapshot of the network. If we consider a dynamic network,
network-wide spectrum allocation becomes a more complex
problem. The algorithm needs to recompute allocations as
the topology changes. We develop an adaptive approach that
adapts to topology variations through local optimizations
[4]. To reduce communication overhead, we develop a rule
based spectrum management scheme where users observe
local interference patterns and act independently according
to preset spectrum rules [27]. We are also examining the
impact of variations in spectrum availability and bandwidth
distributions on our algorithms.

Appendix I

Pseudo code for modeling network conflict graph

Deploy K primary users: each primary user k (1 ≤ k ≤ K )
locates in xk , and uses channel yk .
Deploy N secondary users: each secondary user n (1 ≤ n ≤
N ) locates in φn .
for n = 1 to N do

DSE (n, m) = min(dmax, mink=1...K ,yk=m{DI ST
(φn, xk) − DP R})

if DSE (n, m) > dmin then
Bn,m = DSE (n, m)2, ln,m = 1

else
Bn,m = ln,m = 0

end if
end for
for n = 1 to N − 1 do

for i = n + 1 to N do
for m = 1 to M do

if DSE (n, m) + DSE (i, m) ≥ DI ST (φn, φi ) then
c(n, i, m) = c(i, n, m) = 1

else
c(n, i, m) = c(i, n, m) = 0

end if
end for

end for
end for

Appendix II

Proof of Theorem 1

In this section, we provide the proof of Theorem 1. We start
with the following denotations.

� S (i) = {(ni , mi )}: The chosen vertex and the asso-
ciate color, i.e. vertex-color pair at the i th coloring
stage;

� A(i)
n = {(n, m)|(n, m) ∈ S (k), k ≤ i}: The list

of color assignment at vertex n before the
ith stage.

� l (i)
n,m : The availability of m after the ith coloring stage.

( After each assignment, a set of colors are removed (or
disabled) from some vertices.)

� F (i) = {(n, m)|l (i)
n,m = 1}: The set of available vertex-color

pairs after ith stage.
� u(i)

n,m : An indicator of the disabled vertex-color pair due
to the ith coloring, i.e. u(i)

n,m = 1 only if l (i−1)
n,m = 1 and

l (i)
n,m = 0.

� U (i) = {(n, m)|u(i)
n,m = 1}: The set of disabled vertex-color

pair due to ith coloring.
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� D(i)
n,m : Vertex n’s degree on color m after ith coloring,

i.e. D(i)
n,m = ∑N−1

k=0,k 	=n c(n, k, m) · l (i)
n,m · l (i)

k,m . Let Dn,m =
D0

n,m .
� N (i)

m (n) = {k|cn,k,m=1, l (i)
k,m = 1, k < N , k 	= n}: The set of

m colored neighborhood of vertex n after ith coloring.
D(i)

n,m = |N i
m(n)|.

� M(K ): The set of K preferred vertex-color pairs in the
system i.e.

M(K ) = {(n, m)|m ∈ π (n, K ), n < N }. (24)

The following lemmas will be used in the proof.

Lemma 1. F (i),U (i) and S (i) are related by

F (i−1) = F (i) ∪ U (i) ∪ S (i),

F (i) ∩ U (i) = F (i) ∩ S (i) = U (i) ∩ S (i) = ∅
F (0) = (∪i U (i)

) ∪ (∪i S(i)
)
.

(25)

The proof is trivial and thus omitted.

Lemma 2.

D(i)
n,m ≤ D( j)

n,m ≤ D(0)
n,m, ∀ i ≥ j ≥ 0. (26)

Proof. Since l (i)
n,m ≤ l (i−1)

n,m , then it is obvious that
the vertex degree D(i)

n,m is a non-increasing function
of i.

Lemma 3. Using CSum rule based coloring scheme, the
color assignment at ith coloring stage is (ni , mi ), and

(ni , mi ) = argmax
(n,m)∈F (i−1)

bn,m

D(i−1)
n,m + 1

. (27)

It satisfies,

∀i > 0, ∀(n, m) ∈ F (i−1)

bni ,mi

(D(i−1)
ni ,mi + 1)

≥ bn,m

(D(i−1)
n,m + 1)

≥ bn,m

(D(0)
n,m + 1)

.
(28)

The proof is trivial by combining (25,(26) and (27).
To prove Theorem 1, we start by analyzing M(K ). Since

M(K ) ⊆ F (0), we can divide it into two groups, i.e.

M(K )

= (∪iU (i)∩M(K )
)

︸ ︷︷ ︸
joint with disabled vertex−color pair

∪ (∪i S (i)∩M(K )
)

︸ ︷︷ ︸
joint with selectedvertex−color pair

.(29)

The first group represents the vertex-color pair in M(K )
which is selected at each coloring stage, and the second group

represents the vertex-color pair in M(K ) that is discarded at
each coloring stage (in topology updating). Next, we analyze
the vertex-color pairs of two groups separately.

For a vertex-color pair (n, m) chosen at ith coloring stage,
it is obvious that the following lemma holds.

Lemma 4.

∑

(n,m)∈M(K )∩S (i)

bn,m

D(0)
n,m + 1

≤
∑

(n,m)∈M(K )∩S (i)

bni ,mi

D(i−1)
ni ,mi + 1

(by Lemma 3)

= |M(K ) ∩ S (i)| bni ,mi

D(i−1)
ni ,mi + 1

= (1 − |S (i)\M(K )|) bni ,mi

D(i)
ni ,mi + 1

(30)

For a vertex-color pair (n, m) disabled at ith stage, the
following lemma holds.

Lemma 5.

∑

i

∑

(n,m)∈M(K )∩U (i)

bn,m

D(0)
n,m + 1

≤
∑

i

bni ,mi

D(i−1)
ni ,mi + 1

(
D(i−1)

ni ,mi
+ |S (i)\M(K )|).

(31)

Proof There are two reasons to disable a vertex-color pair:

� At each coloring stage, after a vertex is colored, the color
will be deleted from the neighbors of the vertex to avoid
future conflict. Let

U (i)
N = ∪n∈N (i−1)

mi (ni )
(n, mi )

represent the set of vertex-color pairs disabled at the ith
coloring stage to prevent future conflict. These vertices
are the neighbors of the selected vertex ni , who share a
mi colored edge with ni . Obviously the size of U (i)

N is
the number of conflicting neighbors of ni who has mi

available, i.e. |U (i)
N | = D(i−1)

ni ,mi
.

� At each coloring stage, after a vertex is colored, the assign-
ment of the vertex might reach the maximum constraints
K = Cmax . The vertex and its color list will be deleted.
Let

U (i)
S = ∪m 	=mi ,l

(i)
ni ,m=1,|A(i)

ni |=K (ni , m)

represent the vertex-color pairs that are disabled because
vertex ni ’s assignment reaches K.

Obviously

U (i) = U (i)
N ∪ U (i)

S , U (i)
N ∩ U (i)

S = ∅ (32)
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For each (ni , m) ∈ M(K ) ∩ U (i)
N , since it hasn’t been cho-

sen by the labeling rule, we have

∑

i

∑

(n,m)∈M(K )∩UN (i)

bni ,m

D(0)
ni ,m + 1

≤ |U (i)
N | bni ,m j

D( j−1)
ni ,m j + 1

= D(i−1)
ni ,mi

bni ,m j

D( j−1)
ni ,m j + 1

. (33)

For each (ni , m) ∈ M(K ) ∩ U (i)
S , since |A(i)

ni
| = K , then

K = |A(i)
ni

| = |M(K ) ∩ A(i)
ni

| + |A(i)
ni

\M(K )| (34)

From the definition of π (ni , K ), we have

K = |π (ni , K )| = ∣
∣π (ni , K ) ∩ A(i)

ni

∣
∣ + |π (ni , K )\A(i)

ni
|

= ∣
∣M(K ) ∩ A(i)

ni

∣
∣ + ∣

∣M(K ) ∩ U (i)
S

∣
∣

+
∑

j<i

∣
∣π (ni , K ) ∩ U ( j)

N
∣
∣. (35)

Combining (34) and (35), we get

∣
∣M(K ) ∩ U (i)

S
∣
∣ = δ

(∣
∣A(i)

ni

∣
∣ = K

)(∣
∣A(i)

ni
\M(K )

∣
∣

−
∑

j<i

|π (ni , K ) ∩ U ( j)
N

∣
∣
)

≤ δ
(∣
∣A(i)

ni

∣
∣ = K )

∣
∣A(i)

ni
\M(K )

∣
∣.

(36)

For each (ni , m) ∈ M(K ) ∩ U (i)
S , since it hasn’t been chosen

by the labeling rule, the following holds:

bni ,m

D(0)
ni ,m + 1

≤ bni ,m j

D( j−1)
ni ,m j + 1

, ∀ j ≤ i, (ni , m j ) ∈ A j
ni

≤ min
j≤i,(ni ,m j )∈A j

ni

bni ,m j

D( j−1)
ni ,m j + 1

� ξ (ni , i). (37)

Hence, we can derive

∑

i

∑

(n,m)∈M(K )∩U (i)
S

bn,m

D(0)
n,m + 1

≤
∑

i

δ(|A(i)
ni

| = x)|M(K ) ∩ U (i)
S |ξ (ni , i)

≤
∑

i

δ(|A(i)
ni

| = x)|A(i)
ni

\M(K )|ξ (ni , i)

≤
∑

i

bni ,mi

D(i−1)
ni ,mi + 1

|S (i)\M(K )|.
(38)

Combining Lemma 4 and 5 we have

G B(K ) =
N−1∑

n=1

∑

m∈π(n,K )

bn,m

D(0)
n,m + 1

=
∑

(n,m)∈M(K )

bn,m

D(0)
n,m + 1

=
∑

i




∑

(n,m)∈M(K )∩S(i)

bn,m

D(0)
n,m + 1





+
∑

i




∑

(n,m)∈M(K )∩U (i)
N

bn,m

D(0)
n,m + 1





+
∑

i




∑

(n,m)∈M(K )∩U (i)
S

bn,m

D(0)
n,m + 1





≤
∑

i

bni ,mi

D(i−1)
ni ,mi + 1

(1 − |S (i)\M(K )|)

+
∑

i

bni ,mi

D(i−1)
ni ,mi + 1

(
|U (i)

N | + |S (i)\M(K )|
)

=
∑

i

(
bni ,mi

D(i−1)
ni ,mi + 1

+ D(i−1)
ni ,mi

· bni ,mi

D(i−1)
ni ,mi + 1

)

=
∑

i

bni ,mi . (39)

This completes the proof of Theorem 1.
In the special case of x = M (x ≥ M), that is, each ver-

tex can use as many colors as possible, M(K ) is equal to
F (0),U (i)

S = ∅, and then (39) can be rewritten as

G B(M) =
∑

n<N

∑

m<M

bn,m

Dn,m + 1

=
∑

i




∑

(n,m)∈S (i)

bn,m

Dn,m + 1
+

∑

(n,m)∈U (i)

bn,m

Dn,m + 1





≤
∑

i






bni ,mi

D(i−1)
ni ,mi + 1

+
∑

n∈N (i−1)
mi (ni )

bn,mi

D(i−1)
n,mi + 1






=
∑

i

(
bni ,mi

(D(i−1)
ni ,mi + 1)

+ D(i−1)
ni ,mi

· bni ,mi

(D(i−1)
ni ,mi + 1)

)

=
∑

i

bni ,mi (40)

Actually, (40) obtains the generalization of Weighted In-
dependent Set Problem in Color-Sensitive Graph Coloring
Problem in [21].
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Appendix III

Proof of Corollary 1

In a similar way, we can expand the above results to the
distributed cases, as Corollary 1. The difference between
the centralized and distributed implementations is the vertex
choice, that is, more than one vertex may be chosen at one
coloring stage in distributed implementation, and S (i) proba-
bly consists of multi pairs, S (i) = {(ni1 , mi2 ), (ni2 , mi2 ), . . .}.
Let U (i)

(ni ,mi )
represent the individually disabled pair set

by (ni , mi ), obviously U (i) = ∪(ni , mi )U (i)
(ni ,mi )

. Since multi
pairs may be chosen at one stage, their individual disabled
sets may be overlapped, therefore,

∑

(n,m)∈M(K )∩U (i)

bn,m

D(0)
n,m + 1

≤
∑

(ni ,mi )∈S (i)






∑

(n,m)∈M(K )∩U (i)
(ni ,mi )

bn,m

D(0)
n,m + 1




 . (41)

Hence,

G B(x) =
∑

i




∑

(n,m)∈M(K )∩S (i)

bn,m

D(0)
n,m + 1





+
∑

i




∑

(n,m)∈M(K )∩U (i)

bn,m

D(0)
n,m + 1





≤
∑

i

∑

(ni ,mi )∈S (i)

∑

(n,m)∈M(K )∩(ni ,mi )

bn,m

D(0)
n,m + 1

+
∑

i

∑

(ni ,mi )∈S (i)

∑

(n,m)∈M(K )∩U (i)
(ni ,mi )

bn,m

D(0)
n,m + 1

. (42)

Using similar approach as in proving (39), (42) can be ex-
panded as

G B(x) ≤
∑

i

∑

(ni ,mi )∈S (i)

(
bni ,mi

D(i−1)
ni ,mi + 1

+ D(i−1)
ni ,mi

bni ,mi

D(i−1)
ni ,mi + 1

)

=
∑

i

bni ,mi . (43)
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