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Abstract- Probability density function (PDF) estimation is
a constantly important topic in the fields related to artificial
intelligence and machine learning. This paper is dedicated to
considering problems on the estimation of a density function
simply from its marginal distributions. The possibility of the
learning problem is first investigated and a uniqueness proposi-
tion involving a large family of distribution functions is proposed.
The learning problem is then reformulated into an optimization
task which is studied and applied to Gaussian mixture models
(GMM) via the generalized expectation maximization procedure
(GEM) and Monte Carlo method. Experimental results show that
our approach for GMM, only using partial information of the
coordinates of the samples, can obtain satisfactory performance,
which in turn verifies the proposed reformulation and proposi-
tion.

I. INTRODUCTION

Probability density function (PDF) estimation is very essen-
tial in artificial intelligence and machine learning, providing a
solid basis for tasks such as probabilistic inference, clustering
analysis, data mining and other related fields [1]. The PDF
estimation methods can be divided into two categories: the
parametric [2] and nonparametric approaches [3][4]. In the
parametric approaches (e.g. maximum likelihood estimation
(ML) and Bayesian estimation) the PDF is assumed to be of
a given form and the function parameters are then optimized,
while in the nonparametric approaches (e.g. histogram statis-
tics, Parzen estimator and kernel density estimation) the form
of the PDF need not to be known and the estimation is entirely
driven by data. However, most of these contemporary para-
metric and nonparametric estimation techniques are applied
in the original feature space, dealing with the full coordinate
entries of samples. Even the classical methods for incomplete
data such as Expectation Maximization method (EM) [5] still
utilizes the full coordinates by introducing auxiliary latent
variables. Till now, problems on learning the PDF simply from
the given distributions in the subspaces of the original space
have been seldom considered and these will be crucial when
only marginal distributions can be observed(e.g. the comput-
erized tomography). This paper investigates the availability of
recovering the original PDF from the marginal distributions in

given subspaces and finds it available for a wealth of density
functions, and then proposes and studies an optimization
task which maximizes the similarity with given marginal
distributions. This task is then associated to the Gaussian
Mixture Models (GMM), which have been found a number
of important applications, such as video modelling [6], time
series classification [7] and face representation [8], and the
algorithm for learning GMM from marginal distributions are
developed. The experimental results show that the proposed
algorithm which uses only marginal distributions can achieve
comparable performance as the classical algorithm [9] which
uses the entire coordinate entries in the original space, and in
turn verify the proposed proposition and optimization task.
The remainder of this paper is organized as follows. In

section 2, we propose a uniqueness proposition for the learning
problem and study an optimization task for the recovery. In
section 3, the task is executed for the recovery of GMM, and
the detailed algorithm based on the generalized EM and Monte
Carlo method is developed. Experimental results and analysis
are given in section 4, followed by some conclusions in section
5.

II. MAIN PROPERTIES AND PROBLEM FORMULATION

This section contains two parts: In the first part, the solvabil-
ity of the learning problem is considered and the corresponding
proposition is presented; In the second part, an optimization
task for the learning purpose is studied and the conditions
under which GMM can be learned via the optimization are
proposed.
As is known, the marginal distributions always lose infor-

mation of the original PDF, so one would imagine that some
behaviors of the PDF may not emerge in all subspaces and it
would happen that there are two or more PDFs which have
the same marginal distributions. Thus the problem for learning
general density functions merely from the marginal distribu-
tions seems unsolvable. However, the following proposition
reveals that, for a very large family of density functions, they
can be uniquely determined if all marginal distributions in one
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dimensional subspaces are known'.
Proposition I (Uniqueness): Let (x1,x2, ... ,xn) be the

n-dimensional random variable in Rn with the probability
density function f(xi, X2, ... ,xn) E L2(Rn). Suppose for
any given linear combination of x1, x2, ,xn, the marginal
distribution can be known. Then the original distribution f can
be uniquely determined.

Proof: Let f(w, W2,.** Wn) be the characteristic func-
tion 2 for f, aix, + a2x2 + -.. + anXn be an arbitrary
linear combination of x1,x2,.-. ,xn. By assumption, the
distribution of En 1 aixi is known, denoted by fa. Then the
characteristic function for fa can be computed, written by
fa (w). On the other hand,

n

faMw) = Jf(xl,-- Xn) exp(jw aixi)dxl * dxn
i=1

= f(aiw, a2w, , anw). (1)

For any (wl, w22 , wn), take ai = wi and w = 1 in (1), and
hence f((W1,W2, 7wn) can be determined. By the relation
between distribution function and its characteristic function, f
can be then uniquely determined. X
Remark 2: In proposition 1, the purpose of the hypothesis

that f is L2-integrable is to assure the one-to-one relation
between the density function and its characteristic function
by Plancherel theorem [ 1]. The L2-integrable hypothesis can
involve a wealth of density functions, including almost all
PDFs commonly used such as the exponential family and
piecewisely smooth PDF with compact support.

Proposition 1 tells that any two PDFs with all the same
one-dimensional marginal distributions are identical, which
provides the theoretical basis for the possibility of learning
PDF from its marginal distributions. The proof also implies a
reconstruction scheme, in which the characteristic function's
value at each point is determined firstly and then the inversion
transform is carried out. Unfortunately, the scheme encounters
two practical difficulties: one is that the characteristic function
is hard to be computed in general and the other is that, usually,
only a finite number of marginal distributions can be obtained.
However, it is natural to expect that the distribution which can
fit the given marginal distributions well in subspaces would
be the actual distribution. For measuring the similarity of the
marginal distribution of estimated PDF with the given marginal
distribution, Kullback-Leibler distance, which is commonly
used for evaluating the similarity of two density functions, is
adopted. The definition of Kullback-Leibler distance is given
as follows [12]:

Definition 3 (Kullback-Leibler distance): The Kullback-
Leibler distance of density p w.r.t. density 4' is defined
by

D(W1 0) = J In () (2)

tFor higher dimensional subspaces or their mixtures, the proposition can
still work in a similar way.

2Refer to [10] for the definition of the characteristic function.

Let X be the original space with the PDF estimation f,
and Xk be a given subspace ofX with a marginal distribution
known as g(k) for k = 1, - -,K. Let f(k) denote the marginal
distribution of f in Xk, and then the above problem can be
formulated as the following optimization one:

K

f = arg min E D(9(k)I I f(k)),
fEt2 k=l

where Q is the space of density functions f takes. Though
the optimization reformulation seems reasonable, if there is
no other restriction on Q, it might fail to achieve the actual
PDF because of serious ambiguity even all D(9(k)IIf(k)) are

minimized to zero (thus f(k) = 9(k)). As the following
proposition says, there can be an infinite number of density
functions with the same marginal distributions in the finite
subspaces arbitrarily given.

Proposition 4 (Nonuniqueness): Suppose f is a continuous
density function in Rn (n > 2), K is any natural number, the
one dimensional subspace Xk (k = 1, - * *, K) is arbitrarily
given and f(k) is the marginal distributions of f in Xk. There
are infinitely density functions f' whose marginal distributions
in Xk are f(k) for k = 1, * , K.

Proof: The proof is accomplished by a construction
method. Construct a function g(x) = g(xi,.-. ,xn) where
x = (xi,--* ,x)T E R' as follows:

n n
| xn(1 - Ex2), if EX? < 1;g(,X)= Xn

i=l
i

=1

10, otherwise.

Obviously, g is a continuous function with compact support
in Rn. The transform matrix from Rn into Xk is denoted by
Pk = (al,(k)I..* Ian,(k)), and Pk is extended to a full rank
square matrix AIlk with Pk the first row. Construct another
function (Pk(X) = 9(Mk7X) for each k. Let

0(X) = (l * V2 * * K*

where * represents the convolution operator. It is apparent that
0 is still continuous with compact support. Besides, because
f is continuous, then there exist a translation vector t 0 and
two positive scale factors A1, A2, s.t.

V-y E [0, A2], f(7) - -.Yq(A\1(' - t o)) > 0.

Let f,(iX) = f('X)--y(l( X(-t7o)), and it can be verified

that is still a density function and its marginal distribution
in Xk is f(k). Since y ranges from 0 to A2, the proof is
completed.
Remark 5: Generally, it can be shown that proposition 2

still holds for f which is somewhere positive and continuous,
which means that there is an open region where f is positive
and continuous, e.g., uniformly distributions and piecewisely
continuous PDFs.

However, if Q only contains density functions of certain
models with finite free parameters, such as Gaussian Mixture
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Models and other finite mixture models of the exponential
family [13], and if marginal distributions are properly given,
the ambiguity will not occur. The verification depends on the
detailed problem, but usually can be accomplished by solving
equations. As most of the practical parametric models are of
finite parameters, in many situations the actual PDF can be
learned through the optimization task. Take GMM for example
for further considerations. Additional notations are introduced
first: Let the original space X C Rd, Pk be the transform
matrix which projects X into Xk (Xk needs not to be one-
dimensional and let its dimension be denoted by dk), S be
the sample set of X, and x? be an individual point in S. Then
the projection of x into Xk is Pkx^, written by X(k). f is the
underlying Gaussian mixtures:

c

f(x) = SQLahl (x),
1=1

(4)

c

where al' = 1, aol > 0, hi(x) -NN(41,t l))3 for I =
1=1

1,2, ... ,c, and h1 (x) are distinct from each other. Therefore

f(k) = Zalhi,(k) (X) where
1=1

hl,(k) (x) N (Pkpl, PkElPkT) . (5)
C

Assume f is another Gaussian mixture f(x) =
Iaihi (x),

1=1
where the symbols' meaning is defined in a similar way to
f, and the marginal distributions in Xk are also f(k). Then
hi (k) (x) must be one of hl,(k) (x), i.e.,

(Pkji7 PkEiPk[) E {(Pkp, PkEiPkT) I = 1,. c,C} (6)
for k = 1, ', K. If the transform matrices satisfy condition
1, by solving linear equations derived from (6), all feasible
Gaussian components which can appear in f, including all
hi(x), can be obtained finitely, written by N(te),O t =
1, * ,T, where T is the number of possible components
obtained and the components are distinct with different t.

Condition 1: The dimensions of span{(Pk)i,. k =
1,... ,K;i = 1,... ,dk}4 and span{the upper triangle of
((Pk)i,.)T (Pk)J, Ii,i = 1, .* ,dk; k = 1,.* ,K} are d and
d(d+l)

2 , respectively.
Moreover, if the transform matrices satisfy condition 2, all

the Gaussian components which are not in {h1 1 = 1,... ,c}
can be discarded also by (6).

Condition 2: (1) V1 E {(tit = 1,.. ,T}, there is a
transform matrix P s.t. Pf V {P(tIt = 1,.-- ,T; t # }.
(2) V((,O) E {(t,et)It = 1,... ,T}, there
exists a transform matrix Q such that QeQT ¢
IQE)tQTlt = 1,.. ,T; t = ( but E)t 54 ()I
3The notation as h(x) N(js, E) means that h(x) is the Gaussion

function: h(x) = - - exp{-2(x - )T-1(x ts)}, where d
(27r)7 IEI

is the dimension of x.
41n the paper, for a matrix E, let Ei,., E.j, Eij stand for its i-th row

vector, j-th column vector, entry in the i-th row and j-th column, respectively.

Till now, when condition 1 and 2 are both met, all the
components in f are identical to those of f and then all the
coefficients. Though the combination of the above conditions
is just one sufficient condition, they do indicate that if the
subspaces are properly chosen, the original f can be achieved
through the optimization task.

III. ALGORITHM FOR LEARNING GMM
In this section, the above objective function for learning

GMM is optimized and the detailed optimization algorithm
is developed. The meaning of the notations is the same as
the previous section. In each subspace Xk, the marginal
probability distribution, denoted by 9(k)(X(k)), is obtained by
prior knowledge or some estimation techniques. The problem
is to obtain the Gaussian mixture f to minimize

K

E1 D((k) f(k)) -

k=l
(7)

In (7), though D(g(k)IIf(k)) might be hard to compute
directly, it can be approximated by the Monte Carlo integral.
Samples with distribution 9(k) can be generated by classical
sampling methods such as MCMC [14], or directly use the
projections of partial samples in X chosen by bootstrap
method [15] (thus g(k) needs not to be prior given or esti-
mated). The later sampling method also helps to make full
use of the samples with incomplete coordinates observed. Let
the samples in Xk be denoted by Xi,(k), i = 1, .. ,mk (note
that there is no relation between Xi,(k) and Xi,(k') for different
k and k ). By Monte Carlo integration

\3(k)IIJ(k)/
Mk

i=1
Xi ()D(9(k) f(k) )PI. ~-E 10g9(* (it

eliminate the constant factors in (8) and obtain

D
mk

D(9(k) If(k)) --- 109log f(k) (Xi,(k))-Mk i=1

(8)

(9)

By substitution of (4)(9) in (7), the optimization objective is
changed to maximize

K 1 Mk c

E imk E lg(Ealhl,(k)(Xi,(k)))} (10)

The objective function in (10) can not be optimized explicitly
because it contains the log of the sum. We will utilize the
idea of EM like that in [9], which has been proved to be able
to provide a favorable convergence property for GMM [16].
However, in the following context, it can be found out that
the EM algorithm can not be applied directly because the
optima of the M-step is difficult to be obtained in closed form.
Thus the generalized EM method (GEM, [1]), which does not
require the global maxima in the M-step, is used instead. Let
the latent random variable of Xi,(k) be Zi,(k) E {1,2, ,c},
whose value indicates the component in f "generating" Xi,(k).
Like the basic EM algorithm, GEM is an iterative algorithm
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and the parameters should be initialized first. Let the estima-
tion of cet ILU, El, fi and f in the n-th iteration be denoted by

(n) (n) (n) f(n) and f(n), respectively. Then

P(n ) - P(Zi,(k) = lIXi,(k), f(n))
a(n) a(n) (Xi (k) )

= -c (n) (n) 11
Ej=1lai fJj(k) (Xi,(k) )

The expectation step (E-step):
K 1 mk c

k 1
k lg ( fi,(k) ( t) 109(CXIfl,(k) (Xi (k))). (12)

Expand (12), and we have
K cr(n)
E E {rl,Jr ) (log al - - log IEl,(k)II_k 2
k= 1=1.

2 ±l)T1 (Pktkt)T_170(n)

-2tr(E-( 1(n) )I}+ const (13)

whee
) ZPj,(k)(k)' YI,(k) = [' t,(k) =

wrZPir(l )(k)Xi(k) r(k)(=1kEl(k) (I)xI(k)T1(k) and

i=1 t=1
tr(-) is the matrix trace operator.

It is noticed that to maximize (13), each plt should satisfy
K K

Pi= (ZrlPkT ,(k)Pk)(ZP(1k lk')'k)' (14)
k=1 k=1

Moreover, El must be positive definite, so El can be decom-
posed into the form: El = RT* RI, where RI is a square
matrix of Rdxd. Let

H1 (Rl) (EPkT(PkR RlRPkT) T1(k))
k=1
K

*(Zr()Pj(PkR RP)-lpPk-1
k=l
K

(ZPT(PkRTRtP[1kRI) )

k=1
K

H2(Rt) - 2Z tr{(PkRTRtPT) r'1()}'
1 ,(k=1

K

H3(RI) - 2 : tr( (k) RogIPkRLTRtPkI|,
k=1

and then to maximize (12) is to maximize
cKK

{Hi(RI) -H2(Rt)-H3(Rt) + IogaTEr( )} (15)
t=1 k=1

w.r.t. Rt, at for I = 1,.*. , c. In the maximization step (M-
step) for maximization of (15), the optima of at can be
obtained by Lagrange multiplier method and given in (16),

but the optima of RI are difficult to obtained explicitly like
the typical EM algorithm for GMM in [9]. Fortunately, the
derivatives of H1 (Rt), H2(RI), H3(RI) w.r.t. all entries in R,
can be derived (see appendix), and the derivatives of the
objective value w.r.t. all entries in RI can therefore be obtained,
written by DI, so the common gradient ascent method can be
used. The incremental step size for each Rl, written by El, is
made variable and determined with the heuristic method which
increases each el individually from a small size by multiplying
a fixed amplification factor till (15) stops increasing. The
renewal formula are listed in (16) and the detailed algorithm
are summarized in Table 1.

- K (n)
(n+1) k= 1,(k)
(Xl v~c

I
K Jr(n)'El=_1Lk= l,(k)

Rl=n R(n
+ 61 Di,

(n+1) = (n+1))T (n+ )

K
(n+l) =((n)pT (EF(n+)1))

k=1
K

.(ZpkT( E(n1) ) - -n.pkT (1(k+)) 01, (k,)).
k=1

TABLE I
THE DETAILED ALGORITHM FOR ESTIMATING GMM

(16)

* Algorithm procedure

Input: Sample set Sk = {Xi,(k)Ii = 1,-- ,Mk} in Xk
sampled from given marginal distributions 9(k) for
k=1,--- ,K.

Output: Parameter set E = {(a t,El ) 1, * ,c}.

Step I : Initialize the number of components c, largest
iteration steps N, iterating counter n = 0 and e.
Decompose El: El = RTRI.

Step II: Iteration counter n = n + 1
-E-Step computes the p(() )(l) of each xi,(k) by (Hl).
-D-Step computes the derivative Dl of (15) w.r.t. all

entries in each Rl by the formulas in appendix.
-M-Step determines the step sizes Et and renews all Rt

and eI by (16).
Step III: Test whether the convergence is reached or t >

N. If not, loop back to Step II, otherwise return e
and exit.

IV. EXPERIMENTAL RESULTS

Experiments will be carried out on synthetic data and image
segmentation in this section to verify the proposed algorithm,
optimization framework and propositions. For comparison, the
results of the EM for GMM will also be presented.
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A. Synthetic Data

There are two datasets to be tested here: The first is
uniformly sampled from the cirque,

0.7.< X X < 1; (17)

The second is generated from one complicated spiral man-
ifold by

[ xi 1 [(2 + 10t) sin(77rt) 1 [ n, (18)
[ x2 = (2+10t)cos(77rt) +05* n2

where t is uniformly distributed in [0, 1], and
n1, n2 - N(O, 1). The component numbers of the algorithms
in cirque and spiral datasets are respectively chosen to be 1O
and 30 by experience. For the proposed algorithm, to meet
condition 1 and 2, sufficient numbers of subspaces are set as
4 times the component numbers, 40 for the cirque and 120 for
the spiral, and the transform matrices are randomly chosen
on the unit circle with uniform distribution. The samples
in marginal subspaces for the Monte Carlo integration are
independently drawn from the original distributions and then
projected by corresponding transform matrices, and all the
sample numbers are set to be 1000. For the EM algorithm,
the sample numbers are both set to be 20000. It is hard
to measure performance quantitatively, so we provide the
detailed results with the estimated component outlines in
Fig. 1. It can be clearly observed that both algorithms can
fit the manifolds well, however, our proposed approach only
uses marginal distributions without any assumptions of the
relations between different subspaces. Furthermore, the results
show that it is possible to recover the original PDF merely
from the distributions and the optimization task can achieve
the underlying GMM. However, it should be noticed that, as
a drawback, the computational cost of the proposed algorithm
might be high due to the matrix inversions in the iterations.

B. Image Segmentation
The algorithms will be used for image segmentation.

Two RGB colored images are tested, of which the sizes are
512 x 512 and 303 x 243, respectively. The original space
adopted is the linear space of RGB color. The images will be
segmented with 3 colors, so the numbers of components care
all set to 3. For the proposed algorithm, the numbers of the
subspaces K = 40 and all the subspaces are one-dimensional
with the transform matrices randomly chosen from the unit
sphere with uniform distribution. In each marginal subspace
Xk, the samples are independently drawn from the images
by bootstrap method and then projected by Pk, and all the
sample numbers are set to be 1000. For the EM algorithm,
all pixels in the images are used for estimation. Results are
shown in Fig. 2. It is obvious that the results achieved by our
method are satisfactory and as good as the EM algorithm.

.. ,.,j
i-

(a) (b) (c)

(d) (e) (1)

Fig. L. Experimental results of synthetic data. The first column illustrates
the original distributions, and the second column depicts the corresponding
results by our algorithm, and the third column depicts the results by the EM
algorithm for GMM.

(a) (b) (c)

(d) (e) (f)

Fig. 2. Experimental results for image segmentation. The first column
displays the original images, and the second column gives the results by our
algorithm, and the third column depicts the results by the EM algorithm for
GMM.

V. CONCLUSION AND FUTURE WORK
This paper has shown that using marginal distributions to

estimate the original probabilistic density function is the-
oretically possible for L2-integrable density functions, and
reformulated the recovery problem into an optimization task
which is applicable for a wealth of density functions with finite
parameters. For the application of the proposed formulation, it
is employed on the important finite mixture models, Gaussian
Mixture Models, and the corresponding optimization algorithm
is developed. The proposed algorithm uses only the marginal
distributions and imposes no assumptions on the relation
between different subspaces. Compared with the EM algorithm
based on whole coordinates of samples, experimental results
show that the algorithm can perform well. The fact that
the proposed algorithm can work well using only marginal
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distributions in turn validates the proposed proposition and
learning task. Furthermore, we can also expect that it would
achieve promising performance when dealing with data which
are partially visible in subspaces, since all these data can be
used as samples in their visible subspaces for training without
restrictions. To further the research, the problem of how to
select subspaces properly for estimation and the weighted
strategy for each KL distance in the objective function to boost
the performance will be considered, and the optimization task
will be employed on other mixture models and multivariate
distributions.
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APPENDIX: THE MATRIX DERIVATIVES
The derivatives of H1(RI), H2(RI), H3(RI) w.r.t. the entries

in RI can be achieved by the following steps. The basic
knowledge on matrix derivative can be referred to [17]. Let

EI,(k) A PkRIRIPT Vi - 1r(k)PkI (k) Pk, W -

P E ( ) and F be an invertible matrix with F* be
k=1

k 1I(k)0I,(k)' a

its adjugate. Then -- 1(F*)jiF* + 1 P, where the
entry Fkl in F is:

(O, if k =jor =i,
Fkl = (-1)i+i, if FE R2x2, k : j and I i,

I (_1)i+j+k+1+I(1>i)+I(k>j) IG(ij,k,l) |, otherwise

where I is the indicator function and G(iO,k,l) is obtained by
reducing the i, l-th rows and j, k-th columns of F.

1,dk)
a(RI)ij

avl-1
O(R1 )ij

OWI
O(R1 )ij
OH1 (R1)a(RI )ij

a012(RI)
O(RI )ij
aH3(R1)

aR1

dm aO- )

dKDT____
WT 0W1 ±lWTOVI W1,(k)

I I O,.(R1 )3 ,( 0(R1)1}

E5E(v,)st1,(k)(PkT )s a(RI)j (Pk).,t

pT l,(k) (n)
Pk a(RI )ij-1 '(k)

k=(lT i) T

1Etr (9r,k
2k 1 (Rl)ij 2 ) (I)

K r(n)

=21: IF.'(R)IRlPkT[{y2(k) + (I7(k))}Pk.
=
IIF ;
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