
BEAGLE: Forensics of Deep Learning Backdoor 
Attack for Better Defense

Siyuan Cheng, Guanhong Tao, Yingqi Liu, Shengwei An, Xiangzhe Xu, Shiwei Feng, 
Guangyu Shen, Kaiyuan Zhang, Qiuling Xu, Shiqing Ma†, Xiangyu Zhang

Email: {cheng535, taog, liu1751, an93, xu1415, feng292, shen447, zhan4057, xu1230, xyzhang}@cs.purdue.edu
†sm2283@cs.rutgers.edu



Backdoor Attack

2

Ø Backdoor attack poses a significant threat to deep learning applications
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Ø Adversary crafts a special input to exploit a program vulnerability
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Ø Forensics identifies attack root causes and helps build vulnerability scanners
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Ø Forensics identifies attack root causes and helps build vulnerability scanners
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Ø Trigger-inversion based backdoor scanners
o Invert a trigger that does not exist in clean models

Ø Limitation of existing backdoor scanners
o Have no knowledge about trigger patterns

o Hard to invert the trigger with little guidance

Ø Forensics on backdoor attack
o Acquire information about trigger

o Improve the scanner to invert similar triggers and detect the backdoor.

Trigger-stampedOriginal Image
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[1] Nguyen, Tuan A, et al. “WaNet-Imperceptible Warping-based Backdoor Attack.” ICLR 2021.
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Ø Trigger-inversion based backdoor scanners
o Invert a trigger that does not exist in clean models

Ø Limitation of existing backdoor scanners
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Ø Forensics on backdoor attack
o Acquire information about trigger
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Ø Knowledge
o A set of trojaned models attacked by one type of backdoor

o A few poisoned images with triggers (for each model)

o A few clean images without triggers (for each model)

Ø Goal
o Extract and summarize the trigger patterns, e.g., colors, positions

o Provide guidance for inversion and improve the scanning performance

Ø Scope
o Detect backdoors of the same type in other models
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Ø Phase I —— Attack decomposition
o Given a trojaned image, we decompose it into the clean version and the trigger

⊕
Clean versionTrojaned image Trigger
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Ø Phase I —— Attack decomposition
o Given a trojaned image, we decompose it into the clean version and the trigger

Ø Phase II —— Attack summarization
o Summarize the decomposed triggers into distributions
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Ø Phase I —— Attack decomposition
o Given a trojaned image, we decompose it into the clean version and the trigger

Ø Phase II —— Attack summarization
o Summarize the decomposed triggers into distributions

Ø Phase III —— Scanner synthesis
o Guide the trigger inversion for existing scanners based on the distributions

Trigger Inversion
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Ø Goal
o Decompose a trojaned image (𝑥⊕𝑡) to its clean version $𝑥 and the trigger �̃� 

o Decomposed clean version $𝑥 resembles the source image 𝑥

o Decomposed trigger �̃� resembles the source trigger 𝑡

Trojaned Image
𝑥 ⊕ 𝑡

Decomposed Trigger �̃�	

Decomposed Clean Version &𝑥	
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[1] Liu, Yunfei, et al. “Reflection backdoor: A natural backdoor attack on deep neural networks” ECCV 2020.
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Ø Cyclic optimization consists of 2 stages and 7 steps
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Ø Unstamping stage
o Initialize decomposed clean version $𝑥 using the trojaned image (𝑥⊕𝑡)

o Initialize the trigger �̃� with some random values

Initialize

Initialize
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Ø Unstamping stage
o Initialize decomposed clean version $𝑥 using the trojaned image (𝑥⊕𝑡)

o Initialize the trigger �̃� with some random values

Optimize

Optimize

Optimize

Optimize

Initialize

Initialize

Optimize

Optimize
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Ø Unstamping stage

Trojaned Image
𝒙 ⊕ 𝒕

① Unstamp Trigger
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Ø Unstamping stage
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Ø Unstamping stage
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Ø Unstamping stage
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Last iteration:
Decomposed trigger �̃�last
Decomposed clean #𝑥last

Current iteration:
Decomposed trigger �̃�
Decomposed clean #𝑥
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Ø Stamping stage
B. Stamping
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Ø Stamping stage
B. Stamping
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Ø Stamping stage
B. Stamping
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Ø Stamping stage
B. Stamping
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Ø Phase I —— Attack decomposition
o Given a trojaned image, we decompose it into the clean version and the trigger

Ø Phase II —— Attack summarization
o Summarize the decomposed triggers into distributions

Ø Phase III —— Scanner synthesis
o Guide the trigger inversion for existing scanners based on the distributions
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Ø Attack feature extraction
o Extract the feature of decomposed triggers, e.g., trigger sizes, colors

Decomposed Triggers
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Ø Attack feature extraction
o Extract the feature of decomposed triggers, e.g., trigger sizes, colors

Ø Clustering
o Partition the attack features into different clusters

Decomposed Triggers
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Ø Attack feature extraction
o Extract the feature of decomposed triggers, e.g., trigger sizes, colors

Ø Clustering
o Partition the attack features into different clusters

Ø Summarization
o Model the distribution of each partition

Decomposed Triggers

(𝑚), 𝑡)) 𝑚), 𝑡) (𝑚), 𝑡))
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Ø Phase I —— Attack decomposition
o Given a trojaned image, we decompose it into the clean version and the trigger
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Ø General loss for trigger inversion
o CE (Cross Entropy) loss ensures target misclassification

o Reg (Regularization) loss constrains trigger pattern

𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠&' + 𝐿𝑜𝑠𝑠(')
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Ø General loss for trigger inversion
o CE (Cross Entropy) loss ensures target misclassification

o Reg (Regularization) loss constrains trigger pattern

Ø Synthesize the regularization term based on summarized distribution
o Penalize on inverted trigger that is out of range

𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠&' + 𝐿𝑜𝑠𝑠(')
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Ø General loss for trigger inversion
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Ø Backdoor mitigation
o Stamp the decomposed trigger on the clean images and perform adversarial 

training to mitigate the backdoor effect
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Ø Datasets and models
o Datasets: TrojAI[1] round 2, 3, CIFAR-10, GTSRB, CelebA, ImageNet

o Models: ResNet18, ResNet50, VGG11, VGG16, MobileNet, DenseNet…

o 2112 downloaded models + 420 pre-trained models

Ø Baselines
o 10 popular backdoor attacks

o Improve 5 existing trigger-inversion based backdoor scanners

[1] “Trojai leaderboard,” https://pages.nist.gov/trojai/.
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Ø Metrics: Accuracy, FPR, FNR

Ø Downloaded TrojAI models
o Improves NC[1], Tabor[2] and K-Arm[3] for

 10% accuracy on polygon backdoored models

o Improve ABS[4] and Trinity[5] for 9%-27% accuracy on Instagram filter backdoored models

Ø Pre-trained models
o Improve ABS[4] for 17% to 40% accuracy on 10 popular backdoored models

[1] Wang, Bolun, et al. “Neural cleanse: Identifying and mitigating backdoor attacks in neural networks.” S&P 2019.
[2] Guo, Wenbo, et al. “Towards Inspecting and Eliminating Trojan Backdoors in Deep Neural Networks.” ICDM 2020.
[3] Shen, Guangyu, et al. “Backdoor scanning for deep neural networks through k-arm optimization.” ICML 2021.
[4] Liu, Yingqi, et al. “Abs: Scanning neural networks for back-doors by artificial brain stimulation.” CCS 2019.
[5] Karan Sikka, et al. “Detecting Trojaned DNNs Using Counterfactual Attributions.” arXiv preprint arXiv:2012.02275 (2020).
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Trojaned Image Source Clean

Clean image ⊕
Ground-truth Trigger

Ø Attack decomposition of Reflection[1] backdoor

[1] Liu, Yunfei, et al. “Reflection backdoor: A natural backdoor attack on deep neural networks” ECCV 2020.

Decomposed Clean

≈

Clean image ⊕
Decomposed Trigger

≈
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Ø Attack decomposition of Invisible[1] backdoor

Trojaned Image Source Clean

Ground-truth Trigger
[1] Li, Yuezun, et al. “Invisible backdoor attack with sample-specific triggers.” ICCV 2021.

Decomposed Trigger

≈

Decomposed Clean

≈
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Ø Propose a novel Backdoor Forensics Technique (BEAGLE) can extract the trigger 

features from the trojaned images and guide trigger inversion.

Ø BEAGLE can improve scanning accuracy for 10%-16% on average on 

downloaded TrojAI models and 17%-40% on 10 popular backdoors

Ø BEAGLE can decompose a trojaned image into its clean version and the trigger 

with high reconstruction quality.
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Thank you!

Q&A
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