BEAGLE: Forensics of Deep Learning Backdoor Attack for Better Defense

Siyuan Cheng, Guanhong Tao, Yingqi Liu, Shengwei An, Xiangzhe Xu, Shiwei Feng, Guangyu Shen, Kaiyuan Zhang, Qiuling Xu, Shiqing Ma[†], Xiangyu Zhang

Email: {cheng535, taog, liu1751, an93, xu1415, feng292, shen447, zhan4057, xu1230, xyzhang}@cs.purdue.edu †sm2283@cs.rutgers.edu

Backdoor Attack

Backdoor attack poses a significant threat to deep learning applications

Backdoor Attack

Backdoor attack poses a significant threat to deep learning applications

Traditional Cyber Attacks

> Adversary crafts a special input to exploit a program vulnerability

Forensics

Forensics identifies attack root causes and helps build vulnerability scanners

Forensics

Forensics identifies attack root causes and helps build vulnerability scanners

BEAGLE: Forensics of Deep Learning Backdoor Attack for Better Defense

Backdoor Forensics

- Trigger-inversion based backdoor scanners
 - Invert a trigger that does not exist in clean models
- Limitation of existing backdoor scanners
 - Have no knowledge about trigger patterns
 - Hard to invert the trigger with little guidance
- Forensics on backdoor attack
 - Acquire information about trigger
 - Improve the scanner to invert similar triggers and detect the backdoor.

[1] Nguyen, Tuan A, et al. "WaNet-Imperceptible Warping-based Backdoor Attack." ICLR 2021.

Backdoor Forensics

- Trigger-inversion based backdoor scanners
 - Invert a trigger that does not exist in clean models
- Limitation of existing backdoor scanners
 - Have no knowledge about trigger patterns
 - Hard to invert the trigger with little guidance
- Forensics on backdoor attack
 - Acquire information about trigger
 - Improve the scanner to invert similar triggers and detect the backdoor.

[1] Nguyen, Tuan A, et al. "WaNet-Imperceptible Warping-based Backdoor Attack." ICLR 2021.

Backdoor Forensics

- Trigger-inversion based backdoor scanners
 - Invert a trigger that does not exist in clean models
- Limitation of existing backdoor scanners
 - Have no knowledge about trigger patterns
 - Hard to invert the trigger with little guidance
- Forensics on backdoor attack
 - Acquire information about trigger
 - Improve the scanner to invert similar triggers and detect the backdoor.

Inverted trigger

[1] Nguyen, Tuan A, et al. "WaNet-Imperceptible Warping-based Backdoor Attack." ICLR 2021.

Problem Definition

- > Knowledge
 - A set of trojaned models attacked by one type of backdoor
 - A few poisoned images with triggers (for each model)
 - A few clean images without triggers (for each model)
- > Goal
 - Extract and summarize the trigger patterns, e.g., colors, positions
 - Provide guidance for inversion and improve the scanning performance
- ➢ Scope
 - Detect backdoors of the same type in other models

- Phase I —— Attack decomposition
 - Given a trojaned image, we decompose it into the clean version and the trigger

BEAGLE: Forensics of Deep Learning Backdoor Attack for Better Defense

- Phase I —— Attack decomposition
 - Given a trojaned image, we decompose it into the clean version and the trigger
- Phase II —— Attack summarization
 - Summarize the decomposed triggers into distributions

- Phase I —— Attack decomposition
 - Given a trojaned image, we decompose it into the clean version and the trigger
- Phase II —— Attack summarization
 - Summarize the decomposed triggers into distributions
- Phase III —— Scanner synthesis
 - Guide the trigger inversion for existing scanners based on the distributions

- Phase I —— Attack decomposition
 - Given a trojaned image, we decompose it into the clean version and the trigger
- Phase II —— Attack summarization
 - Summarize the decomposed triggers into distributions
- Phase III —— Scanner synthesis
 - Guide the trigger inversion for existing scanners based on the distributions

> Goal

- Decompose a trojaned image $(x \oplus t)$ to its clean version \tilde{x} and the trigger \tilde{t}
- Decomposed clean version \tilde{x} resembles the source image x
- Decomposed trigger \tilde{t} resembles the source trigger t

Cyclic optimization consists of 2 stages and 7 steps

- Initialize decomposed clean version \tilde{x} using the trojaned image $(x \oplus t)$
- Initialize the trigger \tilde{t} with some random values

Unstamping stage

- Initialize decomposed clean version \tilde{x} using the trojaned image $(x \oplus t)$
- Initialize the trigger \tilde{t} with some random values

BEAGLE: Forensics of Deep Learning Backdoor Attack for Better Defense

Unstamping stage

Last iteration:

Decomposed trigger \tilde{t}_{last} Decomposed clean \tilde{x}_{last}

Current iteration: Decomposed trigger \tilde{t} Decomposed clean \tilde{x}

Stamping stage

Stamping stage

Stamping stage

Decomposed trigger \tilde{t}

- Phase I —— Attack decomposition
 - Given a trojaned image, we decompose it into the clean version and the trigger
- Phase II —— Attack summarization
 - Summarize the decomposed triggers into distributions
- Phase III —— Scanner synthesis
 - Guide the trigger inversion for existing scanners based on the distributions

Phase II: Attack Summarization

- Attack feature extraction
 - Extract the feature of decomposed triggers, e.g., trigger sizes, colors

Phase II: Attack Summarization

- > Attack feature extraction
 - Extract the feature of decomposed triggers, e.g., trigger sizes, colors
- > Clustering
 - Partition the attack features into different clusters

BEAGLE: Forensics of Deep Learning Backdoor Attack for Better Defense

Phase II: Attack Summarization

Attack feature extraction

- Extract the feature of decomposed triggers, e.g., trigger sizes, colors
- > Clustering
 - Partition the attack features into different clusters
- Summarization

BEAGLE: Forensics of Deep Learning Backdoor Attack for Better Defense

- Phase I —— Attack decomposition
 - Given a trojaned image, we decompose it into the clean version and the trigger
- Phase II —— Attack summarization
 - Summarize the decomposed triggers into distributions
- Phase III —— Scanner synthesis
 - Guide the trigger inversion for existing scanners based on the distributions

- General loss for trigger inversion
 - CE (Cross Entropy) loss ensures target misclassification
 - Reg (Regularization) loss constrains trigger pattern

$$Loss = Loss_{ce} + Loss_{reg}$$

- General loss for trigger inversion
 - CE (Cross Entropy) loss ensures target misclassification
 - Reg (Regularization) loss constrains trigger pattern
- Synthesize the regularization term based on summarized distribution
 - Penalize on inverted trigger that is out of range

$$Loss = Loss_{ce} + \begin{bmatrix} Loss_{reg} \end{bmatrix}$$

- General loss for trigger inversion
 - CE (Cross Entropy) loss ensures target misclassification
 - Reg (Regularization) loss constrains trigger pattern
- > Synthesize the regularization term based on summarized distribution
 - Penalize on inverted trigger that is out of range

BEAGLE: Forensics of Deep Learning Backdoor Attack for Better Defense Trigger Inversion

- ➢ General loss for trigger inversion
 - CE (Cross Entropy) loss ensures target misclassification
 - Reg (Regularization) loss constrains trigger pattern
- Synthesize the regularization term based on summarized distribution
 - Penalize on inverted trigger that is out of range

Trigger Inversion

BEAGLE: Forensics of Deep Learning Backdoor Attack for Better Defense

Other application

- Backdoor mitigation
 - Stamp the decomposed trigger on the clean images and perform adversarial training to mitigate the backdoor effect

Experiment Setup

Datasets and models

- Datasets: TrojAI^[1] round 2, 3, CIFAR-10, GTSRB, CelebA, ImageNet
- Models: ResNet18, ResNet50, VGG11, VGG16, MobileNet, DenseNet...
- \circ 2112 downloaded models + 420 pre-trained models

Baselines

- 10 popular backdoor attacks
- Improve 5 existing trigger-inversion based backdoor scanners

[1] "Trojai leaderboard," https://pages.nist.gov/trojai/.

Evaluation on Enhanced Scanner

- Metrics: Accuracy, FPR, FNR
- Downloaded TrojAI models
 - Improves NC^[1], Tabor^[2] and K-Arm^[3] for

10% accuracy on polygon backdoored models

• Improve ABS^[4] and Trinity^[5] for 9%-27% accuracy on Instagram filter backdoored models

Pre-trained models

• Improve ABS^[4] for 17% to 40% accuracy on 10 popular backdoored models

[1] Wang, Bolun, et al. "Neural cleanse: Identifying and mitigating backdoor attacks in neural networks." S&P 2019.

[2] Guo, Wenbo, et al. "Towards Inspecting and Eliminating Trojan Backdoors in Deep Neural Networks." ICDM 2020.

[3] Shen, Guangyu, et al. "Backdoor scanning for deep neural networks through k-arm optimization." ICML 2021.

[4] Liu, Yingqi, et al. "Abs: Scanning neural networks for back-doors by artificial brain stimulation." CCS 2019.

[5] Karan Sikka, et al. "Detecting Trojaned DNNs Using Counterfactual Attributions." arXiv preprint arXiv:2012.02275 (2020).

Evaluation on Attack Decomposition

Attack decomposition of Reflection^[1] backdoor

Trojaned Image

Source Clean

Decomposed Clean

Clean image ⊕Clean image ⊕Ground-truth TriggerDecomposed Trigger

 \approx

[1] Liu, Yunfei, et al. "Reflection backdoor: A natural backdoor attack on deep neural networks" ECCV 2020.

Evaluation on Attack Decomposition

Attack decomposition of Invisible^[1] backdoor

Trojaned Image


```
Source Clean
```


Decomposed Clean

[1] Li, Yuezun, et al. "Invisible backdoor attack with sample-specific triggers." ICCV 2021.

Related Work

[1] Gu, Tianyu, et al. "Badnets: Evaluating backdooring attacks on deep neural networks." IEEE Access 7 (2019).

[2] Salem, Ahmed, et al. "Dynamic backdoor attacks against machine learning models." EuroS&P 2022.

[3] Chen, Xinyun, et al. "Targeted backdoor attacks on deep learning systems using data poisoning." arXiv:1712.05526 (2017).

[4] Nguyen, Tuan A, et al. "WaNet-Imperceptible Warping-based Backdoor Attack." ICLR 2021.

[5] Liu, Yunfei, et al. "Reflection backdoor: A natural backdoor attack on deep neural networks" ECCV 2020.

[6] Li, Yuezun, et al. "Invisible backdoor attack with sample-specific triggers." ICCV 2021.

[7] Wang, Bolun, et al. "Neural cleanse: Identifying and mitigating backdoor attacks in neural networks." IEEE S&P 2019.

[8] Guo, Wenbo, et al. "Towards Inspecting and Eliminating Trojan Backdoors in Deep Neural Networks." ICDM 2020.

[9] Shen, Guangyu, et al. "Backdoor scanning for deep neural networks through k-arm optimization." ICML 2021.

[10] Karan Sikka, et al. "Detecting Trojaned DNNs Using Counterfactual Attributions." arXiv:2012.02275 (2020).

[11] Liu, Yingqi, et al. "Abs: Scanning neural networks for back-doors by artificial brain stimulation." CCS 2019.

[12] TrojAI Leaderboard, https://pages.nist.gov/trojai/

.

Conclusion

- Propose a novel Backdoor Forensics Technique (BEAGLE) can extract the trigger features from the trojaned images and guide trigger inversion.
- BEAGLE can improve scanning accuracy for 10%-16% on average on downloaded TrojAI models and 17%-40% on 10 popular backdoors
- BEAGLE can decompose a trojaned image into its clean version and the trigger with high reconstruction quality.

Thank you!

Q&A

