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Backdoor Attacks

> Backdoor attackstH?! originally stem from the image classification task
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[1] Gu, Tianyu, et al. "Badnets: Evaluating backdooring attacks on deep neural networks." IEEE Access 7 2019
[2] Liu, Yingqi, et al. "Trojaning attack on neural networks." NDSS 2018
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Backdoor Attacks

» Backdoor attacks originally stem from the image classification task

Input Image Model Target Label
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Backdoor Attacks in Object Detection (OD) Models

» Backdoor attacks become diverse in OD models

» OD models predict bounding boxes instead of solely labels

Input Image Model Output Bounding Box
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Backdoor Attacks in OD Models

» Backdoor attacks become diverse in OD models

> Four types of backdoors(t2l3] exploiting the bounding box prediction
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[1] NIST. "TrojAl Round-10, Round-13". https://pages.nist.gov/trojai/
[2] Chan, Shih-Han, et al. "Baddet: Backdoor attacks on object detection.” ECCV Workshops 2022.
[3] Chen, Kangjie, et al. "Clean-image backdoor: Attacking multi-label models with poisoned labels only.” ICLR 2022.
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Object Misclassification Attack

> The victim object I1s mis-classified as the target label

» Roundabout is misclassified to Airport

Ground- truth MlscIaSS|f|cat|on
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Object Disappearing Attack

> The victim object i1s not detected

» Roundabout is not detected, or considered as background

Disappearing
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Object Appearing Attack

> A backqground region is detected as the target label

» Trigger is detected as Roundabout
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Compound Attack

» The backdoor involves multiple effects

» Localization (Roundabout is not detected, while a background region is detected as roundabout)

Ground- truth Compound (Localization)
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Backdoor Attacks in OD Models

» OD Backdoor attacks can all be formulated as misclassification attacks

» Object misclassification: Victim (Roundabout) — Target (Airport)

» Object disappearing: Victim (Roundabout) — Target (Background)
» Object appearing: Victim (Background) — Target (Roundabout)
Misclassification Dlsappearmg Appearmg
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Backdoor Scanning

> Trigger inversiontt?l is a typical backdoor scanning method in image classification

» Reconstruct (optimize) the trigger and use it to decide (small size / high ASR)
Input Image Model Output Label
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[1] Wang, Bolun, et al. "Neural cleanse: Identifying and mitigating backdoor attacks in neural networks." IEEE S&P 2019.
[2] Liu, Yingqi, et al. "Abs: Scanning neural networks for back-doors by artificial brain stimulation." ACM SIGSAC CCS 2019.
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Challenges in OD Backdoor Scanning

» Discontinuity in OD models

» Containing non-differentiable operations, e.g., NMS
» Search space explosion

» Many bounding boxes and victim-target label pairs under scanning
» Trigger specificity

» Trigger is sensitive to its shape/pattern

» Natural adversarial patches

» Easy to invert natural adversarial patches, even on clean models
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Challenges in OD Backdoor Scanning

» Discontinuity in OD models

» Containing non-differentiable operations, e.g., NMS
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Challenge I: Discontinuity in OD models

» Two-stage object detection

» Model forwarding (propose a huge number of bounding boxes)

» Post-processing, e.g., NMS (non-differentiable)
» Our solution

» Perform trigger inversion in model forwarding stage (continuous and differentiable)
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Challenges in OD Backdoor Scanning

» Discontinuity in OD models

» Containing non-differentiable operations, e.g., NMS

» Search space explosion

» Many bounding boxes and victim-target label pairs under scanning
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Challenge Il: Search Space Explosion

» Many victim-target label pairs under scanning
» For instance, COCO dataset has 90 classes

» Our solution

» Pre-processing based on sampling and logits analysis

» Randomly sample a patch and detect malicious class with high probability
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Challenge 11: Search Space Explosion

» Many bounding boxes for optimization

» For instance, SSD-300 model proposes 8732 bounding boxes after model forwarding

> Our solution

» Dynamically select potential boxes during trigger inversion
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Challenges in OD Backdoor Scanning

» Discontinuity in OD models

» Containing non-differentiable operations, e.g., NMS

» Search space explosion
» Many bounding boxes and victim-target label pairs under scanning
» Trigger specificity

» Trigger is sensitive to its shape/pattern
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Challenge I11: Trigger specificity

» Trigger Is sensitive to its shape/pattern
> Typical trigger inversion methodlt can not handle special shapes, e.g., triangle triggers

> Our solution

» Polygon region inversion function to control the inverted trigger has a polygon outline

> Optimize offset from corners: [xy, V1, X5, V2, X3, V3, X4, Va] " 2
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[1] Wang, Bolun, et al. "Neural cleanse: Identifying and mitigating backdoor attacks in neural networks." IEEE S&P 2019.
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Evaluation

» Outperform existing trigger inversion baselines on TrojAl dataset

Dataset Model Arch. NC Tabor Pixel ABS ODSCAN oo
TPR FPR Acc. TPR FPR Acc. TPR FPR Acc. TPR FPR Acc. TPR FPR Acc.
SSD 56.25% 37.50% 59.38% 18.75% 6.25% 56.25% 43.75% 31.25% 56.25% 68.75% 25.00% 71.88% 87.50% 18.75% | 84.38%
Synthesis F-RCNN 16.67% 6.25% 60.71% 16.67% 6.25% 60.71% 16.67% 0.00% 64.29% 50.00% 31.25% 60.71% 91.67% 12.50% | 89.29%
DETR 2667% 6.25% 61.29% 20.00% 6.25% 58.06% 6.67% 0.00% 54.84% - - - 100.00% 0.00% |100.00%
COCO SSD 36.11% 27.78% 54.17% 19.44% 5.56% 56.94% 11.11% 2.78% 54.17% 13.89% 2.78% 55.56% 94.44% 556% | 94.44%
F-RCNN 16.67% 2.78% 56.94% 47.22% 13.89% 66.67% 2.78% 0.00% 51.39% 25.00% 2.78% 61.11% 100.00% 0.00% |100.00%
DOTA v2 SSD 57.14% 25.00% 66.67% 42.86% 25.00% 60.00% 28.57% 12.50% 60.00% 100.00% 75.00% 60.00% 85.71% 0.00% | 93.33%
=V F-RCNN 100.00% 75.00% 60.00% 85.71% 12.50% 86.67% 85.71% 37.50% 73.33% 14.29% 0.00% 60.00% 100.00% 12.50% | 93.33%
Overall - 3488% 19.85% 58.11% 31.78% 9.56% 61.89% 17.83% 7.35% 56.23% 3421% 14.17% 60.68% 9535% 5.88% | 94.72%
)
» Outperforms meta-classifiers, e.g., MNTD!1 and ULPI?]
» More experiments can be found in the paper
[1] Xu, Xiaojun, et al. "Detecting Al trojans using meta neural analysis." IEEE S&P 2021.
[2] Kolouri, Soheil, et al. "Universal litmus patterns: Revealing backdoor attacks in cnns." CVPR 2020.
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Thanks for your attention!

GitHub Repo
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