
Backdoor Scanning for Deep Neural Networks through K-Arm Optimization

Guangyu Shen * 1 Yingqi Liu * 1 Guanhong Tao 1 Shengwei An 1 Qiuling Xu 1 Siyuan Cheng 1 Shiqing Ma 2

Xiangyu Zhang 1

Abstract
Back-door attack poses a severe threat to deep
learning systems. It injects hidden malicious be-
haviors to a model such that any input stamped
with a special pattern can trigger such behaviors.
Detecting back-door is hence of pressing need.
Many existing defense techniques use optimiza-
tion to generate the smallest input pattern that
forces the model to misclassify a set of benign
inputs injected with the pattern to a target label.
However, the complexity is quadratic to the num-
ber of class labels such that they can hardly handle
models with many classes. Inspired by Multi-Arm
Bandit in Reinforcement Learning, we propose a
K-Arm optimization method for backdoor detec-
tion. By iteratively and stochastically selecting
the most promising labels for optimization with
the guidance of an objective function, we substan-
tially reduce the complexity, allowing to handle
models with many classes. Moreover, by itera-
tively refining the selection of labels to optimize,
it substantially mitigates the uncertainty in choos-
ing the right labels, improving detection accuracy.
At the time of submission, the evaluation of our
method on over 4000 models in the IARPA Tro-
jAI competition from round 1 to the latest round
4 achieves top performance on the leaderboard.
Our technique also supersedes five state-of-the-art
techniques in terms of accuracy and the scanning
time needed. The code of our work is available
at https://github.com/PurduePAML/

K-ARM_Backdoor_Optimization

1. Introduction
The semantics of a deep neural network is determined by
model parameters that are not interpretable. Trojan (back-

*Equal contribution 1Department of Computer Science, Purdue
University, West Lafayette, IN, USA 2Department of Computer
Science, Rutgers University, Piscataway, NJ, USA. Correspon-
dence to: Guangyu Shen <shen447@purdue.edu>.

Proceedings of the 38 th
International Conference on Machine

Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

door) attack exploits the uninterpretability and injects ma-
licious hidden behaviors to neural networks. To activate
back-door behavior, the attacker stamps a trigger to a be-
nign input and passes the stamped input to the trojaned
model, which then misclassifies the input to the target label.
When benign inputs are provided, the trojaned model has
comparable accuracy as the original one. The feasibility of
trojan attack has been demonstrated by many existing works.
For example, data poisoning (Gu et al., 2017) directly uses
stamped inputs in training to inject back-door. Neuron hi-
jacking (Liu et al., 2018b) compromises a small number of
selected neurons by changing their associated weight values
through input reverse engineering and retraining. Clean-
label attack (Shafahi et al., 2018) injects malicious features
to the target class samples instead of victim class samples,
and hence is more stealthy. More discussion can be found
in the related work section.

Realizing the prominent threat, researchers have developed
a number of defense techniques that range from detecting
malicious (stamped) inputs at runtime (Ma & Liu, 2019) to
offline model scanning for possible back-doors (Liu et al.,
2019; Wang et al., 2019; Kolouri et al., 2020). The for-
mer is an on-the-fly technique and requires the presence of
malicious inputs. The latter determines if a given model
contains any backdoor. It usually assumes a small set of
benign inputs for all the classes of the model but not any
malicious inputs. Existing scanners usually consider two
types of backdoors. The first is universal backdoor that
causes misclassification (to the target label) for benign sam-
ples from any class when they are stamped with the trigger.
The second is label-specific backdoor that only causes mis-
classification of benign samples from a specific victim class

to the target label, when they are stamped with the trigger.
Neural Cleanse (NC) (Wang et al., 2019) uses optimization
to derive a trigger for each class and observes if there is any
trigger that is exceptionally small and hence likely injected
instead of naturally occurring feature. Artificial Brain Stim-

ulation (ABS) (Liu et al., 2019) systematically intercepts
and changes internal neuron activation values on benign
inputs, and then observes if consistent misclassification can
be induced. If so, the corresponding neurons are considered
compromised and used to reverse engineer a trigger. More
existing techniques are discussed in the related work section.

https://github.com/PurduePAML/K-ARM_Backdoor_Optimization
https://github.com/PurduePAML/K-ARM_Backdoor_Optimization


Backdoor Scanning for Deep Neural Networks through K-Arm Optimization

(a) Pre-selection (b) ABS

Figure 1. Motivation cases: (a) illustrates pre-selection fails to
identify backdoor in Model #56 in TrojAI round 2; (b) shows that
ABS fails to identify backdoor in Model #13 in TrojAI round 1.

Although the effectiveness of existing solutions has been
demonstrated, they have various limitations. In particular,
since the target label is unknown beforehand, scanners such
as NC try to scan all labels. If the backdoor is label-specific,
the computation complexity is quadratic. As such they can
hardly handle models with many classes. For example, NC
cannot finish scanning a TrojAI round 2 model with 23
classes within 15 hours. Techniques like ABS leverages
additional analysis to pre-select a set of labels/neurons to
optimize. However, their effectiveness hinges on the cor-
rectness of pre-selection.

We propose a new back-door scanning method that can han-
dle models with many classes and has better effectiveness
and efficiency than existing solutions. Inspired by K-Arm

bandit (Auer et al., 2002) in Reinforcement Learning that
optimizes decision making with a large number of possible
options, we propose a K-Arm backdoor scanner. Instead
of optimizing for all the labels one-by-one, the process is
divided to many rounds and in each round, our algorithm
selects one to optimize for a small number of epochs. The
selection is stochastic, guided by an objective function. The
function measures the past progress of a candidate label,
e.g., how fast a small trigger can be generated to misclas-
sify stamped inputs to the label, as a trigger is generally
easy to optimize if the label is trojaned, and how small the
trigger is. The stochastic nature of the method ensures that
even if the true target label is not selected for the current
round, it still has a good chance to be selected later. To our
knowledge, we are the first to bring reinforcement learning
(K-Arm Bandit) into the neural backdoor detection domain
and substantially improve the scanner’s efficiency and ca-
pability. Natural features sometimes behave similarly to
backdoors. To distinguish the two, we develop a symmet-
ric optimization algorithm that piggy-backs on the K-Arm
backbone. It leverages the following observation: while it
is easy to optimize a trigger that flips victim label to target
label, the inverse (i.e., optimize a trigger that flips target
label to victim label) is difficult; natural features, however,
do not have this property.

We evaluate our prototype on 4000 models from IARPA
TrojAI round 1 to the latest round 4 competitions, and a
few complex models on ImageNet. Our technique achieved

top performance on the TrojAI leaderboard and reached
the round targets on the TrojAI test server for all rounds.
It is substantially more effective than the state-of-the-art
techniques NC, ABS, and ULP (Kolouri et al., 2020) by
having 31%, 20%, and 27% better accuracy, respectively.
In addition, its scanning time is a few times to orders of
magnitude smaller than other optimization based methods,
especially in scanning label-specific backdoors.

2. Related Work
Besides the ones mentioned in the introduction, we further
briefly discuss additional related work and our threat model.

Trojan Attack. Several data-poisoning like attacks (Gu
et al., 2017; Liu et al., 2018b) utilize patch/watermark trig-
gers. Clean-label attacks (Shafahi et al., 2018; Saha et al.,
2020; Turner et al., 2019; Zhao et al., 2020; Zhu et al., 2019)
inject back-door without changing data label. Salem et al.
(2020); Nguyen & Tran (2020) leveraged generative models
to construct dynamic triggers with random patterns and lo-
cations for specific samples. Composite attack (Lin et al.,
2020) uses natural features from multiple labels as triggers.
Bit flipping (Rakin et al., 2019; 2020) injects malicious
behaviors by flipping bits in model weights. Trojan attacks
have been developed for transfer learning (Rezaei & Liu,
2019; Wang et al., 2018; Yao et al., 2019), federated learn-
ing (Bagdasaryan et al., 2020; Xie et al., 2019; Wang et al.,
2020b) and NLP tasks (Chen et al., 2020; Sun, 2020).

Existing Detection. ULP (Kolouri et al., 2020) trains a clas-
sifier to determine if a model is trojaned. It leverages a large
pool of benign and trojaned models to learn a set of univer-
sal input patterns that can lead to different logits for benign
and trojaned models. The classifier is then trained on these
logits. Similar to ULP (Kolouri et al., 2020), researchers
in (Huang et al., 2020) proposed one-pixel signature. They
trained a classifier to predict the model’s benignity based
on their one-pixel signature. Qiao et al. (2019) proposed to
generate trigger distribution. Zhang et al. (2020); Wang et al.
(2020c) leveraged the differences of adversarial examples
for benign and trojaned models to detect backdoors. TA-
BOR (Guo et al., 2019) used explainable AI techniques to
scan backdoors. Xu et al. (2019) detected backdoors using
Meta Neural Analysis. Liu et al. (2018a) combined prun-
ing and fine-tuning to weaken or even eliminate backdoors.
Wang et al. (2020a) certified model robustness against back-
door via randomized smoothing. Chan & Ong (2019); Gao
et al. (2019); Chen et al. (2018); Chou et al. (2020); Du et al.
(2019); Liu et al. (2017); Ma & Liu (2019) aimed to detect
if a provided input contains trigger. Comprehensive surveys
of backdoor learning can be found at (Li et al., 2020a;b)

Multi-Arm Bandit. Multi-Arm Bandit (MAB) describes
the dilemma of making a sequence of decisions to maximize



Backdoor Scanning for Deep Neural Networks through K-Arm Optimization

(a) (R4 model #556) victim
class #13 input + trigger

(b) (R4 model #556) target class
#1 input

(c) (R4 model #262) class #4 in-
put + generated natural feature

(d) (R4 model #262) class #20
input + generated natural fea-
ture

Figure 2. Motivation cases: (a) illustrates a victim class #13 input of a round 4 (R4) trojaned model stamped with trigger generated by
K-Arm, yielding the classification result of label #1; (b) shows a target class #1 input for the same model; (c) shows a class #4 input of a
clean R4 model stamped with natural features generated by K-Arm, yielding label 20; (d) shows a class #20 input stamped with generated
natural features for the same model in (c), yielding label 4.

reward, which has an unknown distribution. It has been
thoroughly studied in (Auer et al., 2002). Many solutions are
proposed to tackle this problem, such as Upper Confidence
Bound (UCB) (Auer, 2002), ✏-greedy (Watkins, 1989), etc.
MAB is a general idea with many applications, Our design
is inspired by MAB and unique for backdoor detection.

Threat Model We consider a standard setting in the back-
door scanning. Given a model and a small set of clean
images without trigger information for each class (less than
20), the defender is required to identify whether the model
is trojaned or not. In this paper, we mainly discuss the
backdoor with limited size on the propose of stealthiness,
such as patch triggers (Liu et al., 2018b) or small pertur-
bations (Saha et al., 2020). The injected backdoor can be
static (Gu et al., 2017), input aware dynamic (Nguyen &
Tran, 2020), label-specific or global. Large triggers such as
the composite attack (Lin et al., 2020) and filter triggers (Liu
et al., 2019; Cheng et al., 2020) are out of the scope. We
will leave it to the future work.

3. Motivation
In this section, we discuss the limitations of existing opti-
mization based backdoor scanners and motivate ours.

NC (Wang et al., 2019) cannot handle models with many
classes. Assume a model has N classes. Since the target
label is unknown, to detect universal backdoors, NC con-
siders each of the N labels could be the target label and
optimizes a trigger that flips benign samples from any class
to the label. To detect label specific backdoors, it considers
each pair of labels could be the victim and target labels, and
optimizes a trigger to flip only samples of the victim class
to the target label. It then checks if there is an exceptionally
small trigger (among all those generated). If so, the model is
considered having a backdoor. The computation complexity
is hence O(N) for universal backdoors and O(N2) for label
specific backdoors. Our experiment (in Section 5) shows
that to scan a model on ImageNet with a universal backdoor,
NC needs more than 55 hours. It certainly cannot handle
label-specific backdoors on such models.

Pre-selection may miss the correct label(s). To address
the above limitation, a pre-selection strategy was proposed
in (Wang et al., 2019) to select a small subset of labels
to proceed after 10 steps of optimization. Specifically, it
selects the m smallest triggers to continue. However, its ef-
fectiveness hinges on the correctness of pre-selection, which
is difficult to achieve due to the uncertainty in optimization.
Fig.1a illustrates how pre-selection fails on a TrojAI round
2 model (with a universal backdoor). Due to the small time
budget allowed for scanning a TrojAI model (600s in round
2), top 5 labels are pre-selected out of 14. Observe that the
trigger size of the target label is still much larger than most
of the other labels after 10 steps and precluded. The situa-
tion is aggravated when the number of classes is large and
backdoors are label-specific. In fact, our results show that
pre-selection can only achieve 58% accuracy on average in
TrojAI rounds 1 to 4 training sets.

ABS may select the wrong neurons in stimulation analy-
sis. ABS (Liu et al., 2019) avoids optimizing for individual
labels/label-pairs. It systematically enlarges internal neuron
activation values for benign inputs and observes if consis-
tent misclassification (to a certain label) can be achieved.
If so, the neurons are considered potentially compromised
by trojaning. It then uses optimization to generate a trigger
by maximizing the activation values of these neurons. A
model is considered trojaned if the generated trigger can
cause the intended misclassification. It works for both uni-
versal and label-specific backdoors. Its effectiveness hinges
on correctly identifying the compromised neurons, which
has inherent uncertainty as well. Fig. 1b shows that for a
trojaned model #13 in TrojAI round 1, the top 10 neurons
that have the largest elevation for the target label logits when
stimulated (and hence cause misclassification to the target
label) do not include the truly compromised neuron, which
is ranked 134 by the stimulation analysis. As such, trigger
generation based on the top 10 neurons fails to derive the
real trigger. In our experiment, ABS can only achieve 69%
detection accuracy on average for TrojAI rounds 1 to 4.

Existing scanners cannot distinguish triggers from nat-
ural features. Natural features can induce misclassification



Backdoor Scanning for Deep Neural Networks through K-Arm Optimization

in a way similar to backdoor triggers. For example, stamp-
ing a dog nose to cat images may induce misclassification
to dog. As such, optimization based trigger generation like
NC and ABS may generate natural features as triggers. Dis-
tinguishing the two is important as misclassification caused
by natural features is inevitable and a model should not be
blamed for their presence; and correctly separating natural
features from injected triggers allows model end users to
employ proper counter measures. Many TrojAI models have
natural features that behave like triggers. Fig. 2c presents a
benign TrojAI model #262 in round 4, with a class #4 input
stamped with the natural features generated by K-Arm (i.e.,
the pixel pattern inside the red box). It causes the model to
misclassify to label 20 (shown in (d)). The inputs to TrojAI
models are traffic-sign like foreground objects (e.g., the tri-
angle in Fig. 2a and the octagon in Fig. 2b) with randomly
chosen street-view background. More information can be
found in Appendix.D. Observe classes #4 and #20 are sim-
ilar, and the generated features in (c) resemble the central
symbol of class #20, which explains the misclassification.
Both NC and ABS consider the natural features as a trigger
and report the model as trojaned.

Our Method. From the above discussion, we can observe
that a key challenge lies in the inherent uncertainty in se-

lecting the appropriate label (in NC) or neuron(s) (in ABS)

to perform optimization. An exhaustive method like NC
without selection is not effective for complex models while
pre-selection and ABS making deterministic choices may
fail to select the right one. The overarching idea of our
method is to formulate the whole procedure as a stochastic
process in which we continue to make selection at each
round. Here and in the rest of the paper, an optimization
round does not mean an optimization epoch in the tradi-
tional sense but rather finding a smaller trigger (that can
cause misclassification). In particular, a selected label/label-
pair/neuron that continues to perform well over time (i.e.,
whose trigger has been easy to optimize) will have a high
probability to be selected in the new round. A label/label-
pair/neuron that does not get selected in one round has a
probability to be selected in the future. The goal is to allow
the true positive to eventually stand out.

Specifically, we start with a warm-up phase in which we
optimize each label (to generate trigger) for a very small
number of rounds (2 in this paper). We retain a history of
trigger size variation for each label. Then we start the selec-

tive optimization. At each round of selective optimization,
we select the label that has the best performance over-time.
We use an objective function to measure the performance.
For the moment, readers can intuitively consider that we
utilize the derivative of trigger size (i.e., how fast the trigger
size changes). Note that for a clean label, although the op-
timization may produce a small trigger at the beginning, it
cannot achieve substantial size reduction over time. There-

Figure 3. Trigger size variations over optimization rounds

fore, its performance degrades and tends to be replaced. In
contrast, although the target label may not perform well at
the beginning and hence not be selected, it is eventually
selected when the other optimizations get stuck.

Fig. 3 shows the trigger size variations of all labels over
multiple rounds of optimization for two models from TrojAI.
Observe that after the first round, the target label has the
smallest trigger for model #15 and hence pre-selection
handles it correctly. In contrast for model #18, the target
label’s trigger is very large and precluded (by pre-selection)
from further optimization. Observe that it remains larger
than many others till round 5. However, with our method, it
eventually stands out and exposes the backdoor.

The algorithm also seamlessly facilitates separation of natu-
ral features and backdoor triggers. Specifically, when two
benign classes A and B are similar (e.g., cat and dog), small
natural features (of A) can be identified to flip B samples
to A when they are stamped with the features, just like a
trigger. Observe that since the two classes are similar, small
natural features can be easily identified to flip A to B as
well. For example in Fig 2d, the generated trigger to flip
class #20 to #4 has a similar small size as that in Fig. 2c.
In contrast, such symmetry is unlikely for real backdoors
as generating a trigger to flip the target label to the victim
label tends to be difficult. For example, Fig. 2a shows a
trigger (the pixel in the red box) for model #556 in round
4 that has a label-specific backdoor from class #13 to class
#1. It is sufficient to flip all class #13 inputs to class #1 (i.e.,
Fig. 2b). However, due to the differences of the two classes,
flipping class #1 inputs to class #13 is much more difficult.
Hence, we extend the algorithm such that when it decides
to optimize for a victim-target label pair, it also sufficiently
optimizes along the opposite direction to check symmetry.

4. Design
Fig. 4 presents the overview of our technique. On the left is
the trigger optimizer (Section 4.1) that performs one round
of trigger optimization at a time. In each round the opti-
mizer generates a smaller trigger (than before) that causes a
given set of benign samples to be misclassified to a target
label, or returns failure when such a trigger cannot be found
within a fixed number of epochs. On the right is the K-Arm

scheduler (Section 4.2) that decides which arm should be



Backdoor Scanning for Deep Neural Networks through K-Arm Optimization

Figure 4. K-arm optimization workflow

optimized next. Assume a model has N classes. To identify
universal backdoor, we create N (optimization) arms, each
having one of the N labels as the target label and aiming to
generate a trigger to flip benign samples from the remaining
N � 1 classes to the target label. To identify label-specific
backdoor, we create N ⇥ (N � 1) arms (i.e., all the pair-
wise combinations), each aiming to flip samples of a victim
class to a target label. Hence, the scheduler selects from
the K = N + N ⇥ (N � 1) arms. In the diagram, there
are two cycles inside the scheduler representing two opti-
mization phases. The top cycle denotes the warm-up phase
that optimizes all arms for two rounds. The scheduler re-
ceives and retains the generated trigger information for later
use. The bottom cycle denotes the later selective optimiza-

tion phase, in which one selected arm is optimized in each
round. The selective optimization terminates when we can
get a sufficiently small trigger or the time budget runs out.
To improve efficiency, the scheduler is facilitated by a pre-
screening phase to reduce unnecessary arms (Section 4.3).
It also considers symmetry during selection to distinguish
nature features from triggers (Section 4.4).

4.1. Trigger Optimizer

In each round, the trigger optimizer optimizes one selected
arm, generating a trigger for the target label of the arm.
Specifically, a trigger T is composed of two parts: pattern
P and mask M with the former deciding the input values
of a trigger and the latter deciding the shape/position of the
trigger. Given a clean input x and a trigger, the stamped
input x̂ is defined as follows.

x̂ = (1�M) · x+M · P (1)

Here, operator · stands for the element-wise production.
Given an x of dimensions [C,H,W ], the dimensions of
pattern P and M are identical to x’s. The values of P are in
the range of [0, 255] and the values of M are in the range of
[0, 1]. Intuitively, stamping a trigger is by mixing x and P

through the mask M . Given a model F , a target label t, and
a set of inputs X , the trigger optimization for t is defined as

follows.
min
P,M

(L(t,F((1�M) ·X +M · P )) + ↵kMk1), 8x 2 X

(2)
For an arm of generating universal trigger, X contains a
set of clean inputs from classes other than t; for an arm of
generating label-specific trigger, X contains a set of clean
inputs from the victim class. L stands for the cross-entropy
loss function. Hyper-parameter ↵ balances the attack suc-
cess rate and the size of the optimized trigger. The optimizer
finishes a round and returns if the current trigger T satisfies
the following condition.

Acc(X̂, t) � ✓ and kMk1 < kMpk1

Intuitively, the attack success rate with the trigger needs to
be greater than a threshold ✓, which is 0.99 in this paper,
meaning samples stamped with the trigger have higher than
99% chance to be classified to t, and the current trigger
is smaller than the previous one Mp. The optimizer may
return failure for the current round when the budget for the
label runs out (which is 10 epochs in this paper).

4.2. K-Arm Scheduler

To handle uncertainty in arm selection, we leverage the ✏-
greedy algorithm (Watkins, 1989) to introduce randomness
in our selection. The idea is to draw a random sample from
a distribution, which is a uniform distribution from 0 to 1 in
this paper. If the sample is larger than a threshold ✏, we rely
on an objective function to make the selection; otherwise, a
random arm is selected. The procedure of selecting label L
is formally defined as follows.

L =

(
argmax

l
A(l), s > ✏

rand(K), s < ✏
, with s ⇠ U(0, 1) (3)

The parameter ✏ decides the level of greediness (or random-
ness). With the ✏-greedy method, even if the true positive
label is not selected in an early round, it still has a chance
to be chosen in the following rounds. We set ✏ = 0.3 in
this paper and will discuss its effect later in the section.
A(l) is an objective function for the target label l of an arm.
It is supposed to approximate the likelihood of the label
being the true label target. We leverage two kinds of infor-
mation in the approximation: the current trigger size for

the label and the trigger size variation for the label over

rounds of optimization. To simplify discussion, we leave
symmetry (to distinguish natural features and triggers) to a
later section. Intuitively, a label with a smaller trigger size
is promising, and a label that continuously achieves good
trigger size reduction in the past is promising. Let tm(l)
be the accumulated time spent on optimizing l (in the past
rounds); M(l) the current mask of l such that kM(l)k1, the
L1 norm of M(l), describes the trigger size; and M1(l) the
first valid trigger for l. The objective function A(l) is hence



Backdoor Scanning for Deep Neural Networks through K-Arm Optimization

defined as follows.

A(l) =
kM(l)k1 � kM1(l)k1

tm(l)
+ � · 1

kM(l)k1
(4)

Here � is a hyper-parameter set to 105. In the early rounds,
the trigger size reduction rate (i.e., the first term in the
above equation) is a stronger indicator of true positive. The
equation allows us to put more weight on the reduction rate
instead of the trigger size, which tends to be large at the
beginning and hence the second term tends to be small. As
the optimization proceeds, the trigger size reduction rate
degrades, even for the true positive label, the second term
becomes dominating, allowing the scheduler to prioritize
labels with small triggers (to make them smaller).

In the end, we compare the size of the smallest trigger with a
threshold ⌧ to decide whether a model is trojaned or benign.
In this paper, we set ⌧ = 300 for all TrojAI models and
⌧ = 350 for ImageNet models.

Theoretical Analysis of K-Arm. We conduct theoretical
analysis to show that K-Arm is more effective (i.e., having
higher accuracy) and more efficient (i.e., lower overhead)
than NC and NC+pre-selection. The effectiveness is proved
by computing the expected time of finishing trigger gen-
eration for the true target label. Details can be found in
Appendix.A.

4.3. Arm Pre-screening

According to the theoretical analysis, when the number
of arms K is large, the cost is dominated by the warm-
up phase that is determined by K. A large K is hence
undesirable. Recall that for a model with N classes, K =
N +N ⇥ (N �1), which could be large. We hence propose
a pre-screening step to filter out arms that are not promising.

In order to achieve high attack success rate, the attacker
often has to stamp many benign samples (of various classes
when injecting a universal backdoor) with the trigger and
use them in trojan training. Note that these stamped samples
have their labels set to the target label. As such, the model
learns the correlations between the target label and the be-
nign features belonging to the original labels. Consequently,
the logits value of the target label tends to be consistently

larger than other labels for benign samples. We leverage
this to preclude labels that do not look promising.

Specifically, for universal backdoor scanning, we consider a
label promising if its logits value ranks among the top �%
labels in at least ✓% of all the benign samples (of various
labels) that can be leveraged for scanning. Collecting such
statistics has much lower cost compared to optimization.
We set � = 25 and ✓ = 65 in this paper. For label-specific
backdoor scanning, we consider an optimization arm from
the victim label ts to the target label td promising if td’s
logits value ranks among the top �% labels in at least ✓% of

all the available benign samples of label ts. We set � = 25
and ✓ = 90 in this paper. Observe that our settings of � and
✓ are conservative in order not to exclude the right one. We
also empirically study the effect of different settings.

According to our experiments in the next section, the pre-
screening can substantially reduce the number of arms to
consider. For example, we can effectively reduce the arms
of ImageNet from 1000 to 20 without sacrificing accuracy
in universal backdoor scanning.

4.4. Symmetric Optimization to Distinguish Natural
Features from Triggers

Assume a (small) trigger T is generated to flip clean sam-
ples with label ts to label td. As discussed in Section 3, If
T does not denote a backdoor but rather natural features,
the two classes are likely close to each other. As such,
the trigger flipping samples of td to ts shall have a simi-
lar size as T . If T indeed denotes a backdoor, the trigger
flipping td to ts tends to be much larger as it is difficult
to cause misclassification along the opposite direction of
trojaning. Therefore, the scheduling algorithm is enhanced
as follows to consider symmetry. The extension focuses on
label-specific optimization as such confusion rarely happens
for universal backdoors.

Given a label-specific arm hts, tdi, i.e., flipping ts to td,
M(ts, td) and P (ts, td) denote the mask and pattern for the
generated trigger, respectively, and M(td, ts) and P (td, ts)
the correspondence along the opposite direction (i.e., flip-
ping td to ts). The objective function is as follows.

A(ts, td) =
(kM(ts, td)k1 � kM1(ts, td)k1)/tm(ts, td) + � · 1/kM(ts, td)k1
(kM(td, ts)k1 � kM1(td, ts)k1)/tm(td, ts) + � · 1/kM(td, ts)k1

(5)

Intuitively, we leverage the ratio of objective functions in
Equation ( 4) in the two directions to estimate the likelihood
of hts, tdi being the true victim-target label pair. When
A(ts, td) is large, meaning the two directions are asymmet-
ric, the pair is likely the true victim-target pair and selected.

5. Experiments
We compare our method with five state-of-the-art techniques
against three different attack methods on multiple datsets
and show that K-arm optimization can achieve better accu-
racy with lower time cost.

5.1. Datasets

TrojAI Competition. TrojAI (IARPA, 2020) is a program
by IARPA that aims to tackle the back-door detection prob-
lem. In each round of competition, the performers are first
given a large set of training models (over 1000) with dif-
ferent structures and different classification tasks. Roughly
half of them are trojaned and their malicious identities are



Backdoor Scanning for Deep Neural Networks through K-Arm Optimization

known. A (small) set of benign examples are provided for
each label of each model. These models may be trojaned
with various kinds of backdoors, including universal and
label-specific. The triggers could be pixel patterns (e.g.,
polygons with solid color) and Instagram filters (Liu et al.,
2019). They could be position dependent or independent.
Position dependency means that the trigger has to be at a
specific relative position with the foreground object in or-
der to cause misclassification. A model may have one or
more backdoors. The complexity of models and backdoors
grows from round to round. Note that our technique does

not require training. We hence use these training sets as

regular datasets. IARPA also hosts a test set online that is
drawn from the same distribution as the training models. It
is unknown which test models are trojaned. One can sub-
mit his/her solution which will be evaluated remotely on
their server. The solution needs to finish scanning all the test
models (100, 144, 288, and 288 for rounds 1-4, respectively)
within 24 hours for rounds 1-2 and 48 hours for rounds 3-4.
By the time of submission, round 4 is the latest. We com-
pare our method with the baselines on all the models with
polygon backdoors, mixed with all the clean models across
all four rounds. We exclude models trojaned with Instagram
filters as some baselines do not support them. The leader-
board results for our technique including both polygon and
filter backdoors will be discussed in Section 5.5. The details
of datasets can be found in Appendix.B.

ImageNet. We also use 7 VGG16 models on ImageNet
(1000 classes) trojaned by TrojNN (Liu et al., 2018b), a kind
of unviersal patch attack, and 6 models on ImageNet poi-
soned by hidden-trigger backdoors (Saha et al., 2020), with
different structures including VGG16, AlexNet, DenseNet,
Inception, ResNet and SqueezeNet. The hidden-trigger
backdoors are label-specific. They are mixed with 7 clean
ImageNet models.

Other datasets. We also evaluate our method on 4 CI-
FAR10 and 4 GTSRB models trojaned by Input-Aware Dy-
namic Attack (Nguyen & Tran, 2020). They are mixed with
4 clean models respectively.

5.2. Evaluation Metrics

We report two accuracy metrics used in TrojAI: cross-

entropy loss (Murphy, 2012) and ROC-AUC (Area under
Receiver Operating Characteristic Curve) (Fawcett, 2006).
The former is the lower the better and the latter is the higher
the better. In addition, we also report the plain accuracy, i.e.,
the percentage of models that are correctly classified. We
also report the average scanning time for each model. For
fair comparison, comparative experiments are all done on
an identical machine with a single 24GB memory NVIDIA
Quadro RTX 6000 GPU (with the lab server configuration).
Leaderboard results (on TrojAI test sets) were run on the

IARPA server with a single 32GB memory NVIDIA V100
GPU. We use Adam (Kingma & Ba, 2014) optimizer with
learning rate 0.1, � = {0.5, 0.9} for all the experiments.

5.3. Baseline Methods

We compare K-Arm with the following state-of-the-art
detection methods: ABS (Liu et al., 2019), NC (Wang
et al., 2019), NC+pre-selection (Wang et al., 2019) (or
Pre-selection for short), ULP (Kolouri et al., 2020), TA-
BOR (Guo et al., 2019), DLTND (Wang et al., 2020c). For
the optimization based methods including ABS, NC, Pre-
selection, TABOR and DLTND, we use the same batch size
for fair comparison. For NC, Pre-selection and our method,
we use the same early stop condition to terminate the op-
timization. For ABS, we select top10 neuron candidates
after the stimulation analysis and perform the trigger re-
verse engineering. For Pre-selection, we set the number of
optimization epochs as max(10, s) for each label with s

the number of epochs when the first valid trigger is found.
Recall Pre-selection performs a few rounds of optimizations
and then selects a promising subset to finish. We select the
top 3 among the 5 labels for round 1 models and the top 20%
labels/label-pairs for rounds 2-4. For the ImageNet models,
we follow (Wang et al., 2019) and select the top 100. For
ULP, we train it on 500 TrojAI round 1 models and test it
on the 100 test models. We did not run it on later rounds as
it cannot handle model structure variations in those rounds.
For TABOR and DLTND, we use the implementation pro-
vided by the authors.

5.4. Parameter Tuning

We evaluate the effects of hyper-parameters, including the
following: � in the objective function, ✓, � in the arm pre-
screening and ✏ in the K-Arm Scheduler. The last one is
the threshold ⌧ which decides if a model is trojaned. We
randomly select 40 models (20 benign and 20 trojaned) from
round 2 to test our method. In detail, we pick 5 different
values (102, 103, 104, 105, 106) for �. For ✏, we select 10
values ranging from 0.1 ⇠ 0.5. We use 5 different ⌧ values
from 100 ⇠ 500, 3 ✓ values from 10 ⇠ 30 and 3 � values
from 50 ⇠ 80. The results are in Appendix.C.

5.5. Experimental results

Results for TrojAI Rounds 1-4 Training Sets. Table 1
shows the comparison results on the aforementioned mod-
els from TrojAI rounds 1-4 training sets (3231 models in
total). Columns Acc, Loss, ROC, and Time stand for plain
accurcy, cross entropy loss, AUC-ROC, and average scan-
ning time (in seconds) per model, respectively. Observe that
our method achieves the best accuracy and has the lowest
scanning time compared to all the baselines. The best K-
Arm methods have 4%, 27%, 30%, 25% better ROC than



Backdoor Scanning for Deep Neural Networks through K-Arm Optimization

Table 1. TrojAI Training Set Results; “Sym K-Arm Opt + Pre-Srn” stands for symmetric K-Arm with pre-screening.
Round1 Round2 Round3 Round4

Method Acc Loss ROC Time(s) Acc Loss ROC Time(s) Acc Loss ROC Time(s) Acc Loss ROC Time(s)

NC 72% 0.61 0.73 623.9 - - - > 30000 - - - > 30000 - - - > 30000
Pre-selection 71% 0.62 0.72 507.5 51% 1.16 0.54 3708.2 58% 0.81 0.61 3482.5 55% 1.09 0.55 3210.4
ABS 67% 0.67 0.70 542.9 62% 0.76 0.57 1527.0 71% 0.62 0.56 1435.0 79% 0.52 0.55 525.0
TABOR 80% 0.51 0.81 1142.2 55% 1.09 0.59 > 32000 60% 0.77 0.57 > 30000 60% 0.81 0.55 > 35000
DLTND 85% 0.45 0.86 1109.6 60% 0.79 0.62 > 26000 65% 0.75 0.61 > 29000 65% 0.77 0.64 > 31000
K-Arm Opt 90% 0.32 0.90 275.5 76% 0.58 0.77 1956.5 79% 0.50 0.80 1740.3 82% 0.51 0.81 1623.5
K-Arm Opt + Pre-Srn - - - - 75% 0.59 0.76 140.8 79% 0.50 0.80 166.2 80% 0.53 0.79 110.5
Sym K-Arm Opt + Pre-Srn - - - - 89% 0.33 0.89 340.5 91% 0.31 0.91 290.5 89% 0.32 0.89 204.4

Table 2. Results on ImageNet Models
Hidden Trigger Attack TrojanNN

Method Acc Loss ROC Time(s) Acc Loss ROC Time(s)

NC - - - >1m 71% 0.65 0.82 221k
Pre-selection 54% 1.02 0.62 171k 64% 0.92 0.74 43k
ABS 100% 0.11 1.00 389k 100% 0.11 1.00 4.9k
K-Arm 85% 0.33 0.93 86k 88% 0.38 0.92 19k
K-Arm+Pre-Srn 85% 0.33 0.93 2k 100% 0.11 1.00 224
Sym K-Arm+Pre-Srn 100% 0.09 1.00 4k - - - -

the best performance by the baselines for the four respective
rounds. They are also 1.8, 10.8, 8.6, 4.8 times faster than the
fastest among the baselines for the four respective rounds.
This strongly supports the better effectiveness and efficiency
of K-Arm. K-Arm has higher accuracy than Pre-selection
and ABS because they have to make deterministic selection
(about which labels/neurons to optimize) at the beginning
which is difficult when the candidate sets are large (e.g., in
label-specific backdoor scanning). K-Arm has higher accu-
racy than NC even though NC is exhaustive. Besides that
NC does not consider symmetry and hence cannot distin-
guish natural features from injected triggers, its exhaustive
nature in many cases also hurts performance as it aggres-
sively optimizes for clean labels, generating many natural
features with small size that behave like triggers. TABOR
and DLTND encounter the same problem and suffer from
huge number of false alarms.

The last three rows in Table 1 and 2 present the ablation
study for different components of our method. The vanilla
K-Arm can have 79% accuracy and 1773s on average (from
R2 to R4). K-Arm with pre-screening achieves 78% ac-
curacy and 138s. Symmetric K-Arm with pre-screening
gets 89% and 278s. Note that vanilla NC only has 57%
with 32000s. Observe that arm pre-screening substantially
reduces the scanning time (by an order of magnitude) with-
out sacrificing much accuracy; symmetric optimization is
critical to improving accuracy, with 13%, 11%, and 10%
ROC improvement for rounds 2-4. Without the symmetric
optimization, K-Arm would not be able to reach the round
targets (i.e., lower than 0.348 Loss).

Results for ImageNet Models. Table 2 shows the results
for the ImageNet models. Columns 2-5 present results on
the 6 models with (label-specific) hidden-trigger backdoors
mixed with 7 benign models; columns 6-9 present results
on the 7 models with (universal) TrojNN backdoors, mixed

Figure 5. Results on Input-Aware Dynamic Attack.
with 7 benign models. For hidden-trigger backdoors, the
best K-Arm has 100% accuracy. NC could not finish due
to the large number of victim-target label pairs. It took
two weeks to scan a model. Both Pre-selection and ABS
have much worse accuracy or scanning time. For TrojNN
backdoors, The best K-Arm has 100% accuracy, higher
than most baselines. Although ABS can also achieve 100%
accuracy, it is 20 times slower than the best K-Arm. NC
and Pre-selection have lower accuracy and much longer
scanning time due to the large number of classes and natural
features that behave like triggers.

Results for the Dynamic Attack. Different from static
backdoor attacks, dynamic attack can generate input specific
triggers. Therefore, the optimized trigger of the target class
will not be extremely smaller than others, then bypass the
outlier detection. However, our experiment results show
that the proposed pre-screening technique can identify the
target label preciously for the poisoned models. By setting
the bound ✓ = 70, � = 25, we can successfully detect all 4
trojan models on CIFAR10 and GTSRB without any false
positives. Fig. 5 shows the ✓ values of different classes for a
GTSRB and a CIFAR10 poisoned models. The target label
is 0 for both models. Observe that the ✓ value of the target
label is 35% larger than the largest value of the rest labels,
which is a strong indicator for the trojan models. Remind
the large ✓ reveals that the model learns the target class
features as part of the features for other classes due to the
poisoning process.

K-Arm Performance on TrojAI Leaderboard. K-Arm
consistently achieved top results across the four rounds12.

1https://pages.nist.gov/trojai/
2https://pages.nist.gov/trojai/docs/results.html#previous-

leaderboards



Backdoor Scanning for Deep Neural Networks through K-Arm Optimization

Table 3. TrojAI Leaderboard Results
Round1 Round2 Round3 Round4

Method CE Loss ROC Time(s) Rank CE Loss ROC Time(s) Rank CE Loss ROC Time(s) Rank CE Loss ROC Time(s) Rank

NC - - T/O - - - T/O - - - T/O - - - T/O -
ABS 0.64(+0.34) 0.70(-0.21) 523(+233) - 0.76(+0.44) 0.53(-0.36) 508(+18) - 0.84(+0.55) 0.56(-0.35) 599(+367) - 0.87(+0.55) 0.48(-0.42) 229(+18) -
ULP 1.18(+0.88) 0.59(-0.32) 0.1(-290) - - - - - - - - - - - - -
K-Arm 0.30(-0.00) 0.91(-0.00) 290(-0) 1 0.35(+0.03) 0.90(+0.01) 290(-200) 2 0.29(-0.00) 0.91(-0.00) 232(-0) 1 0.33(+0.01) 0.90(-0.00) 201(-10) 2

Table 3 shows the K-Arm results for the four rounds, in-
cluding the loss, ROC, average scanning time, and ranking.
The results include those for all the different types of back-
doors (polygon, filter, label-specific, universal, position-
dependent, multiple backdoors in a model, etc.). We also
show the difference between K-Arm and the top (if any).
For example, in round 2, K-Arm ranked number 2. Loss
0.35(+0.03) means that K-Arm’s loss is 0.35 while the top
performer has 0.32 loss; ROC 0.90(+0.01) means that K-
Arm has 0.9 ROC while the top performer has 0.89 ROC.
Note that the leaderboard ranks solutions by (smaller) loss.
K-Arm beat the round targets (i.e., lower than 0.348 loss)
for 3 out of the 4 rounds. For round 2, although it did not
beat the target, its ROC is the highest. It ranked number one
for 2 out of the 4 rounds. In all rounds, K-Arm is faster than
ABS. We also train ULP on 500 round 1 training set models
and evaluate it on the round 1 test set. However, its accuracy
is not high. We speculate two reasons: 1) unlike the models
in the ULP paper, the classes of TrojAI models are not fixed;
2) the classifier seems to easily overfit on the training data
and the triggers in the TrojAI datasets share few common
features. On the other hand, ULP is not optimization based
and hence is extremely fast.

Trend of Trigger Optimization in K-Arm. We randomly
sample 100 trojaned models from each training set of Tro-
jAI rounds 1 to 4. We record the ranking of the optimized
trigger size of true target label for each model during op-
timization. Fig. 6 shows the percentage of models whose
target label trigger size ranks number 1 (i.e., the smallest) for
each round. We can see that after warm-up, there are only
60-70% models rank top. As such, a simple pre-selection
strategy does not work. All the sets converge at around 90%,
indicating that K-Arm allows the true positives to stand out
eventually in most cases. Also observe that the different
sets converge at different optimization rounds, indicating
that using a universal larger number of warm-up rounds
instead of K-Arm will not work. Moreover, 20 rounds of
warm-up means hundreds of epochs, which is already not
affordable as all arms have to go through warm-up. At the
end, we point out that there are still around 10% cases that
do not stand out at the end. We study some of them in the
Appendix.D. We leave the problem to future work.

Adaptive Attack. We devise an adaptive attack for the arm
pre-screening stage. Our goal is to suppress the target label
logits for benign samples of victim classes. This is done
by adding an L2 regularization of target label logits value
of benign samples. As such, the optimizer tries to enlarge

Figure 6. Trend of Trigger Optimization.

Table 4. Adaptive Attack
Coefficient 0 1 10 100 1000

Model Acc 80.0% 78.1% 71.4% 65.5% 35.4%
ASR 99.0% 99.4% 92.9% 92.6% 0.0%
Selection Acc 100.0% 100.0% 80.0% 50.0% -
K-Arm Detection Acc 100.0% 100.0% 70.0% 40.0% -

the distance between the target label and the victim label.
The strength of the attack is controlled by a coefficient. We
use 10 models on CIFAR10 with different coefficient values
and report the model accuracy, attack success rate (ASR),
selection accuracy and K-Arm detection accuracy in Table 4.
Observe that pre-screening becomes less effective when the
attack is stronger. However, the model accuracy and attack
success rate degrade as well. It is unclear how to design
adaptive attack for the scheduler or optimizer. We will leave
it to future work.

6. Conclusion
Inspired by K-Arm Bandit in Reinforcement Learning, we
develop a K-Arm optimization technique for back-door scan-
ning. The technique handles the inherent uncertainty in
searching a very large space of model behaviors, using
stochastic search guided by an objective function. It shows
outstanding performance on models from IARPA TrojAI
competitions. It also outperforms the state-of-the-art tech-
niques that are publicly available.

7. Acknowledgments
We thank the anonymous reviewers, Zikang Xiong for
their valuable comments. This research was supported, in
part by IARPA TrojAI W911NF-19-S-0012, NSF 1901242
and 1910300, ONR N000141712045, N000141410468 and
N000141712947. Any opinions, findings, and conclusions
in this paper are those of the authors only and do not neces-
sarily reflect the views of our sponsors.



Backdoor Scanning for Deep Neural Networks through K-Arm Optimization

References
Auer, P. Using confidence bounds for exploitation-

exploration trade-offs. Journal of Machine Learning

Research, 3(Nov):397–422, 2002.

Auer, P., Cesa-Bianchi, N., and Fischer, P. Finite-time
analysis of the multiarmed bandit problem. Machine

learning, 47(2-3):235–256, 2002.

Bagdasaryan, E., Veit, A., Hua, Y., Estrin, D., and
Shmatikov, V. How to backdoor federated learning. In
International Conference on Artificial Intelligence and

Statistics, pp. 2938–2948. PMLR, 2020.

Chan, A. and Ong, Y.-S. Poison as a cure: Detecting & neu-
tralizing variable-sized backdoor attacks in deep neural
networks. arXiv preprint arXiv:1911.08040, 2019.

Chen, B., Carvalho, W., Baracaldo, N., Ludwig, H., Ed-
wards, B., Lee, T., Molloy, I., and Srivastava, B. Detecting
backdoor attacks on deep neural networks by activation
clustering. arXiv preprint arXiv:1811.03728, 2018.

Chen, X., Salem, A., Backes, M., Ma, S., and Zhang, Y.
Badnl: Backdoor attacks against nlp models. arXiv

preprint arXiv:2006.01043, 2020.

Cheng, S., Liu, Y., Ma, S., and Zhang, X. Deep feature space
trojan attack of neural networks by controlled detoxifica-
tion. arXiv preprint arXiv:2012.11212, 2020.

Chou, E., Tramèr, F., and Pellegrino, G. Sentinet: Detecting
localized universal attacks against deep learning systems.
In 2020 IEEE Security and Privacy Workshops (SPW),
pp. 48–54. IEEE, 2020.

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler,
M., Benenson, R., Franke, U., Roth, S., and Schiele, B.
The cityscapes dataset for semantic urban scene under-
standing. In Proc. of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2016.

Du, M., Jia, R., and Song, D. Robust anomaly detection and
backdoor attack detection via differential privacy. arXiv

preprint arXiv:1911.07116, 2019.

Eggenberger, F. and Pólya, G. Über die statistik verketteter
vorgänge. ZAMM-Journal of Applied Mathematics and

Mechanics/Zeitschrift für Angewandte Mathematik und

Mechanik, 3(4):279–289, 1923.

Fawcett, T. An introduction to roc analysis. Pattern recog-

nition letters, 27(8):861–874, 2006.

Fritsch, J., Kuehnl, T., and Geiger, A. A new performance
measure and evaluation benchmark for road detection
algorithms. In International Conference on Intelligent

Transportation Systems (ITSC), 2013.

Gao, Y., Xu, C., Wang, D., Chen, S., Ranasinghe, D. C.,
and Nepal, S. Strip: A defence against trojan attacks
on deep neural networks. In Proceedings of the 35th

Annual Computer Security Applications Conference, pp.
113–125, 2019.

Gu, T., Dolan-Gavitt, B., and Garg, S. Badnets: Identify-
ing vulnerabilities in the machine learning model supply
chain. arXiv preprint arXiv:1708.06733, 2017.

Guo, W., Wang, L., Xing, X., Du, M., and Song, D.
Tabor: A highly accurate approach to inspecting and
restoring trojan backdoors in ai systems. arXiv preprint

arXiv:1908.01763, 2019.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. Densely connected convolutional networks. In
Proceedings of the IEEE conference on computer vision

and pattern recognition, pp. 4700–4708, 2017.

Huang, S., Peng, W., Jia, Z., and Tu, Z. One-pixel signature:
Characterizing cnn models for backdoor detection. arXiv

preprint arXiv:2008.07711, 2020.

IARPA. Trojai competition. https://pages.nist.gov/trojai/,
2020.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kolouri, S., Saha, A., Pirsiavash, H., and Hoffmann, H.
Universal litmus patterns: Revealing backdoor attacks in
cnns. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pp. 301–310,
2020.

Larsson, F. and Felsberg, M. Using fourier descriptors and
spatial models for traffic sign recognition. In Scandina-

vian conference on image analysis, pp. 238–249. Springer,
2011.

Li, S., Ma, S., Xue, M., and Zhao, B. Z. H. Deep learning
backdoors. arXiv preprint arXiv:2007.08273, 2020a.

Li, Y., Wu, B., Jiang, Y., Li, Z., and Xia, S.-T. Backdoor
learning: A survey. arXiv preprint arXiv:2007.08745,
2020b.

Lin, J., Xu, L., Liu, Y., and Zhang, X. Composite backdoor
attack for deep neural network by mixing existing benign
features. In Proceedings of the 2020 ACM SIGSAC Con-

ference on Computer and Communications Security, pp.
113–131, 2020.



Backdoor Scanning for Deep Neural Networks through K-Arm Optimization

Liu, K., Dolan-Gavitt, B., and Garg, S. Fine-pruning: De-
fending against backdooring attacks on deep neural net-
works. In International Symposium on Research in At-

tacks, Intrusions, and Defenses, pp. 273–294. Springer,
2018a.

Liu, Y., Xie, Y., and Srivastava, A. Neural trojans. In
2017 IEEE International Conference on Computer De-

sign (ICCD), pp. 45–48. IEEE, 2017.

Liu, Y., Ma, S., Aafer, Y., Lee, W.-C., Zhai, J., Wang, W.,
and Zhang, X. Trojaning Attack on Neural Networks. In
Proceedings of the 25nd Annual Network and Distributed

System Security Symposium (NDSS), 2018b.

Liu, Y., Lee, W.-C., Tao, G., Ma, S., Aafer, Y., and Zhang,
X. Abs: Scanning neural networks for back-doors by arti-
ficial brain stimulation. In Proceedings of the 2019 ACM

SIGSAC Conference on Computer and Communications

Security, pp. 1265–1282, 2019.

Ma, S. and Liu, Y. Nic: Detecting adversarial samples with
neural network invariant checking. In Proceedings of the

26th Network and Distributed System Security Sympo-

sium (NDSS 2019), 2019.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to
adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Murphy, K. P. Machine learning: a probabilistic perspective.
MIT press, 2012.

Nguyen, A. and Tran, A. Input-aware dynamic backdoor
attack. 2020.

Qiao, X., Yang, Y., and Li, H. Defending neural backdoors
via generative distribution modeling. In Advances in Neu-

ral Information Processing Systems, pp. 14004–14013,
2019.

Rakin, A. S., He, Z., and Fan, D. Bit-flip attack: Crush-
ing neural network with progressive bit search. In Pro-

ceedings of the IEEE/CVF International Conference on

Computer Vision (ICCV), October 2019.

Rakin, A. S., He, Z., and Fan, D. Tbt: Targeted neural
network attack with bit trojan. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pp. 13198–13207, 2020.

Rezaei, S. and Liu, X. A target-agnostic attack on deep
models: Exploiting security vulnerabilities of transfer
learning. arXiv preprint arXiv:1904.04334, 2019.

Saha, A., Subramanya, A., and Pirsiavash, H. Hidden trigger
backdoor attacks. In Proceedings of the AAAI Conference

on Artificial Intelligence, volume 34, pp. 11957–11965,
2020.

Salem, A., Wen, R., Backes, M., Ma, S., and Zhang, Y. Dy-
namic backdoor attacks against machine learning models.
arXiv preprint arXiv:2003.03675, 2020.

Shafahi, A., Huang, W. R., Najibi, M., Suciu, O., Studer, C.,
Dumitras, T., and Goldstein, T. Poison frogs! targeted
clean-label poisoning attacks on neural networks. In
Advances in Neural Information Processing Systems, pp.
6103–6113, 2018.

Sun, L. Natural backdoor attack on text data. arXiv preprint

arXiv:2006.16176, 2020.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna,
Z. Rethinking the inception architecture for computer vi-
sion. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pp. 2818–2826, 2016.

Turner, A., Tsipras, D., and Madry, A. Label-consistent
backdoor attacks. arXiv preprint arXiv:1912.02771,
2019.

Wang, B., Yao, Y., Viswanath, B., Zheng, H., and Zhao, B. Y.
With great training comes great vulnerability: Practical
attacks against transfer learning. In 27th {USENIX} Secu-

rity Symposium ({USENIX} Security 18), pp. 1281–1297,
2018.

Wang, B., Yao, Y., Shan, S., Li, H., Viswanath, B., Zheng,
H., and Zhao, B. Y. Neural cleanse: Identifying and
mitigating backdoor attacks in neural networks. In 2019

IEEE Symposium on Security and Privacy (SP), pp. 707–
723. IEEE, 2019.

Wang, B., Cao, X., Gong, N. Z., et al. On certifying robust-
ness against backdoor attacks via randomized smoothing.
arXiv preprint arXiv:2002.11750, 2020a.

Wang, H., Sreenivasan, K., Rajput, S., Vishwakarma, H.,
Agarwal, S., Sohn, J.-y., Lee, K., and Papailiopoulos, D.
Attack of the tails: Yes, you really can backdoor federated
learning. Advances in Neural Information Processing

Systems, 33, 2020b.

Wang, R., Zhang, G., Liu, S., Chen, P.-Y., Xiong, J.,
and Wang, M. Practical detection of trojan neural net-
works: Data-limited and data-free cases. arXiv preprint

arXiv:2007.15802, 2020c.

Watkins, C. J. C. H. Learning from delayed rewards. 1989.

Wong, E., Rice, L., and Kolter, J. Z. Fast is better than
free: Revisiting adversarial training. arXiv preprint

arXiv:2001.03994, 2020.



Backdoor Scanning for Deep Neural Networks through K-Arm Optimization

Xie, C., Huang, K., Chen, P.-Y., and Li, B. Dba: Distributed
backdoor attacks against federated learning. In Interna-

tional Conference on Learning Representations, 2019.

Xu, X., Wang, Q., Li, H., Borisov, N., Gunter, C. A., and Li,
B. Detecting ai trojans using meta neural analysis. arXiv

preprint arXiv:1910.03137, 2019.

Yao, Y., Li, H., Zheng, H., and Zhao, B. Y. Latent back-
door attacks on deep neural networks. In Proceedings

of the 2019 ACM SIGSAC Conference on Computer and

Communications Security, pp. 2041–2055, 2019.

Zhang, X., Mian, A., Gupta, R., Rahnavard, N., and Shah, M.
Cassandra: Detecting trojaned networks from adversarial
perturbations. arXiv preprint arXiv:2007.14433, 2020.

Zhao, S., Ma, X., Zheng, X., Bailey, J., Chen, J., and Jiang,
Y.-G. Clean-label backdoor attacks on video recognition
models. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pp. 14443–
14452, 2020.

Zhu, C., Huang, W. R., Shafahi, A., Li, H., Taylor, G.,
Studer, C., and Goldstein, T. Transferable clean-label
poisoning attacks on deep neural nets. arXiv preprint

arXiv:1905.05897, 2019.



Backdoor Scanning for Deep Neural Networks through K-Arm Optimization

A. Theoretical Analysis
Let the time needed for a single round optimization is t.
For simplicity, we further assume the number of rounds
of optimization needed to generate the final trigger for the
target label is R and the objective function has p probability
choosing the target label. Let ps = (1 � ✏) · p + ✏ ·

1
K be

the probability the target label is scheduled.

Efficiency. Since the selective optimization terminates only
when the target label is optimized R � 2 times, it follows
the Negative Binomial Distribution (Eggenberger & Pólya,
1923) that models the probability of the number of failure
events before a given number of successful events happen,
when the probability of one successful event is given. The
expected time cost of K-Arm is hence the following.

E[Tkm] = 2 ·K · t+ (R� 2) · t
(1� ✏) · p+ ✏ · 1

K

(6)

The first term is the time for the warm-up phase in which
all the K labels go through 2 rounds of optimization. The
second is the time for the selective optimization. The denom-
inator is the probability of choosing the right label. From
the equation, We have the following observations.

• When R � K, such as for TrojAI round 1 models (i.e.,
R = 50 and K = 5). The cost is dominated by the
second term. Therefore, we have E[Tkm] = O(R · t).
Since the cost for NC is E[Tnc] = O(K · R · t), the
speed-up over NC is determined by K.

• When R ⌧ K, e.g., in ImageNet models with
K = 1000. The cost is dominated by the first term.
E[Tkm] = O(K · t) and the speed-up is determined by
R.

Effectiveness. We analyze the effectiveness of our method
by comparing with NC and NC+pre-selection the likelihood
of finishing optimizing the target label within a time bound.
The analysis is done by comparing the expected time of
finishing optimizing the target label. Note that if the time
bound is fixed, the smaller expected value means a higher
probability of finishing successfully.

NC vs. K-Arm. Since NC optimizes all labels in order, the
expected finishing time is the following.

E[Tnc] = R·t·(1·
1

K
+2·

1

K
+...K ·

1

K
) =

(K + 1) ·R · t

2
In practice, due to the objective function design, the prob-
ability of K-Arm scheduling the target label ps = (1 �

✏) · p + ✏ ·
1
K is usually much higher than 2/K when K

is not small. Together with Eq. (6), we have E[Tkm] <

2 ·K · t + (R�2)·t
2
K

= K·R·t
2 +K · t < E[Tnc]. Note R is

usually larger than 2 ·K.

Figure 7. Example images from TrojAI datasets

NC+pre-selection vs. K-Arm. NC+pre-selection makes
deterministic decision to select the m smallest triggers after
the initial optimization. If the target label is not among the
m smallest, pre-selection will never succeed. In practice,
the failure probability is not low. Here, we only focus on
comparing K-Arm with NC+pre-selection when the target
label is among the m smallest. We have the expected time
of pre-selection E[Tps] = 2 ·K · t+ (m+1)(R�2)t

2 , similar to
E[Tnc]. When ps >

2
m (which holds in practice), following

the reasoning similar to above, we have E[Tkm] < E[Tps].

B. Details of TrojAI Competition Datasets
Round1 Dataset. The round1 training set contains 1000
CNN models for classification tasks, in which 532 models
are trojaned and 468 are benign. Each model has 5 labels
and IARPA provides 100 labeled clean images with size
224x224x3 for each class. A clean image is generated by
combining a foreground object and a background image.
The foreground objects are traffic signs with different shapes.
The background images are road scene data drawn from
KITTI (Fritsch et al., 2013), Cityscapes (Cordts et al., 2016)
and Swedish Roads (Larsson & Felsberg, 2011). Note that
these samples were not used to train the models, but drawn
from the same distribution. Sample images are shown in
Fig. 7. There are 3 different model architectures for round1
models: ResNet-50 (He et al., 2016), Inception-v3 (Szegedy
et al., 2016), DenseNet-121 (Huang et al., 2017). There
are only universal triggers in the round1 trojaned models.
The triggers are polygons with 3 to 12 sides and a randomly
selected color. In each malicious image, a trigger is stamped
on an unknown area inside the foreground object. The size
of trigger varies from 2 ⇠ 24% of the foreground object.
Fig 8 illustrates the generation process of trojan images.

Round2 Dataset. The round2 training set contains 1104
CNN models for classification tasks, with 552 trojaned mod-
els and 552 benign models. Compared to round1, round2
models have more labels ranging from 5 ⇠ 25. The clean
images provided for each label are fewer (20 per class). It
includes universal triggers, label specific triggers, and also
Instagram filter triggers. There are 23 different model archi-
tectures. More description related to the TrojAI datasets can
be found in (IARPA, 2020).

Round3 Dataset. The round3 training set contains 1008
CNN models for image classification tasks with 504 tro-
janed models and 504 benign models. Same as round2, the



Backdoor Scanning for Deep Neural Networks through K-Arm Optimization

Figure 8. Trojan Image Generation

(a) � Comparison (b) ✓ Comparison

Figure 9. Label-specific trigger detection under different hyper-
parameters.

number of classes for each model is 5 ⇠ 25, and the clean
images provided for each label are 10 ⇠ 20. Different from
round2 models, all round3 models are enhanced through
adversarial training (Madry et al., 2017; Wong et al., 2020).
The adversarial attack has 3 different strength levels based
on the perturbation size ( 4

255 ,
8

255 ,
16
255 ) and 2 different lev-

els based on the ratio (0.1, 0.3), i.e. what percentage of the
batches are attacked. The number of iterations used in PGD
attacks is set as 4 different values (2, 4, 8, 16). More details
can be found in (IARPA, 2020).

Round4 Dataset. The round4 training set contains 1008
CNN models with 504 trojaned models and 504 benign mod-
els. As the most challenging round, round4 models have
more classes (15 ⇠ 44), less samples (2 ⇠ 5 per class).
Unlike previous rounds, round4 models can have many
concurrent conditional triggers. Such triggers can cause
the misclassification only when they fulfill the conditions.
There are three different conditions: spatial, spectral and
class. The spatial trigger requires the trigger exists within
a certain area to cause the misclassification behaviour. The
spectral trigger can only lead the misclassification when
the trigger has certain color. The class context requires the
trigger must be stamped on the correct class. Besides, the
universal triggers are removed in round4. There are only
label specific triggers. Such comprehensive settings make
the backdoor detection more difficult. Table 5 summarizes
the configurations cross all trojAI 4 rounds.

(a) � Comparison (b) ✓ Comparison

Figure 10. Universal trigger detection under different hyper-
parameters.

C. Impact of Hyper-parameters
From Fig. 11a, we observe that K-Arm has stable detection
accuracy and time cost in a large range of � (from 102 to
106). When � is small, K-Arm might get stuck with a few
labels that seem promising (based on the objective function).
Thus the time cost slightly increases. From Fig. 11b, when
✏ is large, K-Arm pays more attention to exploring random
labels, which leads to more time consumption. From Fig.
11c , when ⌧ is small, many real (back-door) triggers are
considered benign, causing accuracy degradation. When ⌧

is in 300-500, we can achieve a stable high accuracy (around
91%) to distinguish the trojaned and benign models.

We evaluate the effect of remaining two hyper-parameters ✓
and �. Recall that ✓ and � are used in the arm pre-processing
phase. In particular, we consider a label promising if its
logits value ranks among the top �% labels in at least ✓%
of all benign samples of a label (for label-specific trigger
scanning) or various labels (for universal trigger scanning).
Intuitively, � should be small and ✓ should be large. For
scanning universal triggers, we set 3 different values for
� (15, 25, 35) and 3 different values for ✓ (55, 65, 75). For
scanning label specific triggers, we test the same values
of � and choose ✓ from (70, 80, 90). Given 20 randomly
selected round2 models with global triggers and 20 with
label specific triggers, we report the accuracy for selecting
the correct target label successfully under different settings,
the average time cost and the detection accuracy. From
Fig. 9a and Fig. 10a, we can see that a small � value causes
some target labels omitted as the arm size is reduced. This
further leads to detection accuracy degradation. On the other
hand, when � is large, although the selection rate increases,
the time cost goes up. Compared to �, arm pre-processing is
less sensitive to ✓. From Fig. 9b and Fig. 10b, the detection
accuracy and time cost are more stable with different ✓
values.

D. Study of K-Arm Failing Cases
In this section, we study 2 K-Arm failing cases and explain
the reasons.



Backdoor Scanning for Deep Neural Networks through K-Arm Optimization

Table 5. TrojAI Dataset
Rounds # of Models # of Classes # of Samples per Class # of Model Architectures # of Triggers Global Trigger Label-specific Trigger Polygon Trigger Instagram Filter Trigger Adv.Training

Round1 1000 5 100 3 1 3 7 3 7 7
Round2 1104 5⇠25 10⇠20 23 1 3 3 3 3 7
Round3 1008 5⇠25 10⇠20 23 1 3 3 3 3 3
Round4 1008 15⇠44 2⇠5 16 1⇠2 7 3 3 3 3

(a) � Comparison (b) ✏ Comparison (c) ⌧ Comparison
Figure 11. K-Arm accuracy and time cost under different parameter value settings

Case I: Pre-screening fails to select the correct target-
victim pair. According to the Figure 9a, the pre-screening
can not achieve 100% selection accuracy. Therefore, for
some trojaned models, the correct victim-target pair is fil-
tered out during the pre-selection stage and cause the detec-
tion fail. For instance, model #18 in round4 is a trojaned
model with a label-specific polygon trigger. The victim label
is 14 and target label is 8. When we apply the pre-screening
by the default setting (� = 25, ✓ = 90) on this model, we
find that 13 out of 342 pairs are selected. However, the right
pair is not in the list. In fact, there are only 60% samples
from the victim label, in which the target label’s logits value
rank on the top 25% among all labels. Since the right pair is
pruned out, the following K-Arm optimization cannot find a
trigger smaller than the threshold ⌧ and report the model as
benign.

Case II: Symmetric K-Arm fails when victim and tar-
get labels are similar. Recall that the Symmetric K-Arm
performs the trigger optimization in two opposite directions
and considers the ratio of objective functions to distinguish
the real trigger and natural features. However, when the
ground truth trigger is stamped on a victim class which is
similar to the target label, Symmetric K-Arm will avoid
selecting such a pair to optimize due to the small ratio, and
eventually it causes the detection to fail. Figure 12 shows
the victim label#13 image stamped with trigger and target
label#12 image for model#22 in round2. As shown in the
figure, the victim class is very similar to the target class.
The sign at the center of the image is the only difference
between the two classes. Fig. 13 further illustrates the trig-
ger size variation in two opposite directions. We can see
that the trigger sizes reduce in the same pace for both direc-
tions. Therefore, the ratio of objective functions is closed
to 1. This pair can rarely be selected to optimize in K-Arm.
In this case, K-Arm actually selects the victim-target pair
(#5-#1) in most rounds, and eventually reports the model as
benign since the optimized trigger is larger than ⌧ .

(a) Victim + Trigger (b) Target

Figure 12. R2 model#22

Figure 13. Trigger size variation in two opposition directions.


