
PEM: Representing Binary Program Semantics for Similarity
Analysis via a Probabilistic Execution Model

Xiangzhe Xu∗
Zhou Xuan∗

xu1415@purdue.edu
xuan1@purdue.edu
Purdue University
West Lafayette, USA

Shiwei Feng
Purdue University
West Lafayette, USA
feng292@purdue.edu

Siyuan Cheng
Purdue University
West Lafayette, USA
cheng535@purdue.edu

Yapeng Ye
Purdue University
West Lafayette, USA
ye203@purdue.edu

Qingkai Shi
Purdue University
West Lafayette, USA
shi553@purdue.edu

Guanhong Tao
Purdue University
West Lafayette, USA
taog@purdue.edu

Le Yu
Purdue University
West Lafayette, USA
yu759@purdue.edu

Zhuo Zhang
Purdue University
West Lafayette, USA
zhan3299@purdue.edu

Xiangyu Zhang
Purdue University
West Lafayette, USA

xyzhang@cs.purdue.edu

ABSTRACT
Binary similarity analysis determines if two binary executables are
from the same source program. Existing techniques leverage static
and dynamic program features and may utilize advanced Deep
Learning techniques. Although they have demonstrated great po-
tential, the community believes that a more effective representation
of program semantics can further improve similarity analysis. In
this paper, we propose a new method to represent binary program
semantics. It is based on a novel probabilistic execution engine that
can effectively sample the input space and the program path space
of subject binaries. More importantly, it ensures that the collected
samples are comparable across binaries, addressing the substantial
variations of input specifications. Our evaluation on 9 real-world
projects with 35k functions, and comparison with 6 state-of-the-art
techniques show that PEM can achieve a precision of 96% with
common settings, outperforming the baselines by 10-20%.

CCS CONCEPTS
• Security and privacy→ Software reverse engineering.

KEYWORDS
Binary Similarity Analysis, Program Analysis
ACM Reference Format:
Xiangzhe Xu, Zhou Xuan, Shiwei Feng, Siyuan Cheng, Yapeng Ye, Qingkai
Shi, Guanhong Tao, Le Yu, Zhuo Zhang, and Xiangyu Zhang. 2023. PEM:

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0327-0/23/12.
https://doi.org/10.1145/3611643.3616301

Representing Binary Program Semantics for Similarity Analysis via a Prob-
abilistic Execution Model. In Proceedings of the 31st ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Soft-
ware Engineering (ESEC/FSE ’23), December 3–9, 2023, San Francisco, CA, USA.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3611643.3616301

1 INTRODUCTION
Binary similarity analysis determines if two given binary executa-
bles originate from the same source program. It has a wide range of
applications such as automatic software patching [3, 29, 34, 39, 40,
49], software plagiarism detection [6, 27, 38, 42, 52], and malware
detection [4, 7, 14, 15, 18, 21, 51]. For example, assume a critical
security vulnerability has been reported and fixed in a library. It
is of prominent importance to apply the patch to other deployed
projects that included the library. However, the library may be com-
piled with different settings in different projects. Binary similarity
analysis allows identifying all the variants. Given a pool of candi-
date binaries, which are usually functions in executable forms, a
similarity analysis tool reports all the binaries in the pool equiva-
lent to a queried binary. The problem is challenging as aggressive
code transformations such as loop unrolling and function inlining
in compiler optimizations may substantially change a program and
produce largely different executables [36].

Given its importance, there is a large body of existing work.
Earlier work (e.g., [5, 19]) focuses on extracting static code features
such as control-flow graphs and function call graphs. They are
highly effective in detecting binaries that have small variations.
Many proposed to use dynamic information instead [9, 12, 16, 43]
because it better discloses program semantics. For example, in-
memory-fuzzing (IMF) [43] uses fuzzing to generate many inputs
and collects runtime information when executing the program on
these inputs. It then uses the collected information to compute
binary similarities. When the fuzzer can achieve good coverage,
IMF is able to deliver high-quality results. However, achieving
good coverage is difficult for complex programs (see our example

https://doi.org/10.1145/3611643.3616301
https://doi.org/10.1145/3611643.3616301

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA X. Xu, Z. Xuan, S. Feng, S. Cheng, Y. Ye, Q. Shi, G. Tao, L. Yu, Z. Zhang, and X. Zhang

in Section 2.1). Recently, Machine Learning and Deep Learning
techniques are used to address the binary similarity problem [23,
28, 30, 31, 44, 50, 52]. These techniques work by training models
on a large pool of binaries that have positive and negative samples.
The former includes binaries compiled from the same source and
the latter includes those that are functionally different. The models
are hence supposed to learn (implicit) features that can be used
to cluster functionally equivalent programs. However, as shown
in Sections 2.2 and 4.2, these models may learn features that are
not robust, and in many cases, not semantics oriented, leading to
sub-optimal results.

Inspired by the existing works that leverage dynamic informa-
tion [12, 16, 43, 54], we consider the semantics of a binary to be a dis-
tribution of its inputs and their corresponding externally observable
values during executions. Observable values are those encountered
in I/O operations, and global/heap memory accesses. Compared to
other runtime values such as those in registers, observable values
are persistent across automatic code transformations as compilers
hardly optimize these behavior [16, 43]. However, since we need
to compare arbitrary binaries, ideally, we would have to collect
sufficient samples in the input space of all these binaries. Making
such samples universally comparable is highly challenging. In Sec-
tion 2.2, we show that a naive sampling strategy that executes all
subject binaries on the same set of seed inputs can hardly work as
different binaries take inputs of different formats. For example, a
valid input for a program 𝐴 is very likely an invalid input for pro-
grams 𝐵 and 𝐶 . As such, it can only trigger similar error handling
logics in 𝐵 and 𝐶 , making them not distinguishable.

In this paper, we propose a sampling technique that can effec-
tively approximate semantics distributions by selecting and inter-
preting a small set of equivalent paths across different versions of
a program. It is powered by a novel probabilistic execution engine.
It runs candidate binaries on a fixed set of random seed values.
Although many of these seed values lead to input errors, it system-
atically unfolds the program behavior starting from the execution
paths of these seed values, called the seed paths. Specifically, it flips
a bounded number of predicates along the seed paths. For instance,
flipping a failing input check forces the binary to execute its normal
functionality. While predicate flipping is not new [32, 51, 53], our
technique features a probabilistic sampling algorithm. Specifically,
we cannot afford exhaustively exploring the entire neighborhood
(of the seed paths) even with a small bound (of flipped predicates).
Hence, we leverage a key observation that the predicates with the
largest and the smallest dynamic selectivity tend to be stable be-
fore and after automatic transformations, while other predicates
vary a lot (by the transformations). Dynamic selectivity is a metric
computed for a predicate instance that measures the distance to
the decision boundary. For example, assume a predicate x>y yields
true, x-y denotes its dynamic selectivity. Our theoretical analysis
in Section 3.5 discloses that since automatic transformations cannot
invent new predicates, but rather remove, duplicate, and reposition
them, the likelihood that code transformations change the ranking
of predicates with the smallest/largest selectivity is much smaller
than that for other predicates. Hence, we sample paths by flipping
predicates that have close to the largest and the smallest selectivity,
following the Beta-distribution [17] that has a U shape, biasing to-
wards the two ends. Therefore, if two binaries are equivalent, our

algorithm can sample a set of corresponding paths in the binaries
by flipping their corresponding predicates such that the observable
values along these paths disclose the equivalence.

Our contributions are summarized as follows.

• We propose a novel probabilistic execution model that can
effectively sample the semantics distribution of a binary and
make the distributions from all binaries comparable.

• We develop a path sampling algorithm that is resilient to
code transformation and capable of sampling equivalent
paths when two binaries are equivalent. We also conduct a
theoretical analysis to disclose its essence.

• We propose a probabilistic memory model that can tolerate
invalid memory accesses due to predicate flipping while re-
specting the critical property of having equivalent behavior
when the binary programs are equivalent.

• We develop a prototype PEM. We conduct experiments on
two commonly used datasets including 35k functions from 30
binary projects and compare PEM with five baselines [12, 28,
30, 31, 43]. The results show that PEM can achieve more than
90% precision on average whereas the baselines can achieve
76%. PEM is also much more robust when the true positives
(i.e., binaries equivalent to the queried binary) are mixed
with various numbers of true negatives (i.e., binaries different
from the queried binary) in the candidate pool, which closely
mimics real-world application scenarios. Consequently, PEM
can correctly find 7 out of 8 1-day CVEs from binaries in the
wild, whereas the baselines can only find 2. We upload PEM
at [46].

2 MOTIVATION AND OVERVIEW
2.1 Motivating Example
Ourmotivating example is adapted from themain function of cat in
Coreutils. The simplified source code is shown in Fig. 1a. Lines 2
to 10 parse the command line options. Lines 12 to 19 iteratively read
the file names from the command line and emit the file contents to
the output buffer. The function delegates the main operations to two
functions. When some conditions at line 13 are satisfied, a simpler
method simple_cat() is called. Otherwise, it calls a more complex
function that formats the output according to the full panoply of
command line options. For example, at line 22, if the global flag
print_invisible is set, the function prints out the ASCII values
of invisible characters.

Compiler optimizations may substantially transform a program.
In Fig. 2b and Fig. 2a, we show the control flow graphs (CFGs) for
our motivating example generated by two respective compilation
settings, -O0 meaning no optimization and -O3 meaning having all
commonly used optimizations applied. The switch statement at
line 3 is compiled to hierarchical if-then-else structures with -O0,
as shown in the orange circle in Fig. 2b. In contrast, it is compiled to
an indirect jump with -O3, as shown in the orange circle in Fig. 2a.
The predicate at line 13 corresponds to the blue circle in Fig. 2b. We
can see two branches, each consisting of only one basic block. Two
delegated functions are called in the two basic blocks, respectively.
However, the two functions are inlined in the optimized version,
resulting in branches with much more blocks, e.g., 50 blocks in the
branch of the complex function, as shown in the blue circle in Fig. 2a.

PEM: Representing Binary Program Semantics for Similarity Analysis via a Probabilistic Execution Model ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

1 void main_ca t (in t argc , char ∗ ∗ argv) {
2 while (− 1 ! = (c= g e t _ c l i _ o p t (argc , argv , " b e s tuv "))) {
3 switch (c) {
4 case ' b ' : f l a g 0 = t r u e ; . . . ; f o rmat = t r u e ; break ;
5 case ' e ' : f l a g 1 = t r u e ; break ;
6 case ' v ' : p r i n t (" C o r e u t i l s v8 . 3 0 ") ; break ;
7 . . .
8 defaul t : quote (" e r r o r ") ; a b o r t () ;
9 }
10 }
11 . . . / / d e f i n e : pageSize, inbuf and insize

12 do {
13 i f ((f l a g 0 | | f l a g 1) && format) {
14 r e t = s imp l e _ c a t (inbu f , i n s i z e) ;
15 } e l se { . . .
16 ou tbu f = xma l loc (outbuf , p ag eS i z e)
17 r e t = complex_ca t (inbu f , i n s i z e , ou tbu f) ;
18 }
19 } while (. . .) ;
20 }
21 in t complex_ca t (char ∗ i nbu f , in t i n s i z e , char ∗ ou tbu f) {
22 i f (p r i n t _ i n v i s i b l e && inbu f [i] <0 x20)
23 ou tbu f [. . .] = t o _ a s c i i (i n bu f [i])
24 }

(a) Coreutils: cat

1 void main_touch (in t argc , char ∗ ∗ argv) {
2 while (− 1 ! = (c= g e t _ c l i _ o p t (argc , argv , " bcd fhv "))) {
3 switch (c) {
4 case ' b ' : f l a g | = 0 x100 ; break ;
5 case ' c ' : f l a g = 0 x1 ; break ;
6 case ' v ' : p r i n t (" C o r e u t i l s v8 . 3 0 ") ; break ;
7 . . .
8 defaul t : quote (" e r r o r ") ; a b o r t () ;
9 }
10 }
11 for (in t i = beg in ; i < a rgc ; i ++)
12 t ou ch_ f un c t i on (argv [i]) ;
13
14 }

(b) Coreutils: touch

Figure 1: Motivating Example

To better illustrate the challenges, we introduce another function
adapted from the main function of touch in Coreutils, as shown
in Fig. 1b. The function touch modifies the meta information of
files. Lines 2 to 10 parse the command line options and the for-loop
at line 11 iteratively performs the touch operation. We can see from
Fig. 2c that the syntactic structures of touch and cat are more
similar than those between cat with and without optimizations.
The observation can be quantified by the statistics of these CFGs
shown in the caption.

2.2 Limitations of Existing Techniques
Fuzzing-Based Techniques. There are techniques that leverage
fuzzing to explore the dynamic behavior of programs and use them
in similarity analysis. For example, in-memory fuzzing (IMF) [43]
iteratively mutates function inputs and collects traces. Since the
parameter specifications for functions in stripped binaries are not
available, it is challenging to generate inputs that can achieve good
coverage. In our example, IMF can hardly generate legal command
line options for the function main_cat. Thus most collected behav-
ior is from the error processing code at line 8. Moreover, they tend
to collect similar (error processing) behavior from main_touch. As
such, the downstream similarity analysis likely draws the wrong
conclusion about their equivalence. Our experiments in Section 4.2
show that IMF can achieve a precision of 76% on complex cases,
whereas ours can achieve 96%.

Forced-Execution-Based Techniques. To extract more behavior
from binary code, there are methods that use coverage as guidance
to execute every instruction in a brute-force fashion. A representa-
tive work BLEX [12] executes a function from the entry point. Then
it iteratively selects the first unexecuted instruction to start the
next round of execution until every instruction is covered. We call
techniques of such nature forced-execution-based as they largely
ignore path feasibility. There are two essential challenges for these
techniques. First, they tend to use code coverage within a function
as the guidance for forced execution, which has the inherent diffi-
culty in dealing with function inlining [36]. Another challenge is
to provide appropriate execution contexts when execution starts at
arbitrary (unexecuted) locations. For example, suppose that in the
first few rounds, BLEX executes the true branch at line 14 of Fig. 1.
When it tries to cover the false branch at line 17, it uses a fresh
execution context, discarding the variables computed at line 11.
According to our experiments in Section 4.2, these techniques can
achieve a precision of 69%, whereas our technique can achieve 96%.

Learning-Based Techniques. Emerging techniques [30, 31, 45, 52]
leverage Machine Learning models. Some models [45, 52] extract
static features from CFGs. However, these static features are not
robust in the presence of optimizations. Another line of work uses
language models [30, 31]. Their hypothesis is that these models
could learn instruction semantics and hence function semantics.
To limit the vocabulary (i.e., the set of words/tokens supported),
binaries are often normalized before they can be fed to models.
For example, immediate values (i.e., constants in instructions) and
constant call targets are replaced with a special token HIMM in
SAFE [30], e.g., the token x_call_HIMM around line 8 in Fig. 3 (b)
and (c) that corresponds to the function invocation get_cli_opt.
While this makes training convergence feasible, a lot of semantics
are lost.

These models may not learn to classify based on instructions
essential to function semantics. For example, SAFE leverages an
NLP technique called attention [41]. Conceptually, the attention
mechanism determines which instructions are important to the
output. We highlight the statements and their tokens with the
largest attention values in Fig. 3. In these three functions, the
first few tokens (in gray) with large attention values are in the
function prologues. The corresponding instructions (e.g., push)
perform the same functionality, saving register values to memory
and allocating space for local variables. In Fig. 3a, the model also
pays attention to tokens/instructions related to the switch-case
statement. As discussed before, however, static structures are not
reliable due to optimizations. In contrast, in Fig. 3b, the model
instead emphasizes the normalized function invocation at line 8,
which is not distinguishable from the invocation at line 8 in (c)
with a large attention value as well. From the parts that the model
pays attention to, it is easy to explain why SAFE concludes cat@O0
is more similar to touch@O0, instead of cat@O3. We visualize the
weights of full attention layers in Fig. 25 of an extended version of
this paper [47].

2.3 Our Technique
We aim to leverage program semantics in similarity analysis. We
define the semantics of a binary program 𝑃 as follows.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA X. Xu, Z. Xuan, S. Feng, S. Cheng, Y. Ye, Q. Shi, G. Tao, L. Yu, Z. Zhang, and X. Zhang

(a) Cat@O3 (144 blocks and 218 edges) (b) Cat@O0 (83 blocks and 144 edges) (c) Touch@O0 (89blocksand120edges)

Figure 2: Control-Flow-Graphs for Motivation Examples

X_sub_eax,_0x41
X_cmp_eax,_0x35
X_UNK
X_jmp_rax

X_push_r14
X_push_r12
X_sub_rsp,_0x148

X_jmp_0x97

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

void main_cat(int argc, char** argv){
//not meaningful in source code

while(-1!=(c=get_cli_opt(argc, argv, "bestuv")))
{

switch(c){
case 'b’:

flag0 = true; ...;
break;

case 'e’:
flag1 = true;
break;

case 'v’:
print("Coreutils v8.30");
break;

default: quote("error"); abort();
}

}
} (a) cat@O3

X_movabs_rdx,_HIMM
X_call_HIMM
X_cdqe

X_push_rbp
X_sub_rsp,_0x1c8
X_mov_[rbp*1+-12],_edi

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

void main_cat(int argc, char** argv){
//not meaningful in source code

while(-1!=(c=get_cli_opt(argc, argv, "bestuv")))
{

switch(c){
case 'b’:

flag0 = true; ...;
break;

case 'e’:
flag1 = true;
break;

case 'v’:
print("Coreutils v8.30");
break;

default: quote("error"); abort();
}

}
} (b) cat@O0

X_push_r14
X_push_r12

X_jmp_0x97

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

X_push_rbp
X_sub_rsp,_0x148
X_mov_[rbp*1+-12],_edi

X_UNK
X_call_HIMM

void main_touch(int argc, char** argv){
//not meaningful in source code

while(-1!=(c=get_cli_opt(argc, argv, ”bcdfhv")))
{

switch(c){
case 'b’:

flag |= 0x100; ...;
break;

case ‘c’:
flag = 0x1;
break;

case 'v’:
print("Coreutils v8.30");
break;

default: quote("error"); abort();
}

}
} (c) touch@O0

Figure 3: Our example (Fig. 1) in SAFE. The statements highlighted in yellow have large attention (and hence are important).
The gray boxes to the right (of the yellow statements) denote the corresponding tokens. Special token HIMM denotes a constant
or a constant control flow target.

Definition 2.1. The semantics of a binary program 𝑃 is repre-
sented by a distribution (𝑥,𝑂𝑉 (𝑃 (𝑥))) ∼ D, with 𝑥 ∈ X an input to
𝑃 and 𝑂𝑉 (𝑃 (𝑥)) the set of externally observable values when execut-
ing 𝑃 on 𝑥 . Observable values are those observed in I/O operations,
global, and heap memory accesses.

Intuitively, the joint distribution of inputs and observable values
when executing 𝑃 on the inputs denotes 𝑃 ’s semantics. Observable
values are hardly altered by code transformations.
A Naive Sampling Method. One may not need to collect a large
number of samples to model the aforementioned distribution be-
cause if two programs are equivalent, executing them on equivalent
inputs produces equivalent observable values. Therefore, a naive
method is to provide the same set of inputs to all programs such
that those that are equivalent must have identical observable value
distributions. However, such a simple method is ineffective because
of the following reasons. First, even equivalent programs might
have different input specifications (e.g., different numbers of pa-
rameters and different orders of parameters), making automatically
feeding equivalent inputs to them difficult. Furthermore, different
programs have different input domains. When the provided inputs
are out-of-range (and hence invalid), the corresponding observ-
able value distributions cannot be used to cluster programs. In our
example, the valid domain of 𝑐 at line 3 of main_cat is a set of char-
acters {b,e,s,t,u,v} whereas the domain of 𝑐 at line 3 of main_touch

is {b,c,d,f,h,v}. Without input specifications, which are hard to ac-
quire for binary functions, the naive sampling method may provide
a random input, say, 𝑐 = 173. As a result, the executions of both
functions fall into the exception handling paths and the observable
values are not distinguishable.
Our Method. Instead of solving the input specification problem,
which is very hard for binary programs, we propose a technique
agnostic to such specifications. Specifically, we propose a novel
probabilistic execution model that serves as an effective sampling
method to approximate the distribution D denoting program se-
mantics. Given a program 𝑃 , we acquire its semantic representation
as follows. We execute 𝑃 on a set X of pre-determined (random)
inputs, which is an invariant for all programs we want to repre-
sent. To address the challenge of input specification differences,
we assign the same value 𝑥 ∈ X to each input variable (for all
programs). That is, we feed the same value to all input parameters,
making their order irrelevant. We repeat this for all values in X.
As an example, for the programs in Fig. 1, we set argc and **argv
(all elements in the buffer) in both main_cat and main_touch, as
well as *inbuf, insize, and *outbuf in function complex_cat, to
173, acquiring three executions. Then we set them to 97, acquiring
another three executions, and so on.

These random values may not be valid inputs and hence the
corresponding executions may not disclose meaningful semantics.
We hence further sample k-edge-off behavior.

PEM: Representing Binary Program Semantics for Similarity Analysis via a Probabilistic Execution Model ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Definition 2.2. Given a program 𝑃 and an input 𝑥 , let 𝑝 be the
program path taken with input 𝑥 , we say a path 𝑝′ is 𝑘-edge-off (from
𝑝) if 𝑘 predicates along the execution need to be flipped to other
branch outcomes in order to acquire 𝑝′.

For instance, suppose that when executing main_cat with 𝑐 =
173, the path 𝑝 is 2-3-8. If the branch at line 2 is flipped to line 11,
assuming that the following execution path is 13-16-17-19, 2-11-13-
16-17-19 is 1-edge-off from 𝑝 . 𝐾-edge-off behavior (of an input 𝑥)
is essentially the observable values encountered in all 𝑘-edge-off
paths (of 𝑥). Observe that for main_cat and main_touch, although
the 0-edge-off behaviors (i.e., the original executions) are not dis-
tinguishable, the 1-edge-off behaviors are quite different, e.g., the
behavior of main_cat includes those from the delegated function
at line 17. However, there is a practical challenge: covering all
𝑘-edge-off behavior even when 𝑘 = 2may be infeasible for complex
programs since the number of 𝑘-edge-off paths grows exponen-
tially with𝑘 . Moreover, controlling the sampling process exclusively
by 𝑘 induces substantial noise due to code optimizations/transfor-
mations. Specifically, optimizations substantially change program
structures, adding/removing predicates. The 𝑘-edge-off behaviors
are hence quite different. An example can be found in Section A
of an extended version of this paper [47]. To suppress the noise
introduced by optimizations, we leverage the observation that opti-
mizations rarely change the (selectivity) ranking of predicates with
the maximum and minimum dynamic selectivity.

Definition 2.3. Dynamic selectivity for a predicate instance 𝑥 ⊗𝑦
is
��[[𝑦]] − [[𝑥]]

��, where [[𝑦]], [[𝑥]] are the runtime values of variable
𝑥 and 𝑦, and ⊗ ∈ {>, ≥,≠,==, <, ≤}.

For instance, suppose that in an execution, the value of inbuf[i]
at line 22 in Fig. 1 is 173. It is then compared with 0x20. The dynamic
selectivity of the predicate instance is hence 141 (i.e., |173 − 0x20|).
Essentially, the dynamic selectivity reflects how likely a branch
predict evaluates to true [37]. Although automatic code transfor-
mations may change dynamic selectivity, the predicate instances
with the largest/smallest dynamic selectivity tend to stay as the
largest/smallest ones after transformations. We formally explain
the observation in Section 3.5 and empirically validate it in Sec-
tion 4.5. Therefore, we select predicate instances to flip following
a Beta-distribution [17] with 𝛼 = 𝛽 = 0.03. The distribution has
the largest probabilities for predicates with the minimum and max-
imum selectivity and small probabilities in the middle (like a U
shape). Intuitively, if two programs are equivalent/similar, their
predicates with the largest and the smallest selectivity tend to be
the same. By flipping these predicates in the two versions, we are
exploring their equivalent new behavior.

In our example, for both the optimized and the unoptimized
version of main_cat, the algorithm first flips the predicate at line 2
with a high probability since the -1!=c has the largest selectivity on
path 2-3-8. Then we achieve the 1-edge-off path 2-11-13-16-17-19
as discussed above. Along the new path, the algorithm flips the
predicate with the largest selectivity at line 22 for further 2-edge-off
exploration in both versions, exposing similar behavior.

To realize the probabilistic execution model, we develop a binary
interpreter that can feed the binary with specially crafted inputs and
sample observable values (Section 3.3). It also features a probabilis-
tic memory model that can tolerate invalid memory accesses while

Observable
Values

Input
Program

Input Distribution
Probabilistic Execution Observable Value Distribution

Seed Inputs

Probabilistic
Mem Model

Path Sampling

Value Frequency

A Sequence of Same Value

Instructions

CFG Interpreted Paths

Next Path

Multiple
Samples

Aggregation
Interpreter

Invalid Pointer
Dereferences

Values

Figure 4: Workflow of PEM

ensuring equivalent observable values for equivalent programs
(Section 3.6). Compared to traditional forced-execution-based tech-
niques, PEM naturally handles the function inlining problem as our
sampling is not delimited by function boundaries and our execution
contexts are largely realistic. Compared to fuzzing based techniques,
ours does not rely on solving the hard problem of generating valid
inputs. Compared to Machine Learning based techniques, our tech-
nique focuses on dynamic behavior of programs, which are more
accurate reflections of program semantics [20].

3 DESIGN
3.1 Overall Workflow
The workflow of PEM is shown in Fig. 4. The input is in the grey
box on the left side. It consists of a set of seed inputs, each being
an infinite sequence of the same value, the binary executable, and
a path sampling strategy that can predict the next path to interpret
based on the set of interpreted paths. The interpreter interprets
the subject binary on a seed input, supplying the same value to
any input variable encountered during interpretation, to eliminate
any semantic differences caused by parameter order differences.
The interpretation also strictly follows the path indicated by the
path sampling component. When invalid pointer dereferences are
encountered, which can be easily detected, the interpreter inter-
acts with the probabilistic memory model to emulate the access
outcomes. The emulation ensures that the same sequence of (ob-
servable) values are returned for equivalent paths. After sampling,
on the right side, the observable value distributions are summarized
for later similarity analysis, which simply compares two multi-sets.

The remainder of this section is organized as follows. We first
model binary instructions using a simplified language. Then we
present the semantic rules. After that, we discuss the path sampling
method and the probabilistic memory model.

3.2 Language
The syntax of our language is in Fig. 5. A program 𝑃 consists of a
sequence of instructions. There are three categories of instructions.
First, there are instructions that move values among registers: 𝑟1 =
𝑟2moves the value in 𝑟2 to 𝑟1; 𝑟 = 𝑣 moves a literal value 𝑣 ; 𝑟1 = 𝑟2⋄𝑟3
moves the result of 𝑟2⋄𝑟3 to 𝑟1. The second category is load and store
instructions. The load instruction 𝑟1 = [𝑟2] treats the value in 𝑟2
as a memory address and loads the value in the specified memory
location to 𝑟1. Store is similar. There are also instructions that
change the control flow. Instruction jmp 𝑎 jumps to the instruction
at 𝑎; jcc 𝑟 𝑎 performs the jump operation only when the value
in 𝑟 is non-zero; jr 𝑟 is an indirect jump that uses the value in 𝑟
as the target address. Instruction done means the interpretation
is finished. Although our language does not model functions for

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA X. Xu, Z. Xuan, S. Feng, S. Cheng, Y. Ye, Q. Shi, G. Tao, L. Yu, Z. Zhang, and X. Zhang

⟨Program⟩ 𝑃 F 𝐼 ⟨Register⟩ 𝑅 F {𝑟0, 𝑟1, . . . , 𝑟31 }
⟨Val⟩ 𝑣 F {0, 1, 2, ...} ⟨Addr⟩ 𝑎 F {0, 1, 2, ...}
⟨Comparison⟩ ⊗ F {==, ≥, ≤, . . . } ⟨BinOp⟩ ⋄ F {+, −, ∗, . . . }
⟨Instruction⟩ 𝐼 F 𝑟1 = 𝑟2|𝑟 = 𝑣|𝑟1 = 𝑟2 ⊗ 𝑟3|𝑟1 = 𝑟2 ⋄ 𝑟3

| 𝑟1 = [𝑟2] | [𝑟1] = 𝑟2 | jmp 𝑎 | jcc 𝑟 𝑎 | jr 𝑟 | done | 𝐼1; 𝐼2

Figure 5: Syntax of Our Language

𝑅𝑒𝑔𝑠 ∈RegStateFRegister→Val

𝑀 ∈ MemoryF Addr → Val 𝑖𝑐 ∈InstrCntFZ+
𝑂𝑉 ∈ObservableValDistFVal→Z+⊥F Undefined Value 𝑝 ∈ PathF InstrCnt → Z+
𝑠 ∈ SeedValueF Z+
decode(𝑎): returns instructions in a basic block starting from 𝑎.
valid(𝑎): if an address 𝑎 is valid (pointing to allocated memory).
invalidLd(𝑎): load a value from an invalid address 𝑎.

Figure 6: State Domains in Interpretation (top) and Auxiliary
Data and Functions (bottom)

simplicity, our implementation supports the full x86 instruction set,
including function invocations and returns.

3.3 Interpretation
The state domains of the interpreter are illustrated in the upper box
of Fig. 6. The register state 𝑅𝑒𝑔𝑠 is a mapping from a register to a
value. While in our presentation values are simply non-negative in-
tegers, our implementation distinguishes bytes, words, and strings.
The memory store𝑀 is a mapping from an address to a value. We
use an instruction counter 𝑖𝑐 to identify each interpreted instruc-
tion along the execution path. 𝑂𝑉 denotes the observable value
statistics. It is a mapping from a value to the number of its obser-
vations, that is, how many times the value appears in the current
interpretation. In the lower box, we define a number of auxiliary
data/structures that are immutable during interpretation and a num-
ber of helper functions used in the semantic rules. In particular, we
use ⊥ to denote an undefined value; 𝑝 to denote the path to inter-
pret, determined by the path sampling component (for a given seed
value 𝑠). It is a mapping from instruction count to an instruction
address. For example, a 2-edge-off path for a seed value 994 can be
{1000 → 0x804578, 2000 → 0x80a41f}. It means that the predicate
instance with the instruction count 1000 ought to take the branch
starting at 0x804578 when executing the binary with the seed input
994, and the instance with count 2000 should take the branch at
0x80a41f. The helper function decode(𝑎) disassembles the instruc-
tions in a basic block starting at 𝑎. The function valid(𝑎) determines
if an address is valid. Note that since we enforce branch outcomes
and use crafted inputs, the execution states may be corrupted. This
function helps detect such corrupted states and seeks help from
the probabilistic memory model. The function invalidLd(𝑎) loads
a value from an invalid address.

Part of the semantic rules are in Fig. 7. As shown at the top of
Fig. 7, the state configuration is a tuple of five entries. A rule is read
as follows: if the preconditions at the top are satisfied, the state
transition at the bottom takes place. For example, Rule JccGT says
that if there is a branch 𝑎′ specified in 𝑝 for the current instruction
count 𝑖𝑐 , the conditional jump is interpreted and the continuation
is 𝐼 ′ decoded from 𝑎′.

Intuitively, given a seed value 𝑠 , the interpreter initializes all
registers and parameters with the same value 𝑠 , and starts interpre-
tation from the beginning (Rule Start). The interpretation largely
follows concrete execution semantics except the following. First,

State Configuration: ⟨𝑅𝑒𝑔𝑠, 𝐼 , 𝑖𝑐,𝑀,𝑂𝑉 ⟩
EntryPoint = 𝑒𝑛 ∀𝑟, 𝑅𝑒𝑔𝑠 [𝑟] = 𝑠

⟨∅, ∅, 0, ∅, ∅⟩ → ⟨𝑅𝑒𝑔𝑠, decode(𝑒𝑛), 1, ∅, ∅⟩ 𝑆𝑡𝑎𝑟𝑡

𝑝 [𝑖𝑐] = 𝑎′ 𝐼 ′ = decode(𝑎′)
⟨𝑅𝑒𝑔𝑠, jcc 𝑟 𝑎; 𝐼 , 𝑖𝑐,𝑀,𝑂𝑉 ⟩ → ⟨𝑅𝑒𝑔𝑠, 𝐼 ′, 𝑖𝑐 + 1, 𝑀,𝑂𝑉 ⟩ 𝐽 𝑐𝑐𝐺𝑇

𝑅𝑒𝑔𝑠 [𝑟] ≠ 0 𝑝 [𝑖𝑐] = ⊥ 𝐼 ′ = decode(𝑎)
⟨𝑅𝑒𝑔𝑠, jcc 𝑟 𝑎; 𝐼 , 𝑖𝑐,𝑀,𝑂𝑉 ⟩ → ⟨𝑅𝑒𝑔𝑠, 𝐼 ′, 𝑖𝑐 + 1, 𝑀,𝑂𝑉 ⟩ 𝐽 𝑐𝑐𝑇

𝑅𝑒𝑔𝑠 [𝑟] = 0 𝑝 [𝑖𝑐] = ⊥
⟨𝑅𝑒𝑔𝑠, jcc 𝑟 𝑎; 𝐼 , 𝑖𝑐,𝑀,𝑂𝑉 ⟩ → ⟨𝑅𝑒𝑔𝑠, 𝐼 , 𝑖𝑐 + 1, 𝑀,𝑂𝑉 ⟩ 𝐽 𝑐𝑐𝐹

𝑅𝑒𝑔𝑠 [𝑟2] = 𝑎 𝑣 = 𝑀 [𝑎] 𝑅𝑒𝑔𝑠′ = 𝑅𝑒𝑔𝑠 [𝑟1 ⇝ 𝑣]
⟨𝑅𝑒𝑔𝑠, 𝑟1 = [𝑟2]; 𝐼 , 𝑖𝑐,𝑀,𝑂𝑉 ⟩ → ⟨𝑅𝑒𝑔𝑠′, 𝐼 , 𝑖𝑐 + 1, 𝑀,𝑂𝑉 ⟩ 𝐿𝑑𝑉

𝑅𝑒𝑔𝑠 [𝑟2] = 𝑎 valid(𝑎) 𝑀 [𝑎] = ⊥ 𝑅𝑒𝑔𝑠′ = 𝑅𝑒𝑔𝑠 [𝑟1 ⇝ 𝑠]
⟨𝑅𝑒𝑔𝑠, 𝑟1 = [𝑟2]; 𝐼 , 𝑖𝑐,𝑀,𝑂𝑉 ⟩ → ⟨𝑅𝑒𝑔𝑠′, 𝐼 , 𝑖𝑐 + 1, 𝑀,𝑂𝑉 ⟩ 𝐿𝑑𝑈𝑑

𝑅𝑒𝑔𝑠 [𝑟2] = 𝑎

¬valid(𝑎) 𝑣 = invalidLd(𝑎) 𝑅𝑒𝑔𝑠′ = 𝑅𝑒𝑔𝑠 [𝑟1 ⇝ 𝑣]
⟨𝑅𝑒𝑔𝑠, 𝑟1 = [𝑟2]; 𝐼 , 𝑖𝑐,𝑀,𝑂𝑉 ⟩ → ⟨𝑅𝑒𝑔𝑠′, 𝐼 , 𝑖𝑐 + 1, 𝑀,𝑂𝑉 ⟩ 𝐿𝑑𝐼𝑣

Figure 7: Interpretation Rules

when it encounters a conditional jump which is indicated by the
path descriptor 𝑝 to take a specific branch, it takes the specified
branch (Rule JccGT). Otherwise, it follows the normal semantics
(Rules JccT and JccF). Second, when it encounters a load, if the
address is valid but the memory location has not been defined,
it fills it with 𝑠 (Rule LdUd); if the address is invalid, it fetches
a value from the probabilistic memory model (Rule LdIv); other-
wise it loads a value from the memory as usual (Rule LdV). Here
𝑅𝑒𝑔𝑠′ = 𝑅𝑒𝑔𝑠 [𝑟1 ⇝ 𝑣] means that the register state is updated by
associating 𝑟1 to 𝑣 , yielding a new state 𝑅𝑒𝑔𝑠′. Store instructions
are interpreted similarly. We track all dynamic memory allocations
for access validity checks. Details are elided as this is standard.

We also have a set of logging rules that describe how PEM records
the statistics of observable values. We record the frequencies of
memory addresses accessed, values loaded/stored, control transfer
targets, and predicate outcomes. Due to space limitations, details
are presented in Section B of an extended version of this paper [47].
Loops and Recursion. Since our goal is to disclose semantic simi-
larity and not to infer semantics faithful to any executions induced
by real inputs, following common practice, we unroll each loop and
recursive call 20 times.

3.4 Path Sampling
We present the path sampling method in Algorithm 1. It consists of
two functions. Function interpret at line 1 interprets the input pro-
gram and flips the predicates that are indicated by path, a mapping
from instruction count to an address (Fig. 6). Specifically, during
interpretation, the algorithm flips a predicate instance to an address
indicated in path if the corresponding instruction count is met. The
function returns a list of encountered predicate instances.

Function sample iteratively selects a predicate instance to flip
(from all the interpretation results in previous steps). Variable can-
didates denote a set of candidate predicates for flipping and budget
the number of interpretations allowed. To begin with, PEM first in-
terprets a faithful path without altering any branch outcome. It then
adds predicates in this faithful path to the candidates list (line 7).

As shown in the loop at line 8, PEM iteratively selects a predi-
cate to flip (line 10), composes a new path with the outcome of the

PEM: Representing Binary Program Semantics for Similarity Analysis via a Probabilistic Execution Model ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Algorithm 1: Probabilistic Path Sampling
1 Function interpret(program, path)

// Interprets the input program; flips predicates indicated by
path

// Returns predicate instances in the form (path, instruction
count, predicate, selectivity, outcome)

2 return [(𝑝𝑎𝑡ℎ, 𝑖𝑐0, 𝑝𝑟0, 𝑠𝑒𝑙0, 𝑜𝑢𝑡0), ...]
3 Function sample(program)
4 candidates = []// Candidate branches to flip
5 budget = 400 // Number of sample rounds
6 faithful = interpret(program, ∅)
7 candidates.add(faithful)
8 while budget ≥ 0 do
9 budget = budget - 1

10 (path,ic,pr,sel,out) = select(candidates)
11 nextPath = path ∪ {ic→ getBranch(pr,¬out)}
12 results = interpret(program, nextPath)
13 candidates.add(results)

selected predicate flipped at line 11 (function getBranch() acquires
the target address for the true/false branch outcome of a predicate
pr), interprets the program according to the new path (line 12),
and updates the list of candidates (line 13). Note that at line 10,
to select the predicate instance to flip, PEM sorts all the candi-
date predicates by their dynamic selectivity. Then a real number
𝑖 ∈ [0, 1] is sampled following the probability density function
(PDF) of a Beta-distribution [17]. PEM selects a predicate that is at
the 𝑖-percentile of the sorted candidates list, i.e., 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑝𝑟𝑒𝑑 =

𝑠𝑜𝑟𝑡𝑒𝑑_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 [𝑖 × (𝑙𝑒𝑛(𝑠𝑜𝑟𝑡𝑒𝑑_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠) − 1)]. Details can
be found in Section F of an extended version of this paper [47].

3.5 Formal Analysis of Path Sampling
The effectiveness of our path sampling algorithm piggybacks on
the following theorem.

Theorem 3.1. Assume two functionally equivalent programs 𝑃
and 𝑃 ′. If we interpret them along two equivalent paths and collect the
predicate instances during interpretation, the predicate instances with
the largest (smallest) dynamic selectivity in both programs have a larger
probability to match, compared to those with non-extreme selectivity.

While optimizations (e.g., constraint elimination [26]) may mod-
ify predicates to simplify control flow, predicates with the smallest
and largest dynamic selectivity are most resilient to optimizations,
namely, their selectivity ranking hardly changes before and after
optimizations. Modifications to predicates introduced by optimiza-
tions fall into two categories: predicate elimination and insertion. A
predicate relocation can be considered as first removing the predi-
cate and then adding it to another location. Specifically, compiler
may eliminate a predicate if its outcome is implied by the path
condition reaching the predicate. For example, it may eliminate a
predicate 𝑥 > 10 if the path condition includes 𝑥 > 20. On the other
hand, compiler may introduce new predicates to provide control
flow shortcuts. Take Fig. 8 as an example. Compiler inserts a new
predicate, 𝑥 < 10, in Fig. 8b (shown in red). The modification sim-
plifies the control flow when 𝑥 is less than 10. Note that, in these
cases, the dynamic selectivity of an inserted predicate will be close
to the dynamic selectivity of an existing one because these inserted
predicates are derived from constraints in existing predicates.

1 i f x == 1 0 : . . .
2 e l se i f x == 1 5 : . . .
3 e l se i f x == 2 0 : . . .
4 . . .
5 e l se : a b o r t ()

(a) Before Optimization

1 if x < 10: abort()

2 i f x == 1 0 : . . .
3 e l se i f x == 1 5 : . . .
4 e l se i f x == 2 0 : . . .
5 . . .
6 e l se : a b o r t ()

(b) After Optimization

Figure 8: Example of optimization that provides control flow
shortcut by inserting predicates. The compiler inserts a predi-
cate x<10 at line 1 in Fig. 8b.When x<10, the execution directly
goes to abort() without comparing with other values.

The intuition of our theorem is hence that the rankings of predi-
cates with the smallest/largest selectivity do not depend on whether
other predicates are modified. In contrast, the predicates ranked in
the middle by their selectivity are more likely to have their rankings
changed when predicates are removed or added by optimization.

Proof Sketch. We formalize the intuition by first reasoning about the
predicates having close to the smallest dynamic selectivity. Reason-
ing for the largest ones is symmetric. Suppose that for each predicate,
the compiler has a probability 𝑡 to eliminate it and a probability 𝑞 for
having a predicate inserted that ranks right before it. In either case,
we say the predicate is modified. The probability that a predicate is
not modified is noted as 𝑟 = 1 − 𝑡 − 𝑞. We further denote as P𝑘 the
probability that the 𝑘-th smallest predicate is still the 𝑘-th smallest
one after optimization. It is calculated by the following formula:

P𝑘 = 𝑟 ×
⌊ 𝑘−12 ⌋∑︁
𝑖=0

(
𝑘 − 1
2𝑖

) (
2𝑖
𝑖

)
𝑟𝑘−1−2𝑖𝑡𝑖𝑞𝑖 (1)

Intuitively, the ranking of the 𝑘-th smallest predicate is not changed
by optimizations if (a) this predicate is not modified and (b) the
number of predicates with a smaller dynamic selectivity does not
change. In the above formula, 𝑟 represents condition (a) and the
second term represents condition (b). Specifically, (b) is satisfied
only when the numbers of removed and inserted predicates that
rank before 𝑘 are equal. Here,

(𝑘−1
2𝑖

)
𝑟𝑘−1−2𝑖 means an even number

(2𝑖) of the 𝑘 − 1 predicates with a smaller ranking are modified, and(2𝑖
𝑖

)
𝑡𝑖𝑞𝑖 means half of the modifications are removals and the other

half are insertions. We visualize the distribution of P𝑘 in Fig. 9 with
three sets of configurations of 𝑡 and 𝑞. We can see that in all setups,
P𝑘 monotonically decreases when 𝑘 increases. □

We also conduct an empirical study to validate our theoretical anal-
ysis. The results are visualized in Section 4.5. The results show PEM
has an 80-90% chance of making correct selections and exploring
equivalent paths by deterministically selecting the predicates with
largest/smallest dynamic selectivity.

Advantages of Probabilistic Path Sampling Over Determin-
istic Selection. Note that the probability of predicates with the
smallest/largest selectivity having their rankings changed by op-
timization is not 0, although it is smaller than others. To tolerate
such certainty, we employ a probabilistic approach, meaning that
we follow a Beta-distribution instead of deterministically selecting
the predicates with extreme selectivities for flipping. We further
conduct a formal analysis to justify why the probabilistic sampling
algorithm is better than the deterministic algorithm. Intuitively, by

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA X. Xu, Z. Xuan, S. Feng, S. Cheng, Y. Ye, Q. Shi, G. Tao, L. Yu, Z. Zhang, and X. Zhang

0 10 20 30 40

k-th Smallest

0.0

0.2

0.4

0.6

0.8

P k

t = 0.1, q = 0.05

t = 0.2, q = 0.1

t = 0.2, q = 0.2

Figure 9: P𝑘 w.r.t. 𝑘; The 𝑥-axis denotes the ranking of
predicates by dynamic selectivity; the 𝑦-axis denotes the
probability that the predicate with the 𝑘-th smallest dynamic
selectivity after optimization has the same ranking. Each
line shows results for one set of 𝑡 and 𝑞.

following a Beta distribution, PEM spends some budget on predi-
cates that do not have the largest or smallest selectivity, but selectiv-
ities close to the largest and smallest. These “additional” selections
increase the probability that PEM selects the correct path (i.e., the
equivalent path) at each step. Taking more correct steps at earlier
selections increases the chance that PEM chooses a correct step at
later selections because the candidate predicates of later selections
come from previously explored paths. The formal proof is shown
in Section C of an extended version of this paper [47].
Effect of Path Infeasibility. Our algorithm may select infeasible
paths. Two possible concerns are (1) whether observable values
along infeasible paths in two similar binaries can correctly disclose
their semantic similarity; and (2) whether observable values along
infeasible paths in two dissimilar binaries may undesirably match,
leading to the wrong conclusion of their similarity.

For the first concern, we show that PEM likely selects correspond-
ing paths when two binaries are similar, regardless of the feasibility
of selected paths. That is, although the paths may be infeasible,
the sequences of observable values along them are equivalent. We
show a proof sketch in Section D.1 and show empirical support in
Section D.3 of an extended version of this paper [47].

For the second concern, the probability that two equivalent paths
are selected by PEM in two dissimilar binaries is very small. In those
cases, although the initial seed paths may be undesirably similar
(e.g., the error handling paths), the following flipped (infeasible)
paths quickly become substantially different. The formal proof is in
Section D.2 and the empirical study is in Section D.3 of an extended
version of this paper [47].

3.6 Probabilistic Memory Model
The goal of the probabilistic memory model (PMM) is to handle
loads and storeswith invalid addresses induced by predicate flipping
and the use of (out-of-bound) seed values. A key observation is that
the specific values written-to/read-from the PMM do not matter
as long as they can expose functional equivalence. We define the
following two properties for a valid PMM.

Definition 3.1. We say a PMM is equivalence preserving if
the sequence of (invalid) addresses accessed, and the values written-
to/read-from the PMM must be equal, for two equivalent paths in two
functionally equivalent programs.

This property ensures PEM can place equivalent programs into
the same class.

Definition 3.2. We say a PMM is difference revealing if the se-
quence of (invalid) addresses accessed, and the values written-to/read-
from the PMM must be different for two different paths (pertaining

invalid memory accesses) in two respective programs, which may or
may not be equivalent.

This is to ensure different programs are not mistakenly placed
in the same class. For example, a naive PMM always returns a con-
stant value for any invalid reads and ignores any invalid writes. It
is equivalence preserving but not difference revealing.

Our PMM is designed as follows. Before each interpretation
run, it initializes a probabilistic memory (𝑃𝑀), which is a mapping
Addr → Val of size 𝛾 such that: ∀𝑎 ∈ [0, 𝛾], 𝑃𝑀 [𝑎] = 𝑟𝑎𝑛𝑑𝑜𝑚(). An
invalid memory read from the normal memory 𝑀 with address 𝑎
is forwarded to the 𝑃𝑀 through the invalidLd(𝑎) function, which
returns 𝑃𝑀 [𝑎 mod 𝛾]. Similarly, an invalid memory write to the
normal memory𝑀 with address 𝑎 and value 𝑣 is achieved by setting
𝑃𝑀 [𝑎 mod 𝛾] = 𝑣 .

It can be easily inferred that our PMM satisfies the equivalence
preserving property by induction (on the length of program paths).
Intuitively, the first invalid accesses in two equivalent paths must
have the same invalid address. As such, our PMM must return
the same random value. This same random value may be used to
compute other identical (invalid) addresses in the two paths such
that the following invalid loads/stores are equivalent. It also proba-
bilistically satisfies the difference revealing property. Specifically,
different paths manifest themselves by some different invalid ad-
dresses, and our PMM likely returns different (random) values for
these different addresses, rendering the following memory behav-
iors (with invalid addresses) different. The chance that different
paths may exhibit the same behavior depends on 𝛾 . Due to the
complexity of modeling memory behavior in real-world program
paths, we did not derive a theoretical probabilistic bound for our
PMM. However, empirically we find that 𝛾 = 64𝑘 enables very
good results (with our loop unrolling bound 20). An example can
be found in Section E of an extended version of this paper [47].

4 EVALUATION
We implement PEM on QEMU [35]. Details are in Section F of an
extended version of this paper [47]. We evaluate PEM via the fol-
lowing research questions:
RQ1: How does PEM perform compared to the baselines?
RQ2: How useful is PEM in real-world applications?
RQ3: Is PEM generalizable?
RQ4: How does each component affect the performance?

4.1 Setup
We conduct the experiments on a server with a 24-core Intel(R)
Xeon(R) 4214R CPU at 2.40GHz, 188G memory, and Ubuntu 18.04.
Datasets.We use two datasets. Dataset-I: To compare with IMF and
BLEX, which only use Coreutils [8] as their dataset, we construct a
dataset from Coreutils-8.32. We compile the dataset using GCC-9.4
and Clang-12, with 3 optimization levels (i.e., -O0, -O2, and -O3).
Dataset-II includes 9 real-world projects commonly-used in binary
similarity analysis projects [22, 28, 31]. They are Coreutils, Curl,
Diffutils, Findutils, OpenSSL, GMP, SQLite, ImageMagick, and Zlib.
The binaries are obtained from [31]. In total, we have 30 programs
with 35k functions, compiled with 3 different options. Details can
be found in Table 8 of an extended version of this paper [47].
Baseline Tools.We compare with 6 baselines. For execution-based
methods (Baseline-I), we use IMF [43] and BLEX [12], which are
SOTAs as far as we know. For Deep Learning methods (Baseline-II),

PEM: Representing Binary Program Semantics for Similarity Analysis via a Probabilistic Execution Model ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Table 1: Comparison of PEM, IMF, and BLEX. C and G denote
Clang and GCC, respectively. Each precision is averaged over
the 106 binaries in Coreutils.

Pair
Precision@1 Precision@3 Precision@5

PEM IMF BLEX PEM IMF PEM IMF

C-O0 C-O3 94.5 77.5 X 98.2 84.2 98.7 86.4
C-O2 C-O3 99.8 97.3 X 100.0 99.3 100.0 99.4
C-O0 G-O3 94.5 60.1 X 97.3 70.6 98.6 73.4
G-O0 G-O3 96.3 70.4 61.1 98.0 81.3 98.7 84.6
G-O2 G-O3 98.6 89.5 77.1 99.4 95.5 99.8 96.2
G-O0 C-O3 92.2 66.0 X 94.1 76.1 96.2 80.0
Average 96.0 76.8 69.1 97.8 84.5 98.7 86.7

we use SAFE [30] and Trex [31]. We use their pre-trained models or
train using their released implementation with the default hyper-
parameters. Also, we compare with the best two models (i.e., GNN
and GMN) in How-Solve [28] that conducts a measurement study
on Machine Learning methods.
Metrics. Following the same experiment setup in IMF and BLEX,
for a function compiled with a higher level optimization option (e.g.,
-O3), we query the most similar function in all the functions (in the
same binary) compiled with a lower level optimization option. As
such, there is only one matched function. We hence use Precision at
Position 1 (PR@1) as the metric. Given a function, PR@1 measures
whether the matched function scores the highest out of the pool of
candidate functions. Many data-driven methods [28, 30, 31, 52] use
Area Under Curve (AUC) of the Receiver Operating Characteristic
(ROC) curve. Existing literature [2] points out that a good AUC
score does not necessarily imply good performance on an imbal-
anced dataset (e.g., class 1 having 1 sample and class 2 having 100).
Therefore we choose PR@1 as our metric, which aligns better with
the real-world (imbalanced) use scenario of binary similarity.

4.2 RQ1: Comparison to Baselines
Comparison to Baseline-I. We compare PEM with Baseline-I on
Dataset-I. To conduct the evaluation, we first use PEM to sample
each function in these binaries and aggregate the distribution of
observable values. Then, for each function in an optimized binary,
we compute its similarity score against all functions of the same
program compiled with a lower optimization level, and use the
ones with the highest scores to compute PR@1. Besides PR@1, we
also use PR@3 and @5 for a more thorough comparison with IMF.
The comparison results with IMF and BLEX are shown in Table 11.
The first two columns list the compilers and the optimization flags
used to generate the reference and query binaries. Columns 3-5, 6-7,
and 8-9 list PR@1, @3, and @5, respectively. Note that BLEX only
reports PR@1 and does not have results for binaries compiled with
Clang. PEM outperforms BLEX on PR@1 and outperforms IMF on all
3 metrics under all settings. Especially, for function pairs (Clang-O0,
GCC-O3) and (GCC-O0, Clang-O3), which are the most challenging
settings in our experiment, PEM outperforms IMF by about 25%.
Comparison to Baseline-II.We compare PEMwith Baseline-II on
Dataset-II. Following the setup of How-Solve [28], for each positive
pair (of functions), namely, similar functions, 100 negative pairs
(i.e., dissimilar functions) are introduced to build up the test set.
The results are shown in Fig. 10. The 𝑥 axis represents different
programs, and the 𝑦 axis is PR@1. The results of PEM, GNN, and
1We compare PEM with the reported results in the IMF paper and contact the authors
of IMF to ensure our setups are the same.

0.2

1.0
O0 VS O3

GMN

GNN

PEM

Avg. GMN

Avg. GNN

Avg. PEM

O2 VS O3

0.90

0.48
0.50

0.96

0.74
0.78

Programs

P
re

ci
si

on
@

1

Figure 10: Comparison with How-Solve. We leverage the best
twomodels (i.e., GNNandGMN) inHow-Solve. Eachbar denotes
a program, whose name is elided. A bar with 1.0 PR@1means
that PEM finds the correct matches for all functions in the
program. Dashed lines denote the average PR@1 of each tool.

GMN are shown in green, yellow, and red bars. The average PR@1
of each tool is marked by the dashed line with the related color.
Note that GNN and GMN are the best two models out of all 10
ML-based methods in How-Solve [28] (including Trex and SAFE).
As Fig. 10 illustrates, PEM achieves scores from 0.84 to 1.00, which
is around 20-40% better than GNN and GMN.
Comparison with Trex and SAFE.With the aforementioned compo-
sition of dataset, PEM outperforms Trex by 40% and outperforms
SAFE by 25% on average. Moreover, the performance of Trex and
SAFE is sensitive to dataset composition. Hence in this compara-
tive experiment, we analyze how different data compositions affect
the performance of different tools. Our results show that PEM is
50% more resilient than Trex and SAFE. Details can be found in
Section H of an extended version of this paper [47].

4.3 RQ2: Real-World Case Study
Wedemonstrate the practice use of PEM via a case study of detecting
1-day vulnerabilities. Suppose that after a vulnerability is reported, a
system maintainer wants to know if the vulnerable function occurs
in a production system. She can use PEM to search for the vulnerable
function from a large number of binary functions and decidewhether
further actions should be taken (e.g., patch the system). We collect 8
1-day Vulnerabilities (CVEs) and use the optimized version of the
problematic function to search for its counterpart in the unoptimized
binary. The results show that in 7 out of the 8 cases, our tool can
find the ground truth function as the top one, while the other two
ML-based methods each can only find 1 of them. Even if we look
into the top 30, both of them can only find 2 of these problematic
functions. Details can be found in Section I of an extended version
of this paper [47].

4.4 RQ3: Generalizability
We evaluate the generalizability of PEM from three perspectives.
First, we show that PEM is efficient so that it can scale to large
projects. Second, we illustrate that PEM has good code coverage
for most functions. That means it can explore enough semantic
behavior even for complex functions. Last but not least, besides
x86-64, we show that PEM can support another architecture with
reasonable human efforts, meaning that PEM can be easily gener-
alized to analyzing binary programs from multiple architectures,
without the need of substantial efforts in building lifting or reverse
engineering tools to recover high-level semantics from binaries.
Efficiency. PEM analyzes more than 3 functions per second in most
cases. Note that this is a one-time effort. After interpretation and
generating semantic representations, PEM searches these represen-
tations to find similar functions. PEM compares more than 2000

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA X. Xu, Z. Xuan, S. Feng, S. Cheng, Y. Ye, Q. Shi, G. Tao, L. Yu, Z. Zhang, and X. Zhang

Cor
eu

til
s

Diff
ut

ils

Fin
du

til
s

Cur
l

G
M

P
Zlib

Im
ag

eM
ag

ick

O
pen

SS
L

SQ
Lite

0.0

0.2

0.4

0.6

0.8

1.0
O0

Cor
eu

til
s

Diff
ut

ils

Fin
du

til
s

Cur
l

G
M

P
Zlib

Im
ag

eM
ag

ick

O
pen

SS
L

SQ
Lite

O3
0.0-0.1

0.1-0.2

0.2-0.3

0.3-0.4

0.4-0.5

0.5-0.6

0.6-0.7

0.7-0.8

0.8-0.9

0.9-1.0

Figure 11: Coverage of PEM

pairs per second in most cases. The comparison can be parallelized.
With 4 processes, we are able to compare 1.7 million function pairs
in 4 minutes (wall-clock). We visualize the results in Figure 27 of
an extended version of this paper [47].

PEM takes 13 minutes to cover more than 95% code for all func-
tions in Coreutils (with a single thread). In comparison, the forced-
execution based method BLEX takes 1.2 hours. In our experiment,
PEM takes 26 minutes to process two Coreutils binaries compiled
with different optimization levels, and it takes another 14 minutes
to compare all 1.7 million function pairs between these two binaries,
yielding a total time cost of 40 minutes. While IMF takes 32 min-
utes to complete the same task, PEM achieves significantly better
precision than IMF. Machine learning models typically have an
expensive training time. They have better performance in test time.
Coverage. The code coverage of PEM on Dataset-II is shown in
Fig. 11. The 𝑥 axis marks the projects and the 𝑦 axis shows the
percentage of functions for which PEM has achieved various levels
of coverage, denoted by different colors. As we can see, 90% of the
functions in -O0 and 85% functions in -O3 have a full or close-to-full
coverage. Those functions with less than 40% coverage have ex-
tremely complex control flow structures, with many inlined callees.
For example, the main function of sort in Coreutils has 496 basic
blocks, resulting in millions of potential paths. Note that even with
such a huge path space, PEM is still able to select similar paths and
collect consistent values with a high probability.
Cross-arch Support.We add AArch64 [1] support to PEM with
only around 200 lines of C++ code and 0.5 person-day efforts. This
is possible because our probabilistic execution model is general and
does not rely on specialized features from the underlying architec-
ture. PEM achieves a PR@1 of 86.8 for Coreutils (-O0 and -O3) on
AArch64, whereas its counterpart on x86-64 is 89.4. In addition, it
achieves a PR@1 of 84.9 when we query with functions compiled
on x86-64 in the pool of functions compiled on AArch64. Details
can be found in Table 7 of an extended version of this paper [47].

4.5 RQ4: Ablation Study
Probabilistic Path Sampling. First, we empirically validate our
hypothesis that branches with the largest and smallest selectiv-
ity are stable before and after code transformations. We collect
equivalent interpretation traces from the main functions in Core-
utils binaries compiled with different options. Then we analyze the
matching traces and check if the predicates with the largest and the
smallest selectivity in these cross-version traces match, leveraging
the debug information. In total, we study 636 traces from 6 binaries
with a total of 16k predicate instances. We observe that with a prob-
ability of more than 80%, our hypothesis holds. The detailed results
are shown in Fig. 12. From the two ends of the lines, we can observe
that in more than 80% cases, the predicates with the smallest and
the largest selectivity match. In contrast, those in the middle do

Table 2: Perf. w.r.t. Different Path Sampling Strategies
LastPred Det. PEM

PR@1 40.24 79.27 91.46
Cover-O0 66.28 96.77 96.81
Cover-O3 53.14 92.95 92.97

Table 3: Perf. w.r.t. Different Budgets
1 20 50 100 200 400 600

PR@1 70 74 79 81 85 86 86
Cover-O0 63 87 91 94 96 98 98
Cover-O3 51 79 84 88 93 95 96

Table 4: Perf. w.r.t. Different Memory Models
No-Mem Const PMM

PR@1 76.35 83.48 85.75
Cover-O0 97.59 97.70 98.03
Cover-O3 94.39 95.11 95.52

not have such a property. The median for the max-3 selectivity is
even close to 0%. For predicate instances with the smallest/largest
selectivity in one trace (e.g., -O3), we further study the selectivity
rankings of their correspondences in the other trace (e.g., -O0). The
results are visualized in Fig. 13. Observe that in more than 98% cases,
they have the top-3 smallest or largest selectivity in the other trace.

Furthermore, we select 80 most challenging functions in Core-
utils to further study the effectiveness of our path sampling strategy.
These functions have more than 150 basic blocks and the average
connectivity is larger than 3, namely, a block is connected to more
than 3 blocks on average. We compare the performance of 3 path
sampling strategies. The results are shown in Table 2. The three
rows show the PR@1, the code coverage for -O0 and -O3 functions,
respectively. The second column presents a strategy in which PEM
flips the last predicate encountered in the previous round with an
uncovered branch. The third column denotes a strategy in which
PEM deterministically flips the predicates with the largest and the
smallest selectivity at each round. The last column presents our
probabilistic path sampling strategy. Observe that the probabilistic
strategy substantially outperforms the other two and both the de-
terministic and probabilistic strategies can achieve good coverage.
Code Coverage versus Precision. We run PEM with different
round budgets on Coreutils and observe coverage and precision
changes. The results are shown in Table 3. Observe that if we only
interpret each function once without any flipping, the precision
is as low as 70 and the coverage is low too. With more budgets,
namely, flipping more predicates, both the precision and the cover-
age improve, indicating PEM can expose equivalent semantics. But
the improvement becomes marginal after 200.
Probabilistic MemoryModel (PMM).We run PEMwith different
memory model setups on Coreutils to illustrate the benefit of model-
ing invalid memory accesses. The results are in Table 4. Specifically,
No-Memmeanswe do notmodel invalidmemory accesses.We return
random values for invalid reads and simply discard invalid writes.
The precision of No-Mem is nearly 10% lower than PMM, while
their coverage is similar. That is because some dependencies be-
tween memory accesses are missing without handling invalid writes.
On the other hand, if we allow writes to invalid memory regions but
always return a constant value for all invalid reads, as shown in the
column of Const, the precision is better than No-Mem. However, it

PEM: Representing Binary Program Semantics for Similarity Analysis via a Probabilistic Execution Model ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

m
in

m
in

+
2

m
in

+
4

m
in

+
6

m
in

+
8

m
ax

-8

m
ax

-6

m
ax

-4

m
ax

-2
m

ax

Selectivity

0.00

0.25

0.50

0.75

1.00 Results of a Program

Median

Figure 12: Predicate Correspondence versus Dynamic Selec-
tivity. Each blue dashed line represents the analysis results of
path pairs from two respective binaries compiled differently
from a program. The 𝑥 axis represents selectivity (with min
the minimal and max the maximum) and 𝑦 denotes the per-
centage of predicate matches. We also compute the median
for each selectivity, resulting in the orange line.

min min+2 min+4 max-4 max-2 max
Selectivity

0

200

400

600

N
u

m
b

er
of

P
re

d
ic

at
es

Figure 13: Correspondence of Predicates with Min and Max
Selectivity. Blue is for min and orange for max. For example,
the bar at min+1 means that about 20 predicates with min se-
lectivity in one trace have min+1 selectivity in the other trace.

is still inferior to PMM. This is due to returning the constant value
making reads from different invalid addresses indistinguishable.
Robustness.We alter system configurations of PEM and run ran-
dom sampling for each probabilistic component in PEM. The ex-
perimental results show that PEM is robust with regard to different
configurations and variances in samplings. Details can be found in
Section G of an extended version of this paper [47].

5 RELATEDWORK
Binary Similarity.Many existing techniques aim to detect seman-
tically similar functions, driven by static [11, 24] and dynamic [12,
15, 16, 43] analysis. A number of representative methods have
been discussed in Section 2.2. Other techniques compare code sim-
ilarity at different granularity, e.g., whole binary [25, 48], assem-
bly [10, 13, 45], and basic block [33]. While our method represents
semantics at the function level, the resulting value sets of our sys-
tem can be used as function semantic signatures and facilitate
comparisons working at other granularity.
Forced Execution. Forced execution [12, 32, 51, 55] concretely
executes a binary along different paths by flipping branch outcomes.
They typically aim to cover more code in a program and thus use
coverage as the guidance. They can hardly select similar sets of paths
for the same program compiled with different optimizations. Their
focus is on recovering from invalidmemory accesses. In contrast, the
probabilistic memory model of PEM reveals the different semantics
introduced by different invalid accesses with high probability.

6 CONCLUSION
We develop a novel probabilistic execution model for effective sam-
pling and representation of binary program semantics. It features a

path-sampling algorithm that is resilient to code transformations
and a probabilistic memory model that can tolerate invalid memory
accesses. It substantially outperforms the state of the arts.

7 DATA AVAILABILITY
Our experimental data and the artifact are available at [46].

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable comments
and suggestions. This research was supported, in part by DARPA
VSPELLS - HR001120S0058, IARPA TrojAI W911NF-19-S-0012, NSF
1901242 and 1910300, ONR N000141712045, N000141410468 and
N000141712947. Any opinions, findings, and conclusions in this
paper are those of the authors only and do not necessarily reflect
the views of our sponsors.

REFERENCES
[1] ARM64 2022. Learn the architecture - AArch64 Instruction Set Architecture. https:

//developer.arm.com/documentation/102374/latest/
[2] Daniel Arp, Erwin Quiring, Feargus Pendlebury, Alexander Warnecke, Fabio

Pierazzi, Christian Wressnegger, Lorenzo Cavallaro, and Konrad Rieck. 2020. Dos
and Don’ts of Machine Learning in Computer Security. CoRR abs/2010.09470
(2020). arXiv:2010.09470 https://arxiv.org/abs/2010.09470

[3] Tiffany Bao, Jonathan Burket, Maverick Woo, Rafael Turner, and David Brumley.
2014. BYTEWEIGHT: Learning to recognize functions in binary code. In 23rd
USENIX Security Symposium (USENIX Security 14). 845–860.

[4] Leyla Bilge, Davide Balzarotti, William Robertson, Engin Kirda, and Christopher
Kruegel. 2012. Disclosure: detecting botnet command and control servers through
large-scale netflow analysis. In Proceedings of the 28th Annual Computer Security
Applications Conference. ACM.

[5] BinDiff 2022. zynamics BinDiff. https://www.zynamics.com/bindiff.html
[6] Dong-Kyu Chae, Jiwoon Ha, Sang-Wook Kim, BooJoong Kang, and Eul Gyu Im.

2013. Software plagiarism detection: a graph-based approach. In Proceedings of
the 22nd ACM international conference on Information & Knowledge Management.
1577–1580.

[7] Mahinthan Chandramohan, Yinxing Xue, Zhengzi Xu, Yang Liu, Chia Yuan Cho,
and Hee Beng Kuan Tan. 2016. BinGo: Cross-Architecture Cross-OS Binary
Search (FSE 2016). Association for Computing Machinery, New York, NY, USA,
678–689. https://doi.org/10.1145/2950290.2950350

[8] Coreutils 2022. Coreutils - GNU core utilities. https://www.gnu.org/software/
coreutils/

[9] Yaniv David, Nimrod Partush, and Eran Yahav. 2016. Statistical Similarity
of Binaries. In Proceedings of the 37th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (Santa Barbara, CA, USA) (PLDI
’16). Association for Computing Machinery, New York, NY, USA, 266–280.
https://doi.org/10.1145/2908080.2908126

[10] Steven H. H. Ding, Benjamin C. M. Fung, and Philippe Charland. 2019. Asm2Vec:
Boosting Static Representation Robustness for Binary Clone Search against Code
Obfuscation and Compiler Optimization. In 2019 IEEE Symposium on Security
and Privacy (SP). 472–489. https://doi.org/10.1109/SP.2019.00003

[11] Yue Duan, Xuezixiang Li, Jinghan Wang, and Heng Yin. 2020. DeepBinDiff:
Learning Program-Wide Code Representations for Binary Diffing. https://doi.
org/10.14722/ndss.2020.24311

[12] Manuel Egele, Maverick Woo, Peter Chapman, and David Brumley. 2014. Blanket
Execution: Dynamic Similarity Testing for Program Binaries and Components.
In Proceedings of the 23rd USENIX Conference on Security Symposium (San Diego,
CA) (SEC’14). USENIX Association, USA, 303–317.

[13] Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng, Brian Testa, and Heng
Yin. 2016. Scalable graph-based bug search for firmware images. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security.
480–491.

[14] Yanick Fratantonio, Antonio Bianchi, William Robertson, Engin Kirda, Christo-
pher Kruegel, and Giovanni Vigna. 2016. Triggerscope: Towards detecting logic
bombs in android applications. In 2016 IEEE symposium on security and privacy
(SP). IEEE.

[15] Jian Gao, Xin Yang, Ying Fu, Yu Jiang, and Jiaguang Sun. 2018. VulSeeker: A
Semantic Learning Based Vulnerability Seeker for Cross-Platform Binary. As-
sociation for Computing Machinery, New York, NY, USA, 896–899. https:
//doi.org/10.1145/3238147.3240480

[16] Y. Hu, Y. Zhang, J. Li, H. Wang, B. Li, and D. Gu. 2018. BinMatch: A Semantics-
BasedHybrid Approach on Binary Code CloneAnalysis. In 2018 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE Computer

https://developer.arm.com/documentation/102374/latest/
https://developer.arm.com/documentation/102374/latest/
https://arxiv.org/abs/2010.09470
https://arxiv.org/abs/2010.09470
https://www.zynamics.com/bindiff.html
https://doi.org/10.1145/2950290.2950350
https://www.gnu.org/software/coreutils/
https://www.gnu.org/software/coreutils/
https://doi.org/10.1145/2908080.2908126
https://doi.org/10.1109/SP.2019.00003
https://doi.org/10.14722/ndss.2020.24311
https://doi.org/10.14722/ndss.2020.24311
https://doi.org/10.1145/3238147.3240480
https://doi.org/10.1145/3238147.3240480

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA X. Xu, Z. Xuan, S. Feng, S. Cheng, Y. Ye, Q. Shi, G. Tao, L. Yu, Z. Zhang, and X. Zhang

Society, Los Alamitos, CA, USA, 104–114. https://doi.org/10.1109/ICSME.2018.
00019

[17] N. L. Johnson and S. Kotz. 1972. Distributions in Statistics: Continuous Multivariate
Distributions. John Wiley, New York, NY.

[18] Alexandros Kapravelos, Chris Grier, Neha Chachra, Christopher Kruegel, Gio-
vanni Vigna, and Vern Paxson. 2014. Hulk: Elicitingmalicious behavior in browser
extensions. In 23rd USENIX Security Symposium (USENIX Security 14).

[19] Chariton Karamitas and Athanasios Kehagias. 2018. Efficient features for function
matching between binary executables. In 2018 IEEE 25th International Conference
on Software Analysis, Evolution and Reengineering (SANER). 335–345. https:
//doi.org/10.1109/SANER.2018.8330221

[20] Ulf Kargén and Nahid Shahmehri. 2017. Towards robust instruction-level trace
alignment of binary code. In 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE). 342–352. https://doi.org/10.1109/ASE.
2017.8115647

[21] Amin Kharraz, William Robertson, Davide Balzarotti, Leyla Bilge, and Engin
Kirda. 2015. Cutting the gordian knot: A look under the hood of ransomware
attacks. In International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer.

[22] Dongkwan Kim, Eunsoo Kim, Sang Kil Cha, Sooel Son, and Yongdae Kim. 2022.
Revisiting Binary Code Similarity Analysis using Interpretable Feature Engineer-
ing and Lessons Learned. IEEE Transactions on Software Engineering (2022), 1–23.
https://doi.org/10.1109/TSE.2022.3187689

[23] Geunwoo Kim, Sanghyun Hong, Michael Franz, and Dokyung Song. 2022. Im-
proving Cross-Platform Binary Analysis Using Representation Learning via
Graph Alignment. In Proceedings of the 31st ACM SIGSOFT International Sym-
posium on Software Testing and Analysis (Virtual, South Korea) (ISSTA 2022).
Association for Computing Machinery, New York, NY, USA, 151–163. https:
//doi.org/10.1145/3533767.3534383

[24] Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli. 2019.
Graph Matching Networks for Learning the Similarity of Graph Structured Ob-
jects. CoRR abs/1904.12787 (2019). arXiv:1904.12787 http://arxiv.org/abs/1904.
12787

[25] Bingchang Liu, Wei Huo, Chao Zhang, Wenchao Li, Feng Li, Aihua Piao, and
Wei Zou. 2018. aDiff: Cross-Version Binary Code Similarity Detection with DNN.
Association for Computing Machinery, New York, NY, USA, 667–678. https:
//doi.org/10.1145/3238147.3238199

[26] LLVM 2022. llvm-project. https://github.com/llvm/llvm-project/blob/release/12.
x/llvm/lib/Transforms/Scalar/ConstraintElimination.cpp

[27] Lannan Luo, Jiang Ming, Dinghao Wu, Peng Liu, and Sencun Zhu. 2017.
Semantics-Based Obfuscation-Resilient Binary Code Similarity Comparison with
Applications to Software and Algorithm Plagiarism Detection. IEEE Transactions
on Software Engineering 43, 12 (2017), 1157–1177. https://doi.org/10.1109/TSE.
2017.2655046

[28] Andrea Marcelli, Mariano Graziano, Xabier Ugarte-Pedrero, Yanick Fratantonio,
Mohamad Mansouri, and Davide Balzarotti. 2022. How machine learning is
solving the binary function similarity problem. In USENIX 2022, 31st USENIX
Security Symposium, 10-12 August 2022, Boston, MA, USA, Usenix (Ed.). Boston.

[29] Ehsan Mashhadi and Hadi Hemmati. 2021. Applying CodeBERT for Auto-
mated Program Repair of Java Simple Bugs. CoRR abs/2103.11626 (2021).
arXiv:2103.11626 https://arxiv.org/abs/2103.11626

[30] Luca Massarelli, Giuseppe Antonio Di Luna, Fabio Petroni, Leonardo Querzoni,
and Roberto Baldoni. 2018. SAFE: Self-Attentive Function Embeddings for Binary
Similarity. https://doi.org/10.48550/ARXIV.1811.05296

[31] Kexin Pei, Zhou Xuan, Junfeng Yang, Suman Jana, and Baishakhi Ray. 2020.
Trex: Learning Execution Semantics from Micro-Traces for Binary Similarity.
https://doi.org/10.48550/ARXIV.2012.08680

[32] Fei Peng, Zhui Deng, Xiangyu Zhang, Dongyan Xu, Zhiqiang Lin, and Zhendong
Su. 2014. X-Force: Force-Executing Binary Programs for Security Applications.
In Proceedings of the 23rd USENIX Conference on Security Symposium (San Diego,
CA) (SEC’14). USENIX Association, USA, 829–844.

[33] Jannik Pewny, Behrad Garmany, Robert Gawlik, Christian Rossow, and Thorsten
Holz. 2015. Cross-Architecture Bug Search in Binary Executables. In 2015 IEEE
Symposium on Security and Privacy. 709–724. https://doi.org/10.1109/SP.2015.49

[34] Jannik Pewny, Felix Schuster, Lukas Bernhard, Thorsten Holz, and Christian
Rossow. 2014. Leveraging Semantic Signatures for Bug Search in Binary Programs.
In Proceedings of the 30th Annual Computer Security Applications Conference (New
Orleans, Louisiana, USA) (ACSAC ’14). Association for Computing Machinery,
New York, NY, USA, 406–415. https://doi.org/10.1145/2664243.2664269

[35] QEMU 2023. A generic and open source machine emulator and virtualizer. https:
//www.qemu.org

[36] Xiaolei Ren, Michael Ho, Jiang Ming, Yu Lei, and Li Li. 2021. Unleashing the
Hidden Power of Compiler Optimization on Binary Code Difference: An Empirical
Study. Association for Computing Machinery, New York, NY, USA, 142–157.
https://doi.org/10.1145/3453483.3454035

[37] Seemanta Saha, Mara Downing, Tegan Brennan, and Tevfik Bultan. 2022.
PREACH: A Heuristic for Probabilistic Reachability to Identify Hard to Reach

Statements. In 2022 IEEE/ACM 44th International Conference on Software Engi-
neering (ICSE). 1706–1717. https://doi.org/10.1145/3510003.3510227

[38] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K. Roy, and Cristina V.
Lopes. 2016. SourcererCC: Scaling Code Clone Detection to Big-Code. In 2016
IEEE/ACM 38th International Conference on Software Engineering (ICSE). 1157–
1168. https://doi.org/10.1145/2884781.2884877

[39] Ridwan Salihin Shariffdeen, Shin Hwei Tan, Mingyuan Gao, and Abhik Roy-
choudhury. 2021. Automated Patch Transplantation. ACM Trans. Softw. Eng.
Methodol. 30, 1, Article 6 (dec 2021), 36 pages. https://doi.org/10.1145/3412376

[40] Eui Chul Richard Shin, Dawn Song, and Reza Moazzezi. 2015. Recognizing
functions in binaries with neural networks. In 24th USENIX Security Symposium
(USENIX Security 15). 611–626.

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. CoRR abs/1706.03762 (2017). arXiv:1706.03762 http://arxiv.org/abs/
1706.03762

[42] Andrew Walker, Tomas Cerny, and Eungee Song. 2020. Open-Source Tools and
Benchmarks for Code-Clone Detection: Past, Present, and Future Trends. SIGAPP
Appl. Comput. Rev. 19, 4 (jan 2020), 28–39. https://doi.org/10.1145/3381307.
3381310

[43] Shuai Wang and Dinghao Wu. 2017. In-Memory Fuzzing for Binary Code Simi-
larity Analysis. In Proceedings of the 32nd IEEE/ACM International Conference on
Automated Software Engineering (Urbana-Champaign, IL, USA) (ASE 2017). IEEE
Press, 319–330.

[44] Xiangzhe Xu, Shiwei Feng, Yapeng Ye, Guangyu Shen, Zian Su, Siyuan Cheng,
Guanhong Tao, Qingkai Shi, Zhuo Zhang, and Xiangyu Zhang. 2023. Improving
Binary Code Similarity Transformer Models by Semantics-Driven Instruction
Deemphasis. In Proceedings of the 32nd ACM SIGSOFT International Symposium
on Software Testing and Analysis (Seattle, WA, USA) (ISSTA 2023). Association for
Computing Machinery, New York, NY, USA, 1106–1118. https://doi.org/10.1145/
3597926.3598121

[45] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song. 2017.
Neural Network-based Graph Embedding for Cross-Platform Binary Code Simi-
larity Detection. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. ACM. https://doi.org/10.1145/3133956.3134018

[46] Xiangzhe Xu, Zhou Xuan, Shiwei Feng, Siyuan Cheng, Yapeng Ye, Qingkai Shi,
Guanhong Tao, Le Yu, Zhuo Zhang, and Xiangyu Zhang. 2023. PEM. https:
//github.com/XZ-X/PEM.git

[47] Xiangzhe Xu, Zhou Xuan, Shiwei Feng, Siyuan Cheng, Yapeng Ye, Qingkai Shi,
Guanhong Tao, Le Yu, Zhuo Zhang, and Xiangyu Zhang. 2023. PEM: Representing
Binary Program Semantics for Similarity Analysis via a Probabilistic Execution
Model. arXiv:2308.15449 [cs.SE]

[48] Xi Xu, Qinghua Zheng, Ming Fan, Jia Ang, and Ting Liu. 2021. Interpretation-
enabled Software Reuse Detection Based on a Multi-Level Birthmark Model.
873–884. https://doi.org/10.1109/ICSE43902.2021.00084

[49] Zhengzi Xu, Bihuan Chen, Mahinthan Chandramohan, Yang Liu, and Fu Song.
2017. SPAIN: Security PatchAnalysis for Binaries towards Understanding the Pain
and Pills. In 2017 IEEE/ACM 39th International Conference on Software Engineering
(ICSE). 462–472. https://doi.org/10.1109/ICSE.2017.49

[50] Jia Yang, Cai Fu, Xiao-Yang Liu, Heng Yin, and Pan Zhou. 2022. Codee: A Tensor
Embedding Scheme for Binary Code Search. IEEE Transactions on Software
Engineering 48, 7 (2022), 2224–2244. https://doi.org/10.1109/TSE.2021.3056139

[51] Wei You, Zhuo Zhang, Yonghwi Kwon, Yousra Aafer, Fei Peng, Yu Shi, Carson
Harmon, and Xiangyu Zhang. 2020. PMP: Cost-effective Forced Execution with
Probabilistic Memory Pre-planning. In 2020 IEEE Symposium on Security and
Privacy (SP). 1121–1138. https://doi.org/10.1109/SP40000.2020.00035

[52] Zeping Yu, Rui Cao, Qiyi Tang, Sen Nie, Junzhou Huang, and Shi Wu. 2020. Order
Matters: Semantic-Aware Neural Networks for Binary Code Similarity Detection.
Proceedings of the AAAI Conference on Artificial Intelligence 34, 01 (Apr. 2020),
1145–1152. https://doi.org/10.1609/aaai.v34i01.5466

[53] Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. 2006. Locating Faults through
Automated Predicate Switching. In Proceedings of the 28th International Con-
ference on Software Engineering (Shanghai, China) (ICSE ’06). Association for
Computing Machinery, New York, NY, USA, 272–281. https://doi.org/10.1145/
1134285.1134324

[54] Zhuo Zhang, Yapeng Ye, Wei You, Guanhong Tao, Wen-Chuan Lee, Yonghwi
Kwon, Yousra Aafer, and Xiangyu Zhang. 2021. OSPREY: Recovery of Variable
and Data Structure via Probabilistic Analysis for Stripped Binary. In 42nd IEEE
Symposium on Security and Privacy, SP 2021, San Francisco, CA, USA, 24-27 May
2021. IEEE, 813–832. https://doi.org/10.1109/SP40001.2021.00051

[55] Zhuo Zhang, Wei You, Guanhong Tao, Guannan Wei, Yonghwi Kwon, and
Xiangyu Zhang. 2019. BDA: practical dependence analysis for binary ex-
ecutables by unbiased whole-program path sampling and per-path abstract
interpretation. Proc. ACM Program. Lang. 3, OOPSLA (2019), 137:1–137:31.
https://doi.org/10.1145/3360563

Received 2023-02-02; accepted 2023-07-27

https://doi.org/10.1109/ICSME.2018.00019
https://doi.org/10.1109/ICSME.2018.00019
https://doi.org/10.1109/SANER.2018.8330221
https://doi.org/10.1109/SANER.2018.8330221
https://doi.org/10.1109/ASE.2017.8115647
https://doi.org/10.1109/ASE.2017.8115647
https://doi.org/10.1109/TSE.2022.3187689
https://doi.org/10.1145/3533767.3534383
https://doi.org/10.1145/3533767.3534383
https://arxiv.org/abs/1904.12787
http://arxiv.org/abs/1904.12787
http://arxiv.org/abs/1904.12787
https://doi.org/10.1145/3238147.3238199
https://doi.org/10.1145/3238147.3238199
https://github.com/llvm/llvm-project/blob/release/12.x/llvm/lib/Transforms/Scalar/ConstraintElimination.cpp
https://github.com/llvm/llvm-project/blob/release/12.x/llvm/lib/Transforms/Scalar/ConstraintElimination.cpp
https://doi.org/10.1109/TSE.2017.2655046
https://doi.org/10.1109/TSE.2017.2655046
https://arxiv.org/abs/2103.11626
https://arxiv.org/abs/2103.11626
https://doi.org/10.48550/ARXIV.1811.05296
https://doi.org/10.48550/ARXIV.2012.08680
https://doi.org/10.1109/SP.2015.49
https://doi.org/10.1145/2664243.2664269
https://www.qemu.org
https://www.qemu.org
https://doi.org/10.1145/3453483.3454035
https://doi.org/10.1145/3510003.3510227
https://doi.org/10.1145/2884781.2884877
https://doi.org/10.1145/3412376
https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://doi.org/10.1145/3381307.3381310
https://doi.org/10.1145/3381307.3381310
https://doi.org/10.1145/3597926.3598121
https://doi.org/10.1145/3597926.3598121
https://doi.org/10.1145/3133956.3134018
https://github.com/XZ-X/PEM.git
https://github.com/XZ-X/PEM.git
https://arxiv.org/abs/2308.15449
https://doi.org/10.1109/ICSE43902.2021.00084
https://doi.org/10.1109/ICSE.2017.49
https://doi.org/10.1109/TSE.2021.3056139
https://doi.org/10.1109/SP40000.2020.00035
https://doi.org/10.1609/aaai.v34i01.5466
https://doi.org/10.1145/1134285.1134324
https://doi.org/10.1145/1134285.1134324
https://doi.org/10.1109/SP40001.2021.00051
https://doi.org/10.1145/3360563

	Abstract
	1 Introduction
	2 Motivation and Overview
	2.1 Motivating Example
	2.2 Limitations of Existing Techniques
	2.3 Our Technique

	3 Design
	3.1 Overall Workflow
	3.2 Language
	3.3 Interpretation
	3.4 Path Sampling
	3.5 Formal Analysis of Path Sampling
	3.6 Probabilistic Memory Model

	4 Evaluation
	4.1 Setup
	4.2 RQ1: Comparison to Baselines
	4.3 RQ2: Real-World Case Study
	4.4 RQ3: Generalizability
	4.5 RQ4: Ablation Study

	5 Related Work
	6 Conclusion
	7 Data Availability
	Acknowledgments
	References

