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Abstract—Cloud computing undoubtedly is the most unparal-
leled technique in rapidly developing industries. Protecting sen-
sitive files stored in the clouds from being accessed by malicious
attackers is essential to the success of the clouds. In proxy re-
encryption schemes, users delegate their encrypted files to other
users by using re-encryption keys, which elegantly transfers the
users’ burden to the cloud servers. Moreover, one can adopt
conditional proxy re-encryption schemes to employ their access
control policy on the files to be shared. However, we recognize
that the size of re-encryption keys will grow linearly with the
number of the condition values, which may be impractical in low
computational devices. In this paper, we combine a key-aggregate
approach and a proxy re-encryption scheme into a key-aggregate
proxy re-encryption scheme. It is worth mentioning that the
proposed scheme is the first key-aggregate proxy re-encryption
scheme. As a side note, the size of re-encryption keys is constant.

Index Terms—Cloud Computing, Proxy Re-Encryption, Key-
Aggregate Cryptosystem, Access Control

I. INTRODUCTION

In recent years, cloud computing has grown from a small
concept to a rapidly growing part of IT industries. It enables
numerous people to share information without geographical
restrictions. Therefore, protecting sensitive files stored in the
clouds from being tampered by malicious attackers is essential
to the success of the clouds. Nowadays, data security has
become a critical issue in various kinds of applications. Users
may prefer storing their files in an encrypted manner and
delegating decryption rights efficiently. In order to protect
the files stored in the clouds, the owners can encrypt the
files by using their keys before uploading the files to the
clouds. Still, a user needs to be online to share her encrypted
files because she needs to send her keys to her friends.
It is extremely inefficient because of the heavy overhead
on the user. Fortunately, proxy re-encryption(PRE) schemes
[1], [2], [3], [4] enable users to share their encrypted files
with other users by using re-encryption keys. For instance,

Alice encrypts her files and uploads these files to the clouds.
Then Alice generates a re-encryption key and sends it to the
cloud. The cloud operator then re-encrypts Alice’s encrypted
files into Bob’s encrypted files whenever Bob downloads
Alice’s files. The scenario of PRE in clouds is depicted
in FIGURE 1. PRE schemes elegantly transfer the users’
burden to the clouds. Nonetheless, the existing PRE schemes
should face the following problems. First, the re-keys may
be abused by the delegatees and the proxy. For instance,
Bob can conspire with cloud administrators to decrypt all
Alice’s ciphertexts while Bob is not authorized to access these
encrypted files. Alice may only allow the proxy to process her
partial ciphertexts. Second, most existing PRE algorithms do
not efficiently support flexible delegation. Consider that Alice
only allows Bob to access the files containing the keyword
”Customer”. Obviously, the existing PREs are difficult to
have this flexibility. The cloud server simply follows the
access control policies indicated by the delegator, which is
impractical in diverse applications. To deal with this issue,
Weng et al. [5] introduced conditional proxy re-encryption
(C-PRE), where ciphertexts containing the certain condition
value can be re-encrypted. In C-PREs [5], [6], [7], [8], a data
owner generates both encrypted files and re-encryption keys,
or condition keys, with certain condition values. For instance,
Alice selects a value w. Meanwhile, she creates a re-encryption
key, or condition key, by using w and Bob’s public key. Thus
the decryption right is limited to the certain condition value
w. However, we recognize that the number of re-encryption
keys, or condition keys, will grow linearly with the number
of condition values, which may be impractical in resource-
constrained devices. In our proposed scheme, we integrate
a PRE scheme [9] and a key-aggregate approach [10] into
a key-aggregate proxy re-encryption scheme. The proposed
algorithm handles performance issues in reducing the number
of re-keys while achieving fine-grained access control on the
encrypted files, simultaneously.
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Fig. 1. Alice generates the re-key. The cloud will transform Alice’s ciphertexts
into Bob’s ciphertexts when Bob downloads the files.

II. PRELIMINARIES

A. Bilinear Mapping

Definition 1: Groups (G, GT ) are two multiplicative cyclic
groups of prime order p.
A bilinear mapping e : G×G→ GT has three properties.

• Bilinearity: e(ga, hb) = e(g, h)ab for any a, b ∈ Zp and
g, h ∈ G.

• Non-Degeneracy: Whenever element g, h 6= 1G ,
e(g, h) 6= 1.

• Computability: One can use efficient algorithms to com-
pute e(g, h) for any element g, h ∈ G.

III. OUR CONSTRUCTION

A. Notations

The following table shows the meanings of the notations in
our scheme.

TABLE I
THE NOTATIONS

Notation Meaning
G a cyclic multiplicative group
GT a cyclic multiplicative group
e a bilinear mapping

par the public parameters
n the number of total file types

B. The Proposed Scheme

Our scheme is composed of eight algorithms, i.e. Setup,
KeyGen, ReKeyGen, Enc2, Enc1, ReEnc, Dec2, and Dec1,
which will be defined in the following subsections.

1) Setup (λ): This algorithm outputs the parameters par =
〈p, g, d, u, v, w, e,G,GT , Z,H, F, l1, l〉 upon an input security
parameter λ. Each component of par is set as follows. G,GT
are two cyclic multiplicative groups of prime order p where
2λ ≤ p ≤ 2λ+1 and g, d, u, v, w be generators of G. Let
H : G×G→ Z∗p, H1 : GT ×G→ G∗ be two hash functions
and Z = e(g, g).

2) KeyGen (i): The user i’s keys are pki = (gai,1 , gai,2 ,∆i)
and ski = (ai,1, ai,2, ai,3), where ai,1, ai,2, ai,3 ∈R Zp, ∆i =

〈g1, g2, . . . , gn, gn+2, . . . , g2n〉, where gρ = ga
ρ
i,3 for each ρ ∈

{1, ..., 2n}/{n + 1}, and n represents the number of the file
types specified by user i.

3) ReKeyGen (S, ski, pkj): For the set S of user i’s file
types that are able to be re-encrypted, user i (a delegator)
with ski = (ai,1, ai,2, ai,3) can delegate decryption rights
to a delegatee, say user j, with pkj = (gaj,1 , gaj,2 ,∆j) by
computing rki−→

S
j as:

rki−→
S
j = ((gaj,1)1/ai,1), (

∏
ν∈S gn+1−ν)ai,2) =

(gaj,1/ai,1 ,
∏
ν∈S g

ai,2
n+1−ν).

The example of ReKeyGen is shown below:

1 
𝑛 + 1 = 16 + 1 = 17 

𝑆 = {1,6,8,9,10,15,16} 

𝑅𝑒𝐾𝑒𝑦 = < 𝑟1, 𝑟2 > 

𝑟1 = 𝑔𝑎𝑗,1 1/𝑎𝑖,1  

𝑟2 =  𝑔16 ∙ 𝑔11 ∙ 𝑔9 ∙ 𝑔8 ∙ 𝑔7

∙ 𝑔2 ∙ 𝑔1 
𝑎𝑖,2  

2 3 4 

5 6 7 8 

9 10 11 12 

13 14 15 16 

16 file types 

Fig. 2. In this figure, there are totally 16 different file types. In fact, each
index of file type represents an individual condition value. Assuming that user
i wants to delegate decryption rights of files types {1, 6, 8, 9, 10, 15, 16} to
user j, she computes a constant-size re-encryption key with user j’s public
key.

4) Enc2 (pki,m): Given m ∈ G and i’s public key
pki = (gai,1 , gai,2 ,∆i), where m’s type is ρ ∈ {1, ..., n},
select t, k, r, η ∈R Zp and compute:

C = (k, c1, c2, c3, c4, c5, c6, c7, c8, c9)
= (k, dr, gai,1r, gt, (gai,2 · gρ)t, H1(K, dr)⊕m⊕H1

(e(g1, gn)t, dr), (uh · vk · w)r, (uh
′ · vk · w)r, gη, H1(K, gη))

where h = H(c1, c5), h′ = H(c1, H1(K, c1) ⊕m),K = Zr.
Finally, this algorithm outputs the ciphertext:

C = (k, c1, c2, c3, c4, c5, c6, c7, c8, c9)
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We obtain the validity of the ciphertext by checking the
following formulas:

e(c1, u
h · vk · w) = e(c6, d) (Eq. 1)

e(c1, g
a1) = e(c2, d) (Eq. 2)

e(c3, g
ai,2 · gρ) = e(c4, g) (Eq. 3)

5) Enc1 (pkj ,m): Given m ∈ G and j’s public key pkj =
(gaj,1 , gaj,2 ,∆j), select k, r, η ∈R Zp and compute:

C ′ = (k, c′1, c
′
2, c
′
3, c
′
4, c
′
5, c
′
6) = (k, dr, e(gaj,1 , g)r, H1(K, dr)⊕

m, (uh · vk · w)r, gη, H1(K, gη))

where h = H(c′1, c
′
3), and K = Zr. Finally, output the

ciphertext C ′ = (k, c′1, c
′
2, c
′
3, c
′
4, c
′
5, c
′
6).

Note that the validity of k, c′1, c
′
3, c
′
4 can be checked by:

e(c′1, u
h · vk · w) = e(c′4, d) (Eq. 4)

We can verify c′2 by Eq. 6. If true, it is accepted as a valid
ciphertext.

6) ReEnc (S, rki−→
S
j , C): In order to generate a first

level ciphertext C ′ = (k, c′1, c
′
2, c
′
3, c
′
4, c
′
5, c
′
6) of user j with

rki−→
S
j = (r1, r2) and C = (k, c1, c2, c3, c4, c5, c6, c7, c8, c9)

of user i, the proxy first checks if C’s type ρ ∈ S. Then
it checks Eq. 1, Eq. 2, and Eq. 3. If true, it performs the
following steps; otherwise, outputs ⊥.

1) Set c′1 = c1, c′4 = c7, c′5 = c8, c′6 = c9.
2) Compute c′2 = e(c2, r1).
3) Compute c′3 = c5 ⊕H1(

e(
∏
ν∈S gn+1−ν ,c4)

e(r2·
∏
ν∈S,ν 6=ρ gn+1−ν+ρ,c3)

, c1).
4) Send C ′ = (k, c′1, c

′
2, c
′
3, c
′
4, c
′
5, c
′
6) to user j.

Note that, for ciphertext C, the verification of Eq. 1 and Eq.
2 can be alternately done by picking d1, d2 ∈R Z∗p and testing
if

e(c1, (g
a1)d1 · (uh · vk · w)d2) = e(cd12 · c

d2
6 , d) (Eq. 5)

7) Dec2 (ski, C): In order to decrypt C =
(k, c1, c2, c3, c4, c5, c6, c7, c8, c9) of user i, one performs
the following steps:

1) Check Eq. 3 and Eq. 5. If FALSE, output ⊥.
2) With ski = (ai,1, ai,2, ai,3), we compute K =

e(c2, g)1/ai,1 . If H1(K, c8) = c9 holds, then generate
m = H1(K, c1) ⊕ c5 ⊕H1(e(c3, gn+1), c1); otherwise,
output ⊥.

8) Dec1 (skj , C ′): In order to decrypt C ′ =
(k, c′1, c

′
2, c
′
3, c
′
4, c
′
5, c
′
6) of user j, one performs the following

steps:
1) Check Eq. 4. If FALSE, output ⊥.
2) With skj = (aj,1, aj,2, aj,3), we can compute K =

(c′2)1/aj,1 then generate m = H1(K, c′1) ⊕ c′3 if the
following formula holds:

H1(K, c′5) = c′6 (Eq. 6)

Otherwise, output ⊥.

C. Correctness

1) We demonstrate the correctness of the re-encryption as
below:
c′1 = c1 = dr.
c′2 = e(c2, r1)

= e(gai,1r, gaj,1/ai,1)
= e(g, g)aj,1r.

c′3 = c5 ⊕H1(
e(
∏
ν∈S gn+1−ν ,c4)

e(r2·
∏
ν∈S,ν 6=ρ gn+1−ν+ρ,c3)

, c1)

= c5 ⊕H1(
e(
∏
ν∈S gn+1−ν ,(g

ai,2 ·gρ)t)
e(
∏
ν∈S g

ai,2
n+1−ν ·

∏
ν∈S,ν 6=ρ gn+1−ν+ρ,gt)

, c1)

= c5 ⊕H1(
e(
∏
ν∈S gn+1−ν ,g

t
ρ)

e(
∏
ν∈S,ν 6=ρ gn+1−ν+ρ,gt)

, c1)

= c5 ⊕H1(
e(
∏
ν∈S gn+1−ν+ρ,g

t)

e(
∏
ν∈S gn+1−ν+ρ,gt)/e(gn+1,gt)

, c1)

= c5 ⊕H1(e(gn+1, g
t), c1))

= H1(K, c1)⊕m.
c′4 = c7

= (uh
′ · vk · w)r

= (uH(c1,H1(K,c1)⊕m) · vk · w)r.
c′5 = c8 = gη.
c′6 = c9 = H1(K, gη).

2) The correctness of the decryption on a first level cipher-
text is demonstrated below:

K = (c′2)1/aj,1 = e(gaj,1 , g)r/aj,1 = e(g, g)r,
H1(K, c′1)⊕ c′3 = H1(K, c′1)⊕H1(K, c′1)⊕m
= m.

where ski = (aj,1, aj,2, aj,3).
3) The correctness of the decryption on a second level

ciphertext is as follows:

K = e(c2, g)1/ai,1 = e(gai,1r, g)1/ai,1 = e(g, g)r,
H1(K, c1)⊕ c5 ⊕H1(e(c3, gn+1), c1) =
H1(K, c1)⊕H1(e(g1, gn)t, c1)⊕ c5 =
H1(K, c1)⊕H1(K, c1)⊕H1(e(g1, gn)t, c1)⊕
H1(e(g1, gn)t, c1)⊕m = m.

where ski = (ai,1, ai,2, ai,3).

IV. COMPARISON

In this chapter, we examine our scheme with the correlated
C-PRE schemes [5], [6], [7], [8]. We focus on the compar-
ison of the storage cost of the re-encryption keys and the
computational cost of ReKeyGen. As stated in [11], [12],
[13], [14], [15] we learn that Ts ≈ 29Tm, Ta ≈ 0.12Tm and
Th ≈ 7.75Tm and that a modular multiplication uses 66 clock
cycles in a 256-bit finite field [16]. TABLE II indicates that
our scheme can efficiently support fine-grained access control
on the files with constant-size re-encryption keys.

V. CONCLUSION

In this paper, we deal with the performance issues in
reducing the number of re-encryption keys while achieving
fine-grained access control on the encrypted files, simulta-
neously. Noteworthily, the proposed scheme is the first key-
aggregate proxy re-encryption scheme. However, the standard
proof of our scheme is still lacking. In order to achieve a more
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TABLE II
THE COMPARISONS BETWEEN C-PRES AND OUR SCHEME.

Weng [5] Chu [6] Fang [7] Liang [8] Ours
Fine-grained Yes Yes Yes Yes Yesaccess control

ReKeyGen computational 2nTs + nTh 2nTs + 2nTa 7nTs + 3nTa 4 2Ts + (n− 1)Ta

cost ≈ 4340nCs ≈ 3844nCs ≈ 13422nCs ≈ 8n+ 3820Cs
Re-encryption keys

n(|G|+ |G|) = 512nbits n(|G|) = 256nbits n(|G|+ 3 |G|) = 1024nbits 4 |G|+ |G| = 512bitsLength
• |G|: the length of G element
• |GT |: the length of GT element
• n : the number of total file types
• Ts : the cost of a scalar multiplication
• Ta : the cost of an addition
• Th : the cost of a hash operation
• Cs : clock cycles
• 4 : the cost is dependent on the cryptographic primitives

secure and practical level of our algorithm, we will prove and
implement our scheme in the future work.
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