
CS18000: Problem Solving and
Object-Oriented Programming

Recursion

Video 1
What is Recursion?

Recursion and Recursive Data
Structures

Recursion and Stacks

What is Recursion?

• A self reference
• Methods:

– A method can call itself
– Example: Fibonacci method

• Data:
– A data structure can reference itself
– Example: LinkedList Node class

private class Node {
String value;
Node link;

}

4

Recursive Problem Solving

• Sometimes…
– Easier to partially solve a problem
– Delegate the rest to someone else

• “Want me to compute Fibonacci(n)?”
• “OK...”

– If n == 0, then “The answer is: 0” (easy!)
– If n == 1, then “The answer is: 1” (easy!)
– else (get help!)

• “Alice: What is Fibonacci(n-1)?”
• “Bob: What is Fibonacci(n-2)?”
• “The answer is: ” Alice’s answer + Bob’s answer

5

Why Recursion Works

• The method does not always call itself
• The data structure does not always link to

another copy of itself
• There’s always a “basis case” (or base case)

• Recursion works well for problems that can be
split in this way: a basis case and a recursive
case

6

Recursive Definitions

• Fibonacci(n)
– If n == 0, then 0
– If n == 1, then 1
– else Fibonacci(n-1) + Fibonacci(n-2)

• Factorial(n)
– If n == 0, then 1
– else n * Factorial(n-1)

• 2n

– If n == 0, then 1
– If n == 1, then 2
– If n is even, then 2n/2 * 2n/2

– If n is odd, then 2 * 2(n-1)/2 * 2(n-1)/2
7

Key Task When Programming
Recursion

• Break the problem down into two pieces:
– Basis case: what can be done without a recursive

call
– Recursive case: the same problem but “smaller”

• The parameter(s) to the recursive case must
be “smaller” in some sense: closer to the basis
case

8

Video 2
Recursion Examples

How Recursion is Implemented

• Recall that…
– A stack is used to handle method calls
– When a method is called, parameters and local

variables are “pushed” onto the “call stack”
• Each recursive method call has its own copy of

parameters and local variables
• When a method returns, the previously

executing method (“below it” on the stack)
picks up where it left off

10

Example: Factorial
public class Factorial {
 public static long factorial(long n) {
 if (n == 0)

return 1;
 else
 return n * factorial(n-1);
 }

 public static void main(String[] args) {
 for (int n = 0; n <= 20; n++)
 System.out.printf("%3d! = %d\n", n, factorial(n));
 }
}

11

12

Example: isPalindrome
public static boolean isPalindrome(String s) {

if (s == null || s.length() <= 1)
 return true;

 char first = s.charAt(0);
 char last = s.charAt(s.length() - 1);
 if (first != last)
 return false;

 String middle = s.substring(1, s.length() - 1);
 return isPalindrome(middle);
 }

13

14

s

first last

middle

racecar

aceca

r r

Example: pow2n
public static long pow2n(long n) {

 if (n == 0)
return 1;

 else if (n == 1)
return 2;

else {
 long t = pow2n(n / 2);
 if (n % 2 == 0)

return t * t;
else

return 2 * t * t;
}

}

15

16

28

t = pow2n(4);
return t * t;

29

t = pow2n(4);
return 2 * t * t;

Video 3
Tower of Hanoi

Tower of Hanoi

18

Tower of Hanoi

• Three pegs and a tower of n disks
• Stacked in order of decreasing size
• Goal: Move all disks on one peg to another
• Rules:

– Only move one disk at a time
– No disk can be put on top of a smaller disk

• Demos at
https://toh-visualizer.netlify.app/
https://www.mathsisfun.com/games/towerofhanoi.html

19

https://toh-visualizer.netlify.app/
https://www.mathsisfun.com/games/towerofhanoi.html

Think Recursively

• Suppose I’m faced with moving a stack of 4
disks from A to C

• Pretend I can move 3 disks where ever I want
by magic
– Magic: move block of 3 disks from A to B (using C)
– Move 4th disk from A to C
– Magic: move block of 3 disks from B to C (using A)

• “Magic” == “Recursion”

20

Example: Tower of Hanoi
public class TowerOfHanoi {
 public static void moveDisks(int n, char from, char using, char to) {
 if (n == 1) {
 System.out.printf("move disk from peg %s to peg %s\n", from,
to);

} else {
moveDisks(n-1, from, to, using);
moveDisks(1, from, using, to);
moveDisks(n-1, using, from, to);

}
}

public static void main(String[] args) {
moveDisks(4, 'A', 'B', 'C');

}
}

21

22

moveDisks(4, 'A', 'B', 'C');

moveDisks(3, 'A', 'C', 'B');
moveDisks(1, 'A', 'B', 'C');
moveDisks(3, 'B', 'A', 'C');

Video 4
Recursion and Linked Lists

Linked List Reminder

• Outer class contains head and tail Nodes
• Private nested class Node:

– String value
– Node link

• When head == tail == null, list is empty
• Method add appends to end (tail) of list
• See next slide to “walk” the list in order

24

Linked List
public class LinkedList {

 private Node head;
 private Node tail;
 private int size;

 private class Node {
String value;
Node link;

}
//...
 public String[] toArray() { // convert list to array
 String[] array = new String[size];
 Node current = head;

int i = 0;
 while (current != null) { // iterate through the list
 array[i++] = current.value;
 current = current.link;
 }
 return array;
 } 25

26

Think Recursively

• A linked list is either
– empty (head is null), or
– a node with a link to a linked list

• Process the list recursively
– If head is null, done
– Else process head, then call recursively with

head.link

27

Basis Case

Recursive Case

toArray Using Recursive fillArray
public String[] toArray() {

 String[] array = new String[size];
 fillArray(array, head, 0);
 return array;
 }

 private void fillArray(String[] array, Node current, int i)
{
 if (current == null)

return;
 array[i++] = current.value;
 fillArray(array, current.link, i);
 }

28

Counting Nodes in a Linked List
public int count() { // public method

 return count(head);
 }

 private int count(Node current) { // internal helper routine
 if (current == null) // is this a “real” node?

return 0; // no, then length is 0
else // yes, +1 for current node

return 1 + count(current.link); // recurse on link
}

29

Video 1
Binary Search Trees

Trees

• Linked list Node is linear with one-to-one links
• Tree Node is hierarchical with one-to-many

links…
– Parent to children
– Boss to employees
– Directory to files

• Can be used to model hierarchically structured
data

• Allows efficient searching and sorting

31

Tree Example

32

Root node

Interior node

Leaf (child) node

Tree Terminology

• Root node: A node with no parents
• Leaf node: A node with no children
• Interior node: Neither of the above

33

Think Recursively

• A tree is either
– Empty (root is null), or
– A node with links to 0 or more trees

• Special case:
– Binary tree
– Each node references at most two other trees

34

Binary Search Tree

• A binary tree with a “key” at each node
• A binary search tree has three properties:

– Key in left child of root is smaller than root
– Key in right child of root is larger than root
– Each child is also a binary search tree

“On what slender threads do life and fortune
hang.” Alexandre Dumas, The Count of Monte
Cristo

35

Binary Search Tree Example

36
lowest in alphabetical order highest in alphabetical order

Searching a Binary Search Tree

• Problem: Is a value in the tree?
• Check root (basis case):

– if null, return false
– if equal, return true

• If value less than root
– Return check of left subtree

• If value greater than root
– Return check of right subtree

• Performance:
– “Divide and conquer” finds the value in log2 n comparisons
– Compare to linked list: linear search takes n comparisons

37

Adding to a Binary Search Tree

• Problem: Add a new value to a binary search
tree

• If tree is empty (basis case): add new Node
• If value in left subtree

– Recursively add value to left subtree

• If value in right subtree
– Recursively add value to right subtree

• Tricky bit: Use “proxy method” to handle
initially empty tree

38

Example: Tree (1)
public class Tree {
 private static class Node {

String value;
Node left = null;

 Node right = null;
 }

 private Node root = null;

 // proxy add
 public void add(String value) {

root = add(value, root);
}

39

Example: Tree (2)
// ... continued

private static Node add(String value, Node tree) {
 if (tree == null) { // basis case
 tree = new Node();

tree.value = value;
}
// left recursive case
else if (value.compareTo(tree.value) < 0)

tree.left = add(value, tree.left);
// right recursive case
else if (value.compareTo(tree.value) > 0)

tree.right = add(value, tree.right);
 return tree;
 }

40

Example: Tree (3)
// ... continued

 // proxy print
 public void print() {

print(root);
}

private static void print(Node tree) {
 if (tree != null) {
 print(tree.left);
 System.out.println(tree.value);
 print(tree.right);
 }
 }
}

41

Traversing a Tree

• Print method on previous slide:
– Visit left subtree
– Visit root
– Visit right subtree

• Called an “inorder traversal”
• Three orders:

– inorder: visit left, visit root, visit right
– preorder: visit root, visit left, visit right
– postorder: visit left, visit right, visit root

42

Video 2
Backtracking and Recursion

Recursion and Recursive Data
Structures

Recursion Examples

Another Use of Recursion

• Backtracking: Problem solving by trial and error
• Problem must be decomposable into a series of

steps
– Try step
– So far so good? Move on (recursively)
– Failure? Backtrack, undo step

• Each recursive instance “remembers” what step
was taken and how to undo it if things don’t work
out

45

Example: MazeSolver

• Finds a path through a maze by exhaustively
trying all possible routes

46

Maze Representation

• Use a plain-text file of rows and columns
• In initial maze, each character is…

– Space: an empty space (path) in the maze
– Non-space: a wall

• Starting and ending points are pre-defined

• Goal: Place * at locations in maze to form a
path

47

Example Maze File
+-+
 | | | | | | |
+-+ +-+-+-+-+ + +-+ + + +-+ + +-+-+ +-+ +
| | | | | | | | | | | |
+ + +-+ + + +-+-+ + + + + +-+ +-+ +-+ + +
| | | | | | | | | | | | | | | | |
+ + + + + + + + +-+ + + +-+-+-+ + + + + +
| | | | | | | | | | | | |
+-+-+ + + + + + +-+-+ +-+-+ +-+-+ +-+ +-+
| | | | | | | | | |
+ +-+-+ +-+-+-+-+ +-+-+ +-+-+ + +-+ +-+ +
| | | | | | | | |
+-+-+ +-+-+ + + + + +-+-+-+ + +-+-+-+ + +
| | | | | | | | | | | |
+-+ + + +-+-+-+-+-+-+ + + + + + +-+ + + +
| | | | | | | | | | | |
+ +-+ +-+ +-+ + +-+ + +-+ + + +-+ +-+-+ +
| | | | | | | | | | | |
+ +-+-+ +-+ + +-+-+-+ +-+-+-+ + +-+-+ + +
| | | | | |
+-+

48

start location
(1, 0)

end location
(rows-2, cols-1)

Solved Maze
+-+
****| | |***| |*******| |
+-+*+-+-+-+-+ + +-+ +*+*+-+ +*+-+-+*+-+ +
| |*****| | | |*|*| |*****|***| |
+ + +-+*+ + +-+-+ + +*+*+ +-+ +-+*+-+*+ +
| | | |*| | | | | |*|*| |*| |*| |
+ + + +*+ + + + +-+ +*+*+-+-+-+ +*+ +*+ +
| | |*| | | | |*|*****| |*| * |
+-+-+ +*+ + + + +-+-+*+-+-+*+-+-+*+-+*+-+
| | * | | |*****|*****|***|***|***|
+ +-+-+*+-+-+-+-+*+-+-+*+-+-+*+*+-+*+-+*+
| ***| |***|*| |*******|*****| *|
+-+-+*+-+-+ +*+*+*+ +-+-+-+ + +-+-+-+ +*+
| |*|*******|***| | | | | | |*|
+-+ +*+*+-+-+-+-+-+-+ + + + + + +-+ + +*+
| |*|*** | | | | | | | |*|
+ +-+*+-+*+-+ + +-+ + +-+ + + +-+ +-+-+*+
|*****|***| | | | | | | | |*|
+*+-+-+*+-+ + +-+-+-+ +-+-+-+ + +-+-+ +*+
|*******| | | | |**
+-+

49

start location
(1, 0)

end location
(rows-2, cols-1)

Solution Approach

• Read in the maze, store as a char[][] matrix
• Identify start and end locations (row, col)
• Call solve() method

50

The solve() Method

• Proxy method to get started
– Returns true if a solution exists
– Returns false if no solution exists

• If a solution exists, it is marked in the maze
array as a series of ‘*’ characters

• To do the work, it calls the recursive method
with the starting row and column:
 solve(startRow, startCol)

51

Video 3
Solving a Maze Recursively

The solve(row, col) Method

• Starts at location row, col in the maze
• Assumes…

– A series of ‘*’ are in the maze leading up to this
location

• Needs to check (the special cases)…
– Are we standing on a wall? Return false
– Are we standing on an existing path? Return false
– Are we at the end location? Return true

53

The solve(row, col) Method

• Once the special cases are done…
• Leave mark (‘*’) behind as we move

– Like “bread crumbs”
– Ensures that final path is identified
– Prevents us from looping back onto path

• If we reach a dead end…
– Remove mark (reset to ‘ ’)
– Return false

54

A Trick

• Since we are not in a physical maze…
– It is OK to move first and ask questions later
– If outside maze, on a wall, or on an existing path,

then return false

55

Solve: Failure Cases

• Moved outside the maze
• Standing on a wall
• Standing on an existing path location (looping)

• In all three cases: return failure to initiate
backtracking at the previous level

56

Solve: Basis Case

• Current location == end location: we’re done!
• Return true

57

Solve: Recursive Case

• Mark the current square as on the path
• Make calls to solve(…) on all adjacent

locations to see if we can get to the end
• If any of them returns true, return true to our

caller (success!)
• Else unmark the current square and return

false (failure!)

58

In the Maze

59

go left? go right?

g
o

u
p
?

g
o

d
o
w
n

?

You are here.

Example: MazeSolver

• Create simple maze
– Entrance
– Forked path, one dead-end, other working
– Exit

• Start at start, follow algorithm to dead-end
• Backtrack
• Continue recursion to exit

60

MazeSolver: solve Method
private boolean solve(int row, int col) {
 // handle special cases (out of bounds and walls)
 if (row < 0 || col < 0 || row >= rows || col >= cols || maze[row][col] != ' ')

return false;

// mark this location as on the path...
maze[row][col] = '*';

 // basis case: see if we're done...
 if (row == endRow && col == endCol)

return true;

 // recursive case: try surrounding spaces...
 if (solve(row-1, col) || solve(row+1, col) || solve(row, col-1) || solve(row, col+1))

return true;

 // no solution found from this location; backtrack and return failure...
maze[row][col] = ' ';
return false;

}
61

	CS18000: Problem Solving and Object-Oriented Programming
	Video 1�What is Recursion?
	�Recursion and Recursive Data Structures
	What is Recursion?
	Recursive Problem Solving
	Why Recursion Works
	Recursive Definitions
	Key Task When Programming Recursion
	Video 2�Recursion Examples
	How Recursion is Implemented
	Example: Factorial
	Slide Number 12
	Example: isPalindrome
	Slide Number 14
	Example: pow2n
	Slide Number 16
	Video 3�Tower of Hanoi
	Tower of Hanoi
	Tower of Hanoi
	Think Recursively
	Example: Tower of Hanoi
	Slide Number 22
	Video 4�Recursion and Linked Lists
	Linked List Reminder
	Linked List
	Slide Number 26
	Think Recursively
	toArray Using Recursive fillArray
	Counting Nodes in a Linked List
	Video 1�Binary Search Trees
	Trees
	Tree Example
	Tree Terminology
	Think Recursively
	Binary Search Tree
	Binary Search Tree Example
	Searching a Binary Search Tree
	Adding to a Binary Search Tree
	Example: Tree (1)
	Example: Tree (2)
	Example: Tree (3)
	Traversing a Tree
	Video 2�Backtracking and Recursion
	�Recursion and Recursive Data Structures
	Another Use of Recursion
	Example: MazeSolver
	Maze Representation
	Example Maze File
	Solved Maze
	Solution Approach
	The solve() Method
	Video 3�Solving a Maze Recursively
	The solve(row, col) Method
	The solve(row, col) Method
	A Trick
	Solve: Failure Cases
	Solve: Basis Case
	Solve: Recursive Case
	In the Maze
	Example: MazeSolver
	MazeSolver: solve Method

