
CS18000: Problem Solving and 
Object-Oriented Programming

Recursion



Video 1
What is Recursion?



Recursion and Recursive Data 
Structures

Recursion and Stacks



What is Recursion?

• A self reference
• Methods: 

– A method can call itself
– Example: Fibonacci method

• Data: 
– A data structure can reference itself
– Example: LinkedList Node class 

private class Node {
String value;
Node link;

}
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Recursive Problem Solving

• Sometimes…
– Easier to partially solve a problem
– Delegate the rest to someone else

• “Want me to compute Fibonacci(n)?”
• “OK...”  

– If n == 0, then “The answer is: 0” (easy!)
– If n == 1, then “The answer is: 1” (easy!)
– else (get help!)

• “Alice: What is Fibonacci(n-1)?”
• “Bob: What is Fibonacci(n-2)?”
• “The answer is: ” Alice’s answer + Bob’s answer
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Why Recursion Works

• The method does not always call itself
• The data structure does not always link to 

another copy of itself
• There’s always a “basis case” (or base case)

• Recursion works well for problems that can be 
split in this way: a basis case and a recursive 
case
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Recursive Definitions

• Fibonacci(n)
– If n == 0, then 0
– If n == 1, then 1
– else Fibonacci(n-1) + Fibonacci(n-2)

• Factorial(n)
– If n == 0, then 1
– else n * Factorial(n-1)

• 2n

– If n == 0, then 1
– If n == 1, then 2
– If n is even, then 2n/2 * 2n/2

– If n is odd, then 2 * 2(n-1)/2 * 2(n-1)/2
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Key Task When Programming 
Recursion

• Break the problem down into two pieces:
– Basis case: what can be done without a recursive 

call
– Recursive case: the same problem but “smaller”

• The parameter(s) to the recursive case must 
be “smaller” in some sense: closer to the basis 
case
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Video 2
Recursion Examples



How Recursion is Implemented

• Recall that…
– A stack is used to handle method calls
– When a method is called, parameters and local 

variables are “pushed” onto the “call stack”
• Each recursive method call has its own copy of 

parameters and local variables
• When a method returns, the previously 

executing method (“below it” on the stack) 
picks up where it left off
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Example: Factorial
public class Factorial {
 public static long factorial(long n) {
  if (n == 0)

return 1;
  else
   return n * factorial(n-1);
 }
 
 public static void main(String[] args) {
  for (int n = 0; n <= 20; n++)
   System.out.printf("%3d! = %d\n", n, factorial(n));
 }
}
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Example: isPalindrome
public static boolean isPalindrome(String s) {

if (s == null || s.length() <= 1)
   return true;

  char first = s.charAt(0);
  char last = s.charAt(s.length() - 1);
  if (first != last)
   return false;
  
  String middle = s.substring(1, s.length() - 1);
  return isPalindrome(middle);
 }
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Example: pow2n
public static long pow2n(long n) {

  if (n == 0)
return 1;

  else if (n == 1)
return 2;

else {
   long t = pow2n(n / 2);
   if (n % 2 == 0)

return t * t;
else

return 2 * t * t;
}

}
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t = pow2n(4);
return t * t;
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t = pow2n(4);
return 2 * t * t;



Video 3
Tower of Hanoi



Tower of Hanoi
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Tower of Hanoi

• Three pegs and a tower of n disks
• Stacked in order of decreasing size
• Goal: Move all disks on one peg to another
• Rules:

– Only move one disk at a time
– No disk can be put on top of a smaller disk

• Demos at 
https://toh-visualizer.netlify.app/
https://www.mathsisfun.com/games/towerofhanoi.html
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https://toh-visualizer.netlify.app/
https://www.mathsisfun.com/games/towerofhanoi.html


Think Recursively

• Suppose I’m faced with moving a stack of 4 
disks from A to C

• Pretend I can move 3 disks where ever I want 
by magic
– Magic: move block of 3 disks from A to B (using C)
– Move 4th disk from A to C
– Magic: move block of 3 disks from B to C (using A)

• “Magic” == “Recursion”
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Example: Tower of Hanoi
public class TowerOfHanoi {
 public static void moveDisks(int n, char from, char using, char to) {
  if (n == 1) {
   System.out.printf("move disk from peg %s to peg %s\n", from, 
to);

} else {
moveDisks(n-1, from, to, using);
moveDisks(1, from, using, to);
moveDisks(n-1, using, from, to);

}
}

public static void main(String[] args) {
moveDisks(4, 'A', 'B', 'C');

}
}

21



22

moveDisks(4, 'A', 'B', 'C');

moveDisks(3, 'A', 'C', 'B');
moveDisks(1, 'A', 'B', 'C');
moveDisks(3, 'B', 'A', 'C');



Video 4
Recursion and Linked Lists



Linked List Reminder

• Outer class contains head and tail Nodes
• Private nested class Node:

– String value
– Node link

• When head == tail == null, list is empty
• Method add appends to end (tail) of list
• See next slide to “walk” the list in order
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Linked List
public class LinkedList {

    private Node head;
    private Node tail;
    private int size;

    private class Node {
String value;
Node link;

}
//...
    public String[] toArray() {  // convert list to array
        String[] array = new String[size];
        Node current = head;

int i = 0;
        while (current != null) {  // iterate through the list
            array[i++] = current.value;
            current = current.link;
        }
        return array;
    } 25
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Think Recursively

• A linked list is either
– empty (head is null), or
– a node with a link to a linked list

• Process the list recursively
– If head is null, done
– Else process head, then call recursively with 

head.link
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Basis Case

Recursive Case



toArray Using Recursive fillArray
public String[] toArray() {

     String[] array = new String[size];
     fillArray(array, head, 0);
     return array;
    }
    
    private void fillArray(String[] array, Node current, int i) 
{
     if (current == null)

return;
     array[i++] = current.value;
     fillArray(array, current.link, i);
    }
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Counting Nodes in a Linked List
public int count() {                     // public method

        return count(head);
    }
    
    private int count(Node current) {        // internal helper routine
    if (current == null)                 // is this a “real” node?

return 0;                         // no, then length is 0
else // yes, +1 for current node

return 1 + count(current.link);  // recurse on link
}
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Video 1
Binary Search Trees



Trees

• Linked list Node is linear with one-to-one links
• Tree Node is hierarchical with one-to-many 

links…
– Parent to children
– Boss to employees
– Directory to files

• Can be used to model hierarchically structured 
data

• Allows efficient searching and sorting
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Tree Example
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Root node

Interior node

Leaf (child) node



Tree Terminology

• Root node: A node with no parents
• Leaf node: A node with no children
• Interior node: Neither of the above
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Think Recursively

• A tree is either
– Empty (root is null), or
– A node with links to 0 or more trees

• Special case:
– Binary tree
– Each node references at most two other trees
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Binary Search Tree

• A binary tree with a “key” at each node
• A binary search tree has three properties:

– Key in left child of root is smaller than root
– Key in right child of root is larger than root
– Each child is also a binary search tree

“On what slender threads do life and fortune 
hang.” Alexandre Dumas, The Count of Monte 
Cristo 

35



Binary Search Tree Example
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lowest in alphabetical order highest in alphabetical order



Searching a Binary Search Tree

• Problem: Is a value in the tree?
• Check root (basis case): 

– if null, return false
– if equal, return true

• If value less than root
– Return check of left subtree

• If value greater than root
– Return check of right subtree

• Performance:
– “Divide and conquer” finds the value in log2 n comparisons
– Compare to linked list: linear search takes n comparisons
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Adding to a Binary Search Tree

• Problem: Add a new value to a binary search 
tree

• If tree is empty (basis case): add new Node
• If value in left subtree

– Recursively add value to left subtree

• If value in right subtree
– Recursively add value to right subtree

• Tricky bit: Use “proxy method” to handle 
initially empty tree
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Example: Tree (1)
public class Tree {
    private static class Node {

String value;
Node left = null;

        Node right = null;
    }

    private Node root = null;

    // proxy add
    public void add(String value) {

root = add(value, root);
}

39



Example: Tree (2)
// ... continued

private static Node add(String value, Node tree) {
        if (tree == null) { // basis case
            tree = new Node();

tree.value = value;
}
// left recursive case
else if (value.compareTo(tree.value) < 0)

tree.left = add(value, tree.left);
// right recursive case
else if (value.compareTo(tree.value) > 0)

tree.right = add(value, tree.right);
        return tree;
    }
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Example: Tree (3)
// ... continued

    // proxy print
    public void print() {

print(root);
}

private static void print(Node tree) {
        if (tree != null) {
            print(tree.left);
            System.out.println(tree.value);
            print(tree.right);
        }
    }
}
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Traversing a Tree

• Print method on previous slide:
– Visit left subtree
– Visit root
– Visit right subtree

• Called an “inorder traversal”
• Three orders:

– inorder: visit left, visit root, visit right
– preorder: visit root, visit left, visit right
– postorder: visit left, visit right, visit root
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Video 2
Backtracking and Recursion



Recursion and Recursive Data 
Structures

Recursion Examples



Another Use of Recursion

• Backtracking: Problem solving by trial and error
• Problem must be decomposable into a series of 

steps
– Try step
– So far so good?  Move on (recursively)
– Failure?  Backtrack, undo step

• Each recursive instance “remembers” what step 
was taken and how to undo it if things don’t work 
out
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Example: MazeSolver

• Finds a path through a maze by exhaustively 
trying all possible routes
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Maze Representation

• Use a plain-text file of rows and columns
• In initial maze, each character is…

– Space: an empty space (path) in the maze
– Non-space: a wall

• Starting and ending points are pre-defined

• Goal: Place * at locations in maze to form a 
path
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Example Maze File
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |         |     |   |   |       |   |
+-+ +-+-+-+-+ + +-+ + + +-+ + +-+-+ +-+ +
| |     | |     |   | | |   |     |   | |
+ + +-+ + + +-+-+ + + + + +-+ +-+ +-+ + +
| | | | | | | |   | | | |       | | | | |
+ + + + + + + + +-+ + + +-+-+-+ + + + + +
|   | | |   | | |   | |     |   | |     |
+-+-+ + + + + + +-+-+ +-+-+ +-+-+ +-+ +-+
|   |     | |   |     |     |   |   |   |
+ +-+-+ +-+-+-+-+ +-+-+ +-+-+ + +-+ +-+ +
|       |   |   | |   |       |     |   |
+-+-+ +-+-+ + + + + +-+-+-+ + +-+-+-+ + +
|   | |       |   |   |   | | |     | | |
+-+ + + +-+-+-+-+-+-+ + + + + + +-+ + + +
|   | |       |   |     | | | |   |   | |
+ +-+ +-+ +-+ + +-+ + +-+ + + +-+ +-+-+ +
|     |   |   |     | |   | | |   |   | |
+ +-+-+ +-+ + +-+-+-+ +-+-+-+ + +-+-+ + +
|       |   |       |         |       |  
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
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start location
(1, 0)

end location
(rows-2, cols-1)



Solved Maze
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
****|         |     |***|   |*******|   |
+-+*+-+-+-+-+ + +-+ +*+*+-+ +*+-+-+*+-+ +
| |*****| |     |   |*|*|   |*****|***| |
+ + +-+*+ + +-+-+ + +*+*+ +-+ +-+*+-+*+ +
| | | |*| | | |   | |*|*|       |*| |*| |
+ + + +*+ + + + +-+ +*+*+-+-+-+ +*+ +*+ +
|   | |*|   | | |   |*|*****|   |*|  *  |
+-+-+ +*+ + + + +-+-+*+-+-+*+-+-+*+-+*+-+
|   |  *  | |   |*****|*****|***|***|***|
+ +-+-+*+-+-+-+-+*+-+-+*+-+-+*+*+-+*+-+*+
|    ***|   |***|*|   |*******|*****|  *|
+-+-+*+-+-+ +*+*+*+ +-+-+-+ + +-+-+-+ +*+
|   |*|*******|***|   |   | | |     | |*|
+-+ +*+*+-+-+-+-+-+-+ + + + + + +-+ + +*+
|   |*|***    |   |     | | | |   |   |*|
+ +-+*+-+*+-+ + +-+ + +-+ + + +-+ +-+-+*+
|*****|***|   |     | |   | | |   |   |*|
+*+-+-+*+-+ + +-+-+-+ +-+-+-+ + +-+-+ +*+
|*******|   |       |         |       |**
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

49

start location
(1, 0)

end location
(rows-2, cols-1)



Solution Approach

• Read in the maze, store as a char[][] matrix
• Identify start and end locations (row, col)
• Call solve() method
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The solve() Method

• Proxy method to get started
– Returns true if a solution exists
– Returns false if no solution exists

• If a solution exists, it is marked in the maze 
array as a series of ‘*’ characters

• To do the work, it calls the recursive method 
with the starting row and column:
 solve(startRow, startCol)
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Video 3
Solving a Maze Recursively



The solve(row, col) Method

• Starts at location row, col in the maze
• Assumes…

– A series of ‘*’ are in the maze leading up to this 
location

• Needs to check (the special cases)…
– Are we standing on a wall?  Return false
– Are we standing on an existing path?  Return false
– Are we at the end location?  Return true
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The solve(row, col) Method

• Once the special cases are done…
• Leave mark (‘*’) behind as we move

– Like “bread crumbs”
– Ensures that final path is identified
– Prevents us from looping back onto path

• If we reach a dead end…
– Remove mark (reset to ‘  ’)
– Return false
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A Trick

• Since we are not in a physical maze…
– It is OK to move first and ask questions later
– If outside maze, on a wall, or on an existing path, 

then return false
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Solve: Failure Cases

• Moved outside the maze
• Standing on a wall
• Standing on an existing path location (looping)

• In all three cases: return failure to initiate 
backtracking at the previous level
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Solve: Basis Case

• Current location == end location: we’re done!
• Return true
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Solve: Recursive Case

• Mark the current square as on the path
• Make calls to solve(…) on all adjacent 

locations to see if we can get to the end
• If any of them returns true, return true to our 

caller (success!)
• Else unmark the current square and return 

false (failure!)
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In the Maze
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Example: MazeSolver

• Create simple maze
– Entrance
– Forked path, one dead-end, other working
– Exit

• Start at start, follow algorithm to dead-end
• Backtrack
• Continue recursion to exit
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MazeSolver: solve Method
private boolean solve(int row, int col) {
    // handle special cases (out of bounds and walls)
    if (row < 0 || col < 0 || row >= rows || col >= cols || maze[row][col] != ' ')

return false;

// mark this location as on the path...
maze[row][col] = '*';

    // basis case: see if we're done...
    if (row == endRow && col == endCol)

return true;

    // recursive case: try surrounding spaces...
    if (solve(row-1, col) || solve(row+1, col) || solve(row, col-1) || solve(row, col+1))

return true;

    // no solution found from this location; backtrack and return failure...
maze[row][col] = ' ';
return false;

}
61


	CS18000: Problem Solving and Object-Oriented Programming
	Video 1�What is Recursion?
	�Recursion and Recursive Data Structures
	What is Recursion?
	Recursive Problem Solving
	Why Recursion Works
	Recursive Definitions
	Key Task When Programming Recursion
	Video 2�Recursion Examples
	How Recursion is Implemented
	Example: Factorial
	Slide Number 12
	Example: isPalindrome
	Slide Number 14
	Example: pow2n
	Slide Number 16
	Video 3�Tower of Hanoi
	Tower of Hanoi
	Tower of Hanoi
	Think Recursively
	Example: Tower of Hanoi
	Slide Number 22
	Video 4�Recursion and Linked Lists
	Linked List Reminder
	Linked List
	Slide Number 26
	Think Recursively
	toArray Using Recursive fillArray
	Counting Nodes in a Linked List
	Video 1�Binary Search Trees
	Trees
	Tree Example
	Tree Terminology
	Think Recursively
	Binary Search Tree
	Binary Search Tree Example
	Searching a Binary Search Tree
	Adding to a Binary Search Tree
	Example: Tree (1)
	Example: Tree (2)
	Example: Tree (3)
	Traversing a Tree
	Video 2�Backtracking and Recursion
	�Recursion and Recursive Data Structures
	Another Use of Recursion
	Example: MazeSolver
	Maze Representation
	Example Maze File
	Solved Maze
	Solution Approach
	The solve() Method
	Video 3�Solving a Maze Recursively
	The solve(row, col) Method
	The solve(row, col) Method
	A Trick
	Solve: Failure Cases
	Solve: Basis Case
	Solve: Recursive Case
	In the Maze
	Example: MazeSolver
	MazeSolver: solve Method

