CS18000: Problem Solving and
Object-Oriented Programming

Polymorphism

Video 1
Polymorphism and Abstract
Classes

Polymorphism

Abstract Classes
Polymorphism
Dynamic Binding

Polymorphism

“Many forms”

Animals can take on many forms ... yet exhibit
similar behaviors.

Java allows a superclass variable to contain a
reference to a subclass object

The compiler chooses the subclass
implementation of any overridden methods

account.withdraw(amount); could be savings
acct, checking acct, money market acct,

Polymorphism

LACc OW\:\' . 3@‘\‘ In"rerés-\{) ;

lC\«ec\(iné) Savngs \ \

Account account = new Student (..);

s’\‘\/aﬁfd’ :
se—\' Lveres+() ;

account.withdraw(50.00);

interest = account.getInterest();

Code Reuse

e Suppose you’re modeling animals
— Dog
— Cat
— Fish
— Horse

* Lots of redundancy, so you create a superclass
— Animal
— All other subclasses extend Animal
— Q: But what does “new Animal()” mean?
— A: Nothing--don’t want to create a “generic” animal

Abstract Classes

The Java solution for Animal: an abstract class

Declaring a class abstract means that it cannot
be instantiated

Some methods may be unimplemented (just
like an interface)

But an abstract class may also include some
implemented methods for default behavior

Animal

public abstract class Animal {
abstract void speak();

public static void main(String[] args) {
Animal[] animals = new Animal[2];

animals|[0]
animals[1]

new Cat();
new Dog();

for (int i = @; i < animals.length; i++)
animals[i].speak();

Cat and Dog

public class Cat extends Animal {
void speak() {
System.out.printf("Meow\n");

public class Dog extends Animal {
void speak() {
System.out.printf(“Bark\n");

Video 2
Dynamic Binding and Abstract
Methods

Dynamic Binding

e Methods are selected at runtime based on the
class of the object referenced, not the class of
the variable that holds the object reference

e Example
Animal[] animals = new Animal[100];
animals[i].speak();

e |f animals[i]is a Dog, calls the speak()
method in Dog, even though the variable is of

type Animal

Why polymorphism?

Allows generic treatment of objects

An array of Animals
— Some are Dogs
— Some are Cats

— Some are new animal classes defined after the superclass
code is written

Programmer must be disciplined: the overridden
methods should implement “consistent” or “expected”
behavior

Example: In Java, all GUI widgets are a subclass of
Component; allows uniform treatment by GUI code

Reminder: Subclass Object

Contains its fields as well as all the fields defined

in its superclasses..

name

name

Il

Dog object

J \

J \

= Fields defined in Object

= Fields defined in Animal

.. Fields defined in Dog

13

Revised: Dog

public class Dog extends Animal {
private String name;

public Dog(String name) {
super(name);

this.name = super.getName() + " Barker";

public String getName() {
return name;

void speak() {
System.out.printf("Bark\n");

Revised: Animal

public abstract class Animal {
private String name;

public Animal(String name) {
this.name = name;
}
public String getName() {
return name;

abstract void speak();

public static void main(String[] args) {
Animal[] animals = new Animal[2];
animals[@] = new Cat("Garfield");
animals[1] = new Dog("Snoopy");

for (int i = @; i < animals.length; i++)
animals[i].speak();

Dog d = new Dog("Marmaduke");
System.out.println(d.getName());
Animal a = d;
System.out.println(a.getName());

Abstract Methods

e Methods may be declared abstract
— Provide only the header (no body)
— Class must then be declared abstract

e Methods in an interface are implicitly declared
abstract

e When subclassing an abstract class
— Generally provide method bodies for abstract
methods

— If abstract methods remain, then subclass is still
abstract and must be declared so

Example: Abstract Methods

abstract public class AbstractParent {
abstract void doOne();
abstract void doTwo();
}
abstract class AbstractChild extends AbstractParent {
void doOne() {
System.out.println("in AbstractChild");

}
class ConcreteGrandChild extends AbstractChild {

void doTwo() {
System.out.println("in ConcreteGrandChild");

}
public static void main(String[] args) {

ConcreteGrandChild cc = new ConcreteGrandChild();
cc.doOne();
cc.doTwo();

	CS18000: Problem Solving and Object-Oriented Programming
	Video 1�Polymorphism and Abstract Classes
	�Polymorphism
	Polymorphism
	Polymorphism
	Code Reuse
	Abstract Classes
	Animal
	Cat and Dog
	Video 2�Dynamic Binding and Abstract Methods
	Dynamic Binding
	Why polymorphism?
	Reminder: Subclass Object
	Revised: Dog
	Revised: Animal
	Abstract Methods
	Example: Abstract Methods

