
CS18000: Problem Solving and 
Object-Oriented Programming

Polymorphism



Video 1
Polymorphism and Abstract 

Classes



Polymorphism

Abstract Classes
Polymorphism

Dynamic Binding



Polymorphism

• “Many forms”
• Animals can take on many forms … yet exhibit 

similar behaviors.
• Java allows a superclass variable to contain a 

reference to a subclass object
• The compiler chooses the subclass 

implementation of any overridden methods
• account.withdraw(amount); could be savings 

acct, checking acct, money market acct, ….

4



Polymorphism

5

Account account = new Student (…);

account.withdraw(50.00);

interest = account.getInterest();



Code Reuse

• Suppose you’re modeling animals
– Dog
– Cat
– Fish
– Horse
– …

• Lots of redundancy, so you create a superclass
– Animal
– All other subclasses extend Animal
– Q: But what does “new Animal()” mean?
– A: Nothing--don’t want to create a “generic” animal

6



Abstract Classes

• The Java solution for Animal: an abstract class
• Declaring a class abstract means that it cannot 

be instantiated
• Some methods may be unimplemented (just 

like an interface)
• But an abstract class may also include some 

implemented methods for default behavior

7



Animal
public abstract class Animal {

abstract void speak();

public static void main(String[] args) {
Animal[] animals = new Animal[2];

animals[0] = new Cat();
animals[1] = new Dog();

for (int i = 0; i < animals.length; i++)
animals[i].speak();

}
}

8



Cat and Dog
public class Cat extends Animal {

void speak() {
System.out.printf("Meow\n");

}
}

public class Dog extends Animal {
void speak() {

System.out.printf(“Bark\n");
}

}

9



Video 2
Dynamic Binding and Abstract 

Methods



Dynamic Binding

• Methods are selected at runtime based on the 
class of the object referenced, not the class of 
the variable that holds the object reference

• Example
Animal[] animals = new Animal[100];
animals[i].speak();

• If animals[i] is a Dog,calls the speak() 
method in Dog, even though the variable is of 
type Animal

11



Why polymorphism?

• Allows generic treatment of objects
• An array of Animals

– Some are Dogs
– Some are Cats
– Some are new animal classes defined after the superclass 

code is written
• Programmer must be disciplined: the overridden 

methods should implement “consistent” or “expected” 
behavior

• Example: In Java, all GUI widgets are a subclass of 
Component; allows uniform treatment by GUI code

12



Reminder: Subclass Object

Contains its fields as well as all the fields defined 
in its superclasses…

13

name

…

name

…

Dog object

Fields defined in Animal

Fields defined in Dog

Fields defined in Object



Revised: Dog
public class Dog extends Animal {

private String name;

public Dog(String name) {
super(name);
this.name = super.getName() + " Barker";

}

public String getName() {
return name;

}

void speak() {
System.out.printf("Bark\n");

}
}

14



Revised: Animal
public abstract class Animal {

private String name;

public Animal(String name) {
this.name = name;

}
public String getName() {

return name;
}

abstract void speak();

public static void main(String[] args) {
Animal[] animals = new Animal[2];
animals[0] = new Cat("Garfield");
animals[1] = new Dog("Snoopy");

for (int i = 0; i < animals.length; i++)
animals[i].speak();

Dog d = new Dog("Marmaduke");
System.out.println(d.getName());
Animal a = d;
System.out.println(a.getName());

}
}

15



Abstract Methods

• Methods may be declared abstract
– Provide only the header (no body)
– Class must then be declared abstract

• Methods in an interface are implicitly declared 
abstract

• When subclassing an abstract class
– Generally provide method bodies for abstract 

methods
– If abstract methods remain, then subclass is still 

abstract and must be declared so

16



Example: Abstract Methods
abstract public class AbstractParent {

abstract void doOne();
abstract void doTwo();

}
abstract class AbstractChild extends AbstractParent {

void doOne() {
System.out.println("in AbstractChild");

}
}
class ConcreteGrandChild extends AbstractChild {

void doTwo() {
System.out.println("in ConcreteGrandChild");

}
}
public static void main(String[] args) {

ConcreteGrandChild cc = new ConcreteGrandChild();
cc.doOne();
cc.doTwo();

}

17


	CS18000: Problem Solving and Object-Oriented Programming
	Video 1�Polymorphism and Abstract Classes
	�Polymorphism
	Polymorphism
	Polymorphism
	Code Reuse
	Abstract Classes
	Animal
	Cat and Dog
	Video 2�Dynamic Binding and Abstract Methods
	Dynamic Binding
	Why polymorphism?
	Reminder: Subclass Object
	Revised: Dog
	Revised: Animal
	Abstract Methods
	Example: Abstract Methods

