
CS18000: Problem Solving and
Object-Oriented Programming

Concurrency

(revised 10/16/23)

Video 1
History of Concurrency, Java

Threads

Concurrent Programming and
Synchronization

Threads

Time Slicing

• In early days -- one program ran at a time
• Along came windowed operating systems
• Giving illusion of multiple programs running at a

time
• Email tool, web browser, text editor
• 1 second = 1000 milliseconds
• Time slicing -- running each program a few

hundred milliseconds
• Humans are so slow that it appeared that all

programs were running simultaneously

4

Mobile Devices

• Illusion worked well as programs became
more and more complex

• Simply make the CPU run faster
• Along came mobile devices -- laptops and

phones
• Run on batteries
• As the CPU runs faster, battery runs down

quicker and gets very hot

5

Multiple Cores
• How about putting 2 or more CPUs (cores) on same

chip?
• If run 2 cores at half speed, same as 1 core at full speed
• Slower cores consume less battery and generate less

heat
• Now most laptops and phones have 4 or more cores
• If you have 4 apps running, they may actually be

running simultaneously
• But, what if you have more than 4
• Time slicing is alive and well -- some apps are in a

queue waiting to get a core

6

Threads

• Multiple cores can even be used to speed up
one program

• A program can have more than one part
(thread) running simultaneously

• What if a database is spread over 3 files?
• Run 3 threads on 3 cores ... each looking for

the same item
• Program runs (approximately) 3 times faster

7

Sequential vs. Concurrent

• Sequential:
– A single “thread of execution” weaves its way

through your program
– A single PC (“program counter”) identifies the

current instruction being executed

• Concurrent:
– Multiple “threads of execution” are running

simultaneously through your program
– Multiple PCs are active, one for each thread

8

Java Threads

• Thread class with run() method
• import java.lang.*;
• Allows creation and manipulation of threads

– Thread t = new Thread();
• Three important methods:

– t.start(): start the thread referenced by t
– t.join(): “join with” (wait for) the running thread t
– t.run(): called by start() in a different thread

• Note: Your code does not call run() directly;
instead, the start() method calls run() as part of
the new thread sequence

9

Example: MainThread
public class MainThread {
 public static void main(String[] args) {
 Thread t = Thread.currentThread();
 System.out.printf("main thread = %s\n", t);

 System.out.printf("going to sleep...\n");
 try {
 Thread.sleep(5000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 System.out.printf("ah, that was nice\n");

 System.out.printf("letting someone else run\n");
 Thread.yield();
 System.out.printf("back\n");
 }
}

10

How to Create Threads

• Create a class that implements the Runnable
interface

public class MyTask implements Runnable {
 public void run() { … }
}
Thread t = new Thread(new MyTask());

11

Example: MyTask
public class MyTask implements Runnable {
 public static void main(String[] args) {
 MyTask m = new MyTask();
 Thread t = new Thread(m);

 t.start();
 }

 public void run() {
 System.out.printf("now in %s\n", Thread.currentThread());
 }
}

12

Video 2
Task and Domain Decomposition

Concurrent Programming and
Synchronization

Runnables

Using Concurrent Processing

• How do you break down a large problem into
pieces?

• Need to decompose the problem into pieces
• Two approaches to decomposition

– By the tasks to be done
– By the data to be processed

15

Task Decomposition

• Split task into multiple subtasks
• Each subtask runs different code
• Each subtask runs on its own core (processor)
• Primary benefit: responsiveness

– GUI is one task
– Background computation a different task
– GUI has its own core, so is always responsive

16

Domain Decomposition

• Domain:
– Input examined by the problem

• Divide domain into pieces (subdomains)
• Each subtask runs the

– same code but
– on different input

• Each subdomain is given to a task running on a
different core

• Primary benefit: raw speed
17

Examples: Task Decomposition

• Updating the screen of a video game
– One task processes player moves
– One task updates the display
– Two tasks communicate as necessary

• Can a student register for a class?
– One task determines if student has pre-reqs
– One task decides if student has class at same time
– One task determines if a seat is available in class
– Combine results when each task is done

18

Task Decomposition Example:
Video Game Updates

19

Examples: Domain Decomposition

• Factoring a large number
– Trial divide up to square root of number
– Assign blocks of trial divisors to separate tasks
– First task to divide with 0 remainder stops process

• Finding words in a word search puzzle
– Divide word list into subsets
– Assign each subset to a separate task
– Tasks search the puzzle grid, recording hits

20

Domain Decomposition Example:
Matrix Multiplication

21

Using domain decomposition to compute the matrix product A x B.

The top half is computed on Core 1 and the bottom half on Core 2.

Task Decomposition
public class Model implements Runnable {
 // This run method keeps track of where the characters are, what
 // direction they are moving and at what speed
 public void run() {…}
}

public class View implements Runnable {
 // This run method updates the GUI showing where each character is
 // right now
 public void run() {…}
}

22

Task Decomposition
public class Game {
 public static void main(String[] args) {
 // Thread data keeps track of where the characters are, what direction they
 // are moving and at what speed
 Thread data = new Thread(new Model (…));
 // Thread gui updates the GUI showing each character
 Thread gui = new Thread(new View (…));

 // Start the data thread. It will receive information from the GUI about use
 // of controls, mouse clicks, etc.
 data.start();
 // Start the gui thread. It will receive information from Model class methods
 // about where the characters are, what direction they are moving and at what
 // speed
 gui.start();
 …
 }
}

23

Video 1
Synchronization Using join()

Concurrent Programming and
Synchronization

Synchronization

Unpredictability in Thread Execution

• Thread execution may be interrupted
– “Time slicing” of threads (and processes) prevents

one thread from “hogging” the CPU
– Higher priority activities may interrupt the thread:

e.g., I/O
• Multiple threads do not always proceed at the

same rate
• Coordination of multiple threads a challenge
• Java provides low-level and high-level tools to

deal with synchronization of threads
26

Example: Interleave (1)
public class Interleave implements Runnable {
 private char c;

 public Interleave(char c) {
 this.c = c;
 }

 public void run() {
 for (int i = 0; i < 100; i++) {
 System.out.printf("%c", c);
 for (int j = 0; j < 1000; j++)
 Math.hypot(i, j);
 }
 System.out.printf("%c", Character.toUpperCase(c));
 }

// ... continued on next slide ...

27

Example: Interleave (2)
// ... continued from previous slide ...

 public static void main(String[] args) {
 while (true) {
 Thread t1 = new Thread(new Interleave('a'));
 Thread t2 = new Thread(new Interleave('b'));
 t1.start();
 t2.start();

 try {
 t1.join();
 t2.join();
 } catch (InterruptedException e) { …. }
 System.out.println();
 }
 }
}

28

Join: Wait for a Thread to Finish

• A simple kind of synchronization
• For Thread t:

t.join();
• Blocks the “current thread”—the one that called

t.join()—until Thread t completes (returns from
run())

• join() may throw an InterruptedException, so
generally is in try-catch clause

29

Join using Try-Catch Clause

try {
 t.join();
} catch (InterruptedException e) {
 e.printStackTrace(); // example
};

30

Search for a Student using Threads
public class FindStudent implements Runnable {
 private static Student stu = null; // stu will be returned
 private static boolean found = false; // haven’t found stu yet
 private static int student; // who we are looking for
 private Fileserver fileserver; // where to look
 private Student maybe = null; // maybe this is the one

 public FindStudent (Fileserver f) {fileserver=f;};

 public Student search (int student) throws
 StudentNotFoundException {
 this.student = student;
 Thread t1 = new Thread (new FindStudent (fileserver1));
 Thread t2 = new Thread (new FindStudent (fileserver2));
 Thread t3 = new Thread (new FindStudent (fileserver3));

31

32

Search for a Student using Threads
t1.start();

 t2.start();
 t3.start();
 try {
 t1.join();
 t2.join();
 t3.join();
 } catch (InterruptedException e) { …. }

 if (found)
 return stu;
 else
 throw new StudentNotFoundException
 (Integer.toString(student));
 }

33

Search for a Student using Threads
public void run() {

 while (more to read on fileserver) {
 if (found) return;
 // read the next Student object, maybe points to it
 …
 if (maybe.getID() == student) {
 stu = maybe;
 found = true;
 }
 }

34

Video 2
Race Conditions

36

Synchronization Problem: Race
Condition

• As threads “race” through execution, their
instructions are interleaved at the nanosecond
level
– Byte codes within a thread always executed in

relative order, as expected
– Byte codes between threads not executed in

predictable absolute order

• Causes problems when accessing and
updating shared data

37

Example: RaceCondition (1)
public class RaceCondition implements Runnable {
 private static int counter;

 public static void main(String[] args) {
 counter = 0;

 Thread t1 = new Thread(new RaceCondition());
 Thread t2 = new Thread(new RaceCondition());

 t1.start();
 t2.start();

 try {
 t1.join();
 t2.join();
 } catch (InterruptedException e) { e.printStackTrace(); }

 System.out.printf("counter = %d\n", counter);
 }
 // ... run() method on next slide ...
}

38

Example: RaceCondition (2)
public void run() {
 for (int i = 0; i < 10000; i++) {
 counter++;
 }
}

39

Two Threads Updating a Counter

• Thread 1
int t1 = counter;
t1 = t1 + 1;
counter = t1;

• Thread 2
int t2 = counter;
t2 = t2 + 1;
counter = t2;

40

41

42

Solution: Synchronize Threads

• Java keyword “synchronized”
• Allows two or more threads to use a common

object to avoid race conditions
• Syntax:

synchronized (object) {
 statements; // modify shared data here
}

• Among all threads synchronizing using the same
object, only one thread can be “inside” the
block of statements at a time 43

Example: NoRaceCondition (1)
public class NoRaceCondition implements Runnable {
 private static int counter = 0;
 private static Object gateKeeper = new Object();

 public static void main(String[] args) {
 Thread t1 = new Thread(new NoRaceCondition());
 Thread t2 = new Thread(new NoRaceCondition());
 t1.start();
 t2.start();
 try {
 t1.join();
 t2.join();
 } catch (InterruptedException e) { e.printStackTrace(); }
 System.out.printf("counter = %d\n", counter);
 }

 public void run() {
 for (int i = 0; i < 10000; i++) {
 synchronized (gateKeeper) { counter++; }
 }
 }
}

44

Shared Memory Architecture

• Two paradigms for supporting concurrent or
parallel processing

• Message Passing: processes
– Messages sent between separate processes
– Generally, one process per program
– May run on different physical computers

• Shared Memory: threads
– Single program
– All threads share the same memory space
– This approach is what we are using in Java

45

Thread States

• A Java thread goes through several states in its
lifetime:
– New thread: created but not yet started
– Runnable: started and available to be run
– Not Runnable: sleeping, waiting for i/o, etc.
– Terminated: returned from the run() method

• t.sleep(n) puts the current thread to sleep for n
milliseconds; allows other threads to run

• t.yield() “gives up” the CPU, letting another
thread run

46

Thread States

47

t1.start();
 t2.start();
 t3.start();
 t4.start();
 t5.start();

 try {
 t1.join();
 t2.join();
 t3.join();
 t4.join();
 t5.join();
 } catch (InterruptedException e) { …. }

48

	CS18000: Problem Solving and Object-Oriented Programming
	Video 1�History of Concurrency, Java Threads
	�Concurrent Programming and Synchronization
	Time Slicing
	Mobile Devices
	Multiple Cores
	Threads
	Sequential vs. Concurrent
	Java Threads
	Example: MainThread
	How to Create Threads
	Example: MyTask
	Video 2�Task and Domain Decomposition
	�Concurrent Programming and Synchronization
	Using Concurrent Processing
	Task Decomposition
	Domain Decomposition
	Examples: Task Decomposition
	Task Decomposition Example:�Video Game Updates
	Examples: Domain Decomposition
	Domain Decomposition Example: Matrix Multiplication
	Task Decomposition
	Task Decomposition
	Video 1�Synchronization Using join()
	�Concurrent Programming and Synchronization
	Unpredictability in Thread Execution
	Example: Interleave (1)
	Example: Interleave (2)
	Join: Wait for a Thread to Finish
	Join using Try-Catch Clause
	Search for a Student using Threads
	Slide Number 32
	Search for a Student using Threads
	Search for a Student using Threads
	Video 2�Race Conditions
	Slide Number 36
	Synchronization Problem: Race Condition
	Example: RaceCondition (1)
	Example: RaceCondition (2)
	Two Threads Updating a Counter
	Slide Number 41
	Slide Number 42
	Solution: Synchronize Threads
	Example: NoRaceCondition (1)
	Shared Memory Architecture
	Thread States
	Thread States
	Slide Number 48

