CS18000: Problem Solving and
Object-Oriented Programming

Concurrency

(revised 10/16/23)

Video 1
History of Concurrency, Java
Threads

Concurrent Programming and
Synchronization

Time Slicing

In early days -- one program ran at a time

Along came windowed operating systems
Giving illusion of multiple programs running at a
time

Email tool, web browser, text editor

1 second = 1000 milliseconds

Time slicing -- running each program a few
hundred milliseconds

Humans are so slow that it appeared that all
orograms were running simultaneously

Mobile Devices

lllusion worked well as programs became
more and more complex

Simply make the CPU run faster

Along came mobile devices -- laptops and
phones

Run on batteries

As the CPU runs faster, battery runs down
quicker and gets very hot

Multiple Cores

How about putting 2 or more CPUs (cores) on same
chip?
If run 2 cores at half speed, same as 1 core at full speed

Slower cores consume less battery and generate less
heat

Now most laptops and phones have 4 or more cores

If you have 4 apps running, they may actually be
running simultaneously

But, what if you have more than 4

Time slicing is alive and well -- some apps are in a
gueue waiting to get a core

Threads

Multiple cores can even be used to speed up
one program

A program can have more than one part
(thread) running simultaneously

What if a database is spread over 3 files?

Run 3 threads on 3 cores ... each looking for
the same item

Program runs (approximately) 3 times faster

Sequential vs. Concurrent

e Sequential:

— A single “thread of execution” weaves its way
through your program

— A single PC (“program counter”) identifies the
current instruction being executed

e Concurrent:

— Multiple “threads of execution” are running
simultaneously through your program

— Multiple PCs are active, one for each thread

Java Threads

Thread class with run() method

import java.lang.*;

Allows creation and manipulation of threads
— Thread t = new Thread();

Three important methods:

— t.start(): start the thread referenced by t

— t.join(): “join with” (wait for) the running thread t
— t.run(): called by start() in a different thread
Note: Your code does not call run() directly;

instead, the start() method calls run() as part of
the new thread sequence

Example: MainThread

public class MainThread {
public static void main(String[] args) {
Thread t = Thread.currentThread();
System.out.printf("main thread = %s\n", t);

System.out.printf("going to sleep...\n");
try {
Thread.sleep(5000);
} catch (InterruptedException e) {
e.printStackTrace();
}

System.out.printf("ah, that was nice\n");

System.out.printf("letting someone else run\n");
Thread.yield();
System.out.printf("back\n");

How to Create Threads

* Create a class that implements the Runnable

interface

public class MyTask implements Runnable {
public void run() { .. }

}
Thread t = new Thread(new MyTask());

Example: MyTask

public class MyTask implements Runnable {
public static void main(String[] args) {
MyTask m = new MyTask();
Thread t = new Thread(m);

t.start();

public void run() {

System.out.printf("now in %s\n", Thread.currentThread());

Video 2
Task and Domain Decomposition

Concurrent Programming and
Synchronization

Using Concurrent Processing

* How do you break down a large problem into
pieces?

* Need to decompose the problem into pieces

* Two approaches to decomposition
— By the tasks to be done
— By the data to be processed

Task Decomposition

Split task into multiple subtasks
Each subtask runs different code
Each subtask runs on its own core (processor)
Primary benefit: responsiveness

— GUI is one task
— Background computation a different task

— GUI has its own core, so is always responsive

Domain Decomposition

Domain:
— Input examined by the problem

Divide domain into pieces (subdomains)
Each subtask runs the

— same code but
— on different input

Each subdomain is given to a task running on a
different core

Primary benefit: raw speed

Examples: Task Decomposition

* Updating the screen of a video game
— One task processes player moves
— One task updates the display
— Two tasks communicate as necessary

e Can a student register for a class?
— One task determines if student has pre-reqs
— One task decides if student has class at same time
— One task determines if a seat is available in class
— Combine results when each task is done

Task Decomposition Example

Video Game Updates

&
€

I
I
I
_ Eg
[I AT o
1 N o 3
()]
= &
(S 3
)
L) __________g
e e e e
| ¢« (O
T)
I ¢ ©
I 'O
| e}
L 2 "m
I Y
i (V)
_ £ 2 g g o
a o
I < s §) 0 9 3 ~Cw.m
" o = £ 2 a
| o
I
I
I
—
Lo T g
o
It W S5
(S o
)
| o o o L L o L L L L L L L L L L ____o________
T
I
I
I
_ A4
I
! £ 2 § g g Eg
& & &
| <s§ ¥ 0 g S Y U3 O 8¢
| > = ga o3
I
I
I
—
LW T g
&
=) W5
I O o
)

Examples: Domain Decomposition

* Factoring a large number
— Trial divide up to square root of number
— Assign blocks of trial divisors to separate tasks
— First task to divide with O remainder stops process

* Finding words in a word search puzzle
— Divide word list into subsets

— Assign each subset to a separate task
— Tasks search the puzzle grid, recording hits

Domain Decomposition Example:
Matrix Multiplication

A B C
I__C5r<e_1__: {__Cc;re_f_:
: An A12 A13 A14 | B11 B12 B13 B14 : Cn C12 C13 C14 |
| |
| Axr Ao A Ay X B B Bas Bas | G S G Can
= .= = . I - - - - = = I
[A31 A32 A33 A34 | B31 B32 B33 B34 [C31 C32 C33 C34 |
| |
L A41 A42 A43 A44 :_ | B41 B42 B43 B44 _ - C41 C42 C43 C44 :_
[Core 2 | | Core 2 |

Using domain decomposition to compute the matrix product A x B.

The top half is computed on Core 1 and the bottom half on Core 2.

Task Decomposition

public class Model implements Runnable {
// This run method keeps track of where the characters are, what
// direction they are moving and at what speed
public void run() {..}

public class View implements Runnable {
// This run method updates the GUI showing where each character is
// right now
public void run() {..}

22

Task Decomposition

public class Game {
public static void main(String[] args) {
// Thread data keeps track of where the characters are, what direction they
// are moving and at what speed
Thread data = new Thread(new Model (..));
// Thread gui updates the GUI showing each character
Thread gui = new Thread(new View (..));

// Start the data thread. It will receive information from the GUI about use
// of controls, mouse clicks, etc.

data.start();
// Start the gui thread. It will receive information from Model class methods
// about where the characters are, what direction they are moving and at what
// speed

gui.start();

23

Video 1
Synchronization Using join()

Concurrent Programming and
Synchronization

Unpredictability in Thread Execution

* Thread execution may be interrupted

— “Time slicing” of threads (and processes) prevents
one thread from “hogging” the CPU

— Higher priority activities may interrupt the thread:
e.g., 1/O

 Multiple threads do not always proceed at the
same rate

e Coordination of multiple threads a challenge

* Java provides low-level and high-level tools to
deal with synchronization of threads

Example: Interleave (1)

public class Interleave implements Runnable {
private char c;

public Interleave(char c) {
this.c = c;

public void run() {
for (int i = 0; i < 100; i++) {
System.out.printf("%c", c);
for (int j = 9; j < 1000; j++)
Math.hypot(i, j);

}
System.out.printf("%c", Character.toUpperCase(c));

// ... continued on next slide ...

Example: Interleave (2)

// ... continued from previous slide ...

public static void main(String[] args) {
while (true) {
Thread tl1 = new Thread(new Interleave('a'));
Thread t2 = new Thread(new Interleave('b'));
tl.start();
t2.start();

try {

tl.join();

t2.join();
} catch (InterruptedException e) { ... }
System.out.println();

Join: Wait for a Thread to Finish

A simple kind of synchronization
For Thread t:
t.join();
Blocks the “current thread” —the one that called

t.join()—until Thread t completes (returns from
run())

join() may throw an InterruptedException, so
generally is in try-catch clause

Join using Try-Catch Clause

try {

t.join();

} catc
e.

s

n (InterruptedException e) {

orintStackTrace(); // example

Search for a Student using Threads

public class FindStudent implements Runnable {
private static Student stu = null; // stu will be returned
private static boolean found = false; // haven’t found stu yet
private static int student; // who we are looking for
private Fileserver fileserver; // where to look
private Student maybe = null; // maybe this is the one

public FindStudent (Fileserver f) {fileserver=Tf;};

public Student search (int student) throws
StudentNotFoundException {
this.student = student;
Thread t1 = new Thread (new FindStudent (fileserverl));
Thread t2 = new Thread (new FindStudent (fileserver2));
Thread t3 = new Thread (new FindStudent (fileserver3));

Search for a Student using Threads

tl.start();
t2.start();
t3.start();
try {
tl.join();
t2.join();
t3.join();
} catch (InterruptedException e) { ... }

if (found)
return stu;

else
throw new StudentNotFoundException
(Integer.toString(student));

Search for a Student using Threads

public void run() {
while (more to read on fileserver) {
if (found) return;
// read the next Student object, maybe points to it

if (maybe.getID() == student) {
stu = maybe;
found = true;

Video 2
Race Conditions

Synchronization Problem: Race
Condition

* As threads “race” through execution, their
instructions are interleaved at the nanosecond
level

— Byte codes within a thread always executed in
relative order, as expected

— Byte codes between threads not executed in
predictable absolute order

* Causes problems when accessing and
updating shared data

Example: RaceCondition (1)

public class RaceCondition implements Runnable {
private static int counter;

public static void main(String[] args) {
counter = 0;

Thread t1
Thread t2

new Thread(new RaceCondition());

new Thread(new RaceCondition());

tl.start();
t2.start();

try {
tl.join();
t2.join();
} catch (InterruptedException e) { e.printStackTrace(); }

System.out.printf("counter = %d\n", counter);

}

// ... run() method on next slide ...

Example: RaceCondition (2)

public void run() {
for (int i = 9; i < 10000; i++)
counter++;
}
}

Two Threads Updating a Counter

* Thread 1
int t1 = counter;
tl = t1 + 1;
counter = t1;
 Thread 2
int t2 = counter;
t2 = t2 + 1;

counter = t2;

Solution: Synchronize Threads

Java keyword “synchronized”

Allows two or more threads to use a common
object to avoid race conditions

Syntax:

synchronized (object) {
statements; // modify shared data here

}
Among all threads synchronizing using the same
object, only one thread can be “inside” the
block of statements at a time

Example: NoRaceCondition (1)

public class NoRaceCondition implements Runnable {
private static int counter = 0;

. i Gbject goteKeeper = neu OBject()

public static void main(String[] args) {
Thread t1 = new Thread(new NoRaceCondition());
Thread t2 = new Thread(new NoRaceCondition());
tl.start();
t2.start();
try {
tl.join();
t2.join();
} catch (InterruptedException e) { e.printStackTrace(); }
System.out.printf("counter = %d\n", counter);

public void run() {
for (int i = @; i < 10000; i++) {

nchronized (gatekeeper) (counter+s;)

}

44

Shared Memory Architecture

* Two paradigms for supporting concurrent or
parallel processing

* Message Passing: processes

— Messages sent between separate processes

— Generally, one process per program

— May run on different physical computers
 Shared Memory: threads

— Single program

— All threads share the same memory space

— This approach is what we are using in Java

Thread States

* A Java thread goes through several states in its
lifetime:
— New thread: created but not yet started
— Runnable: started and available to be run
— Not Runnable: sleeping, waiting for i/o, etc.
— Terminated: returned from the run() method

* t.sleep(n) puts the current thread to sleep for n
milliseconds; allows other threads to run

e t.yield() “gives up” the CPU, letting another
thread run

Thread States

Thread.yield()

Thread.sleep()

start () wait()

New Thread >/ Runnable

&
L4

Not Runnable

"N

wake up

notify ()

run () method
finishes

v

Terminated

tl.start();
t2.start();
t3.start();
td4.start();
t5.start();

try {
tl.join();
t2.join();
t3.join();
t4.j0in();
t5.j0in();
} catch (InterruptedException e) { ... }

	CS18000: Problem Solving and Object-Oriented Programming
	Video 1�History of Concurrency, Java Threads
	�Concurrent Programming and Synchronization
	Time Slicing
	Mobile Devices
	Multiple Cores
	Threads
	Sequential vs. Concurrent
	Java Threads
	Example: MainThread
	How to Create Threads
	Example: MyTask
	Video 2�Task and Domain Decomposition
	�Concurrent Programming and Synchronization
	Using Concurrent Processing
	Task Decomposition
	Domain Decomposition
	Examples: Task Decomposition
	Task Decomposition Example:�Video Game Updates
	Examples: Domain Decomposition
	Domain Decomposition Example: Matrix Multiplication
	Task Decomposition
	Task Decomposition
	Video 1�Synchronization Using join()
	�Concurrent Programming and Synchronization
	Unpredictability in Thread Execution
	Example: Interleave (1)
	Example: Interleave (2)
	Join: Wait for a Thread to Finish
	Join using Try-Catch Clause
	Search for a Student using Threads
	Slide Number 32
	Search for a Student using Threads
	Search for a Student using Threads
	Video 2�Race Conditions
	Slide Number 36
	Synchronization Problem: Race Condition
	Example: RaceCondition (1)
	Example: RaceCondition (2)
	Two Threads Updating a Counter
	Slide Number 41
	Slide Number 42
	Solution: Synchronize Threads
	Example: NoRaceCondition (1)
	Shared Memory Architecture
	Thread States
	Thread States
	Slide Number 48

