
CS18000: Problem Solving and
Object-Oriented Programming

Primitive Types and Strings

Video 1
Data Types

Numbers and Mathematical
Operators

Types
Primitive Types

Values, Variables, and Literals

• Programs (and CPUs) work with values
• Values are represented in programs by literals

and stored in variables
• Literals

– 3, -23, 4.5, 0.23, 3E8, 6.02e+23
– "Hello there", 'A', true, false

• Variables
– x, y, a, b, helloMessage, wheel, robot, r1, w27
– Use letters, digits, and "_" (start with letter)
– Identify a location in memory

4

Types

• Variables and literals have types
• Examples

– int
– double
– String

• Type is a formal definition
– Set of values
– Set of operations on those values

5

Example Java Type: int

• Set of values: subset of the integers
– Stored in 4 consecutive bytes: 32 bits
– Range: -2,147,483,648 to 2,147,483,647
– Literals: 23, 45, -19, 0
– Variables declared with “int” reserved word

• Set of operations: standard mathematical
– +, -, *, /
– % (mod) remainder 17%3=2

6

Type Categories in Java

• Primitive Types
– Built-in to language
– boolean, byte, short, int, long, float, double, char
– Occupy enough bits/bytes to store value

• Reference Types
– Can be defined by the user
– Hold a “reference” (pointer) to an object

7

Primitive and Reference Types

8

Example Reference Type: String

• Set of values:
– Sequences of characters
– Length 0 to 2,147,483,647

• Set of operations:
– concat() (also + operator)
– toUpperCase()
– length()
– substring()
– Plus many others

9

Example Reference Type: String

10

Wheel Class
public class Wheel {

double radius;

Wheel(double radius) {
this.radius = radius;

}

double getCircumference() {
return 2 * Math.PI * radius;

}

double getArea() {
return Math.PI * radius * radius;

}

double getRadius() {
return radius;

}
}

11

Example Reference Type: Wheel

• Set of values:
– Limited by memory only
– A new one created for each “new Wheel(…)”
– Same or different radius

• Set of operations
– getArea()
– getCircumference()
– getRadius()

12

Variables and Literals

• Variable
– Memory location where something can be stored
– Contents of the location can change: vary

• Literal
– A value that cannot change
– Can be stored in a variable
– Examples: 42, 3.14159, "hello", and 'X'

13

Variables and Literals

14

Declarations

• In Java, variables must be declared and given a
type

• Java compiler does two things with this
information
– Arranges for space to be allocated for the variable

to store a value
– Ensures that only valid (type-defined) operations

can be performed on this variable

15

Video 2
Primitive Types

Primitive Types

Integer and Real Number Types

Integer Types in Java

• All represent subsets of the integers
• Differ in how many bits used to store the value

(and, so, how many values)
– byte: 8 bits (-128 to 127)
– short: 16 bits (-32,768 to 32,767)
– int: 32 bits (-2,147,483,648 to 2,147,483,647)
– long: 64 bits (18 digits)

• Most popular: int

18

Operations on Integer Types

• Usual mathematical: +, -, *, /, and % (mod)
• Important note:

– Divide operation is “integer divide”
– Result is an integer, even if it “should” be a fraction
– Called “truncation”
– Examples:

10 / 5 is 2
13 / 4 is 3
3 / 2 is 1
1 / 2 is 0

19

Real Number Types in Java

• Represent subsets of the real numbers
• Two types, differing in number of bits used

– float: 32 bits (aka “single precision”)
– double: 64 bits (aka “double precision”)

• Most popular: double

20

Real Number Types in Java

21

Operations on Real Types

• Usual mathematical: +, -, *, /
• The Math class includes many others (some

also applicable to integers):
– Math.pow(base, exponent)
– Math.log10(number)
– Trig functions, logs, etc.

• See
http://docs.oracle.com/javase/6/docs/api/jav
a/lang/Math.html

22

Declaring Variables: Syntax

• Various possibilities supported…
int x; // declare only
int x = 5; // and initialize
int x, y; // two at once
int x = 5, y = 10;

• Best practice guidelines…
– Declare only one variable per line
– Include a comment describing its purpose
int mass; // mass of the particle

23

Expressions

• Expressions built by combining
– variables (x, y) and literals (3, 27) with
– operators (+, -)

• Usual mathematical precedence
– Multiplication and division first
– Addition and subtraction second
– (see chart on next slide)

x = b + c * d - a / b / d; … same as…
x = ((b + (c * d)) - ((a / b) / d));

24

Precedence (Highest to Lowest)

Category Operator

Unary +expr -expr

Multiplicative * / %

Additive + -

Shift << >> >>>

Bitwise operators & then ^ then |

Logical operators && then ||

Assignment =

25

Complete list: http://docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html

Video 1
Type Promotion and Characters

You are much smarter than a
computer

A computer cannot do this….

3 + 5.0

27

Type Promotion

• Mixing value types in expressions is allowable
• Values are “promoted” when it makes sense

(no data is lost)
– short to int, float to double
– integers to reals (e.g., int to double)

• Examples:
3 + 5.0 evaluated as 3.0 + 5.0 -> 8.0
1 / 2.0 evaluated as 1.0 / 2.0 -> 0.5

• Promotion is a form of casting…

28

Casting

• Cast: convert from a value of one type to a value of
another type

• Upcast: from “narrower” to “wider” (more bits)
– short -> int
– float -> double
– int -> double

• Downcast: from “wider” to “narrower” (fewer bits)
– int -> short
– double -> float
– double -> int

29

Casting Rules

• Upcasting is fine
– Nothing lost
– Java handles automatically (“promotes”)

double x = 1 / 2.0; // x is assigned 0.5

• Downcasting is dangerous
– Precision is lost
– Java prevents by default
– Programmer must override with cast operator

30

Cast Operator

• Tells Java compiler…
– “Trust me; the expression can be converted to the

indicated type”
• Put type name in parentheses before

expression
• Example:

int x;
double y = 12.0;
x = y; // “loss of precision” error
x = (int) y; // allowable
x = (int) (y / 3.0); // also allowable

31

Constructors and Fields

• Constructor
– A special method in a class that is used to “construct” an

object when it is being created
– Called by the “new” operator
– new Wheel(15) invokes the Wheel(double radius)

method
• Fields (instance or member variables)

– Variables located inside the class definition that become
part of the object

– Often “initialized” by the constructor using “this”
– this.radius = radius

32

Primitive Type: char

• Set of possible characters, symbols that make up
a String

• Encoded as number: e.g., ‘A’ is 65, ‘B’ is 66, ‘C’ is
67, etc.

• Java uses 16 bits to store each character (65536)
• Historical growth…

– Initially ASCII standard of 128 characters
– Extended to Latin-1 character set of 256 characters
– Now at Unicode character set of 65536 characters

33

Set of char Values
• ASCII subset

– Character codes 0-127 (7 bits)
– Include English alphabet (upper and lower), numbers,

punctuation, special characters
• Latin-1 extension

– Added character codes 128-255 (8 bits)
– Include non-English (Romanized) characters and punctuation

(dipthongs, accents, circumflexes, etc.)
• Unicode 1 extension

– Added character codes 256-65535 (16 bits)
– Includes non-Romanized alphabetic characters from Cyrillic,

Hebrew, Arabic, Chinese, Japanese, etc.

34

char Literals

• A single character surrounded by single quotes,
for example
– ‘A’, ‘a’, ‘x’, ‘0’, ‘3’
– ‘!’, ‘,’, ‘”’, ‘&’

• A special “escape sequence” surrounded by single
quotes, for example
– ‘\t’ (tab)
– ‘\n’ (newline)
– ‘\’’ (single quote)
– ‘\\’ (backslash)
– ‘\uxxxx’ (char hexadecimal xxxx in Unicode set)

35

Set of char Operations

• Treated as (upcast to) String for printing and
concatenation
– System.out.println(‘A’) -> prints A
– “Hello” + ‘!’ -> “Hello!”

• Treated as integer for arithmetic operations
– ‘a’ + 0 -> 97
– ‘z’ – ‘a’ -> 25

• Many more operations implemented by
methods in class Character

36

Useful Character Methods

• Character.isDigit(char value)
• Character.isLetter(char value)
• Character.isLetterOrDigit(char value)
• Character.isLowerCase(char value)
• Character.isUpperCase(char value)
• Character.isWhiteSpace(char value)
• Character.toLowerCase(char value)
• Character.toUpperCase(char value)

37

Useful Character Methods

38

Primitive Type: boolean

• Set of two elements { true, false }
• Set of operations

– Logical: && (and), || (or), ^ (xor), and ! (not)
– Testing in various Java statements (e.g., if)

• Created by comparison operators
– x < y, x <= y, x == y, x != y, x > y, x >= y
– And result of logical operators (above)
– Note: == and != also work with reference types, but

only compare references (addresses) not the values

39

Video 2
Reference Types and Strings

Reference Types

• Unlike primitive types:
– Are extensible: can be created by the programmer
– Variable declaration creates space for reference to

object, not the object itself

• Defined with a class declaration
• Set of values: created with the new operator
• Set of operations: defined and implemented

by the methods in the class

41

Declarations and Reference Types
The declaration of a variable of a reference type allocates space only for the reference,
not for the object to which it refers

If the variable is a field of an object, and you say...
Wheel w;
... w will contain the "null pointer" (pointer to nothing). Then, if later you say...
w.getRadius();
... this will result in a “null pointer exception”

If the variable is a local variable in a method, and you say...
Wheel w;
... the Java compiler will refuse to compile it and make you have an actual reference...
Wheel w = new Wheel (17.5);

Wheel w = null;
... will also compile, but can easily lead to a “null pointer exception”

42

Important Reference Type: String

• Java class String is built in
– No need to import
– Language supports String literals (“hello”)

• Because String is a class…
– Instances (e.g., literals) are objects
– Can create with new operator
String greeting = new String (“Hello”);

– String variables hold references to objects

43

Local Variable Type Inference
Wheel w = new Wheel (15.75);
String school = new String ("Purdue");

repeat the class name Wheel and String

Java allows a shortened form using var

var w = new Wheel (15.75);
var school = new String ("Purdue");

These are equivalent to the declarations above

44

Operations on Strings

• Concatenation (+) built-in to Java
• Lots of operations defined as methods in the

String class
• Strings are immutable: no operation on a

String object changes the value of that object

45

Comparing Strings

• == does not work in the way you might expect
• Strings are objects
• s1 == s2
• == between objects only compares the references

(addresses) of the objects
• Two different String objects with the exact same

characters will compare == false (since their
objects are stored in different locations)

• Use String equals method: s1.equals(s2)

46

Formatting Strings
• Template (“format”) string includes regular characters and “escape”

sequences:
– %s: string
– %d: integer (byte, short, int, long)
– %f: float, including double

System.out.printf(“%s! %d or %f”, “Hi”, 42, 3.14159);
prints Hi! 42 or 3.14159

• Width specification allowed
– %10s: pad string on left to make it 10 characters
– %-10s: pad string on right to make it 10 characters
– %12d: pad integer on left to make it 12 characters
– %10.3f: format number with 3 decimals; total width 10
– %.2f: format with 2 decimals; whatever width needed

• Full details in Javadocs Formatter

47

http://docs.oracle.com/javase/6/docs/api/java/util/Formatter.html

The final Keyword

• final is a modifier used in variable declarations
• Prevents the variable from being changed
• Example 1

final int SIZE = 100;
SIZE = 50; // not allowed by Java

• Example 2
Math.PI = 3.1; // also not allowed

48

Wrapper Classes and Useful Methods

• Byte
• Short
• Integer
• Long
• Float
• Double
• Character
• Boolean

49

String to Numeric Value

• Convert (parse) a String to a numeric value
• Available for all numeric wrapper classes, but

two most useful ones are…
– Integer.parseInt("4000")
– Double.parseDouble(" 66.23457")

• Watch for NumberFormatException

50

	CS18000: Problem Solving and Object-Oriented Programming
	Video 1�Data Types
	�Numbers and Mathematical Operators
	Values, Variables, and Literals
	Types
	Example Java Type: int
	Type Categories in Java
	Primitive and Reference Types
	Example Reference Type: String
	Example Reference Type: String
	Wheel Class
	Example Reference Type: Wheel
	Variables and Literals
	Variables and Literals
	Declarations
	Video 2�Primitive Types
	�Primitive Types
	Integer Types in Java
	Operations on Integer Types
	Real Number Types in Java
	Real Number Types in Java
	Operations on Real Types
	Declaring Variables: Syntax
	Expressions
	Precedence (Highest to Lowest)
	Video 1�Type Promotion and Characters
	You are much smarter than a computer
	Type Promotion
	Casting
	Casting Rules
	Cast Operator
	Constructors and Fields
	Primitive Type: char
	Set of char Values
	char Literals
	Set of char Operations
	Useful Character Methods
	Useful Character Methods
	Primitive Type: boolean
	Video 2�Reference Types and Strings
	Reference Types
	Declarations and Reference Types
	Important Reference Type: String
	Local Variable Type Inference
	Operations on Strings
	Comparing Strings
	Formatting Strings
	The final Keyword
	Wrapper Classes and Useful Methods
	String to Numeric Value

