
CS18000: Problem Solving and
Object-Oriented Programming

Prof. H.E. Dunsmore

Video 1
Algorithms, Abstraction, and

Number Systems

Problem Solving

• Examples
– Assemble a bookcase: directions
– Bake a cake: recipe

• Algorithm:
– Step-by-step series of instructions to solve a

problem (must be correct, complete, must end)

• Abstraction:
– The creation of a concept from specific examples

3

Von Neumann Architecture
• Although specific components may vary, virtually all modern computers have the same

underlying structure
– known as the von Neumann architecture
– named after computer pioneer, John von Neumann

• The von Neumann architecture identifies 3 essential components
1. Input/Output Devices (I/O) allow the user to interact with the computer
2. Memory stores information to be processed as well as programs (instructions specifying the steps

necessary to complete specific tasks)
3. Central Processing Unit (CPU) carries out the instructions to process information

4

Memory and Storage Sizes

Unit Size Bytes Practical Measure

byte 8 bits 20 = 1 = 100 A single character

kilobyte (KB) 1,024 bytes 210 = 1,024 ≈ 103 A paragraph of
text

megabyte (MB) 1,024 kilobytes 220 = 1,048,576 ≈ 106 A minute of MP3
music

gigabyte (GB) 1,024 megabytes 230 = 1,073,741,824 ≈ 109 A half hour of
video

terabyte (TB) 1,024 gigabytes 240 = 1,099,511,627,776 ≈ 1012 80% of a human’s
memory capacity

5

Number Systems

• Positional numbering
• Value of a digit is related to the distance of its

position from the decimal point
• The system has a base, e.g., 2, 8, 10, or 16
• Each position multiplies or divides value by

the base

6

Examples

• In decimal:
352 = 3 x 10^2 + 5 x 10^1 + 2 x 10^0
352 = 3 x 100 + 5 x 10 + 2

• In binary:
1110 = 1 x 2^3 + 1 x 2^2 + 1 x 2^1 + 0 x 2^0
1110 = 1 x 8 + 1 x 4 + 1 x 2 = 14

• In hexadecimal:
3F = 3 x 16^1 + Fx16^0
3F = 3 x 16 + 15 x 1 = 48 + 15 = 63

7

Conversions

• Algorithm:
– Divide number by base
– Prepend remainder to the result string
– Replace number by quotient
– Repeat until quotient is zero

8

Example

• 42 to base 2:
42 / 2 = 21 + 0 remainder
21 / 2 = 10 + 1 remainder
10 / 2 = 5 + 0 remainder
5 / 2 = 2 + 1 remainder
2 / 2 = 1 + 0 remainder
1 / 2 = 0 + 1 remainder
Answer: 101010

9

Video 2
Storing Integers

Finite Precision

• Computers store numbers using bits (base 2)
• Bits organized into bytes (8 bits)
• Bytes organized into words, typically

– 4 bytes or
– 8 bytes

• 4 bytes = 32 bits
• 8 bytes = 64 bits
• So, can only represent integers that “fit” into that

many bits
• And, what to do about negative numbers?

11

Interpreting Bits
3-bit Word Unsigned

Interpretation
Unsigned N-bit
Generalization

Signed
Interpretation

Signed N-bit
Generalization

000 0 0 0 0

001 1 1

010 2 2

011 3 3 2N-1 - 1

100 4 -4 -2N-1

101 5 -3

110 6 -2

111 7 2N - 1 -1 -1

12

4-bit Word Unsigned
Interpretation

Unsigned N-bit
Generalization

Signed
Interpretation

Signed N-bit
Generalization

0000 0 0 0 0

0001 1 1

0010 2 2

0011 3 3

0100 4 4

0101 5 5

0110 6 6

0111 7 7 2N-1 - 1

1000 8 -8 -2N-1

1001 9 -7

1010 10 -6

1011 11 -5

1100 12 -4

1101 13 -3

1110 14 -2

1111 15 2N - 1 -1 -1 13

Sign Bit

• The left most bit of a word is the “sign bit”
0 -> positive
1 -> negative

• Representation is called “two’s complement”
• Positive numbers get leading 0s to word size
• Negative numbers:

– Convert positive value to binary
– Flip all bits (0 <-> 1)
– Add one

14

Example

• Convert -42 to binary using an 8-bit “word”
• 42 = 101010
• Fill to 8 bits = 00101010
• Flip bits (one’s complement) = 11010101
• Add one (two’s complement) = 11010110

• Useful site: http://planetcalc.com/747/

15

http://planetcalc.com/747/

Useful Consequences (Summary)

• Largest (signed) positive number that can be
stored in N bits is N-1 1s
= 2N-1 - 1
Example for 8 bits: 01111111 = 127

• Largest negative number that can be stored in
N bits is a 1 followed by N-1 0s
= -2N-1

Example for 8 bits: 10000000 = -128

16

What Could Go Wrong?

• Overflow
– Sum of two positive numbers is “too positive”
– Example: 127 + 1 in eight bits

• Underflow
– Difference of two numbers is “too negative”
– Example: -128 – 1 in eight bits

• Warning: Java ignores (quietly) overflow and
underflow

17

Video 3
Wheel Class

Wheel Class
• In our life we encounter a lot of things
• For example, in a parking lot there are a lot of things (objects) of

the class Vehicle
• Each Vehicle object has attributes, such as color, make, model,

license number,
• In the Java programming language, we can create a class that can

be used to make lots of objects
• We can make a Wheel class with attributes radius (like 27.5 inches)

and material (like rubber)
• Every Wheel object can have different attributes
• We can even create the operations (methods) we want to be able

to perform on a Wheel object

19

Wheel Class
public class Wheel {

// Wheel class has two attributes (instance variables)...

double radius;
String material;

20

Wheel Class
// Wheel class has two Constructors, one takes both a
// radius and material
// the other takes just a radius
// "this.radius" means the radius of this object being
// constructed
// "radius" means the parameter value supplied

Wheel(double radius, String material) {
this.radius = radius;
this.material = material;

}

21

Wheel Class

22

Wheel Class
Wheel(double radius) {

this.radius = radius;
this.material = "unknown";

}

23

Wheel Class

24

Wheel Class
// Method names that begin with "get" are accessor
// methods.
// These provide a value of the return type -- either
// double or String

double getCircumference() {
return 2 * Math.PI * radius;

}

double getArea() {
return Math.PI * radius * radius;

}

25

Wheel Class
double getRadius() {

return radius;
}

String getMaterial() {
return material;

}

26

Wheel Class
// Method names that begin with "set" are mutator
// methods.
// These store a new value for radius or material ... or
// both.

void setRadius(double radius) {
this.radius = radius;

}

void setMaterial(String material) {
this.material = material;

}

27

Wheel Class
void setRadiusAndMaterial(double radius, String material) {

this.radius = radius;
this.material = material;

}

28

Video 1
Making a Class a Program

Wheel Class
// A method that says "public static void main(String[]
// args)"
// is where execution will begin

public static void main(String[] args) {

// area, circ, rad, and mat are local variables in the
// main method

double area, circ, rad;
String mat;

30

Wheel Class
// bicycle is a Wheel object with radius 27.5 and
// material "rubber"

Wheel bicycle = new Wheel(27.5, "rubber");

// wagon is a Wheel object with radius 54.75 and material
// "unknown"

Wheel wagon = new Wheel(54.75);

// change wagon's material from "unknown" to"wood"
wagon.setMaterial("wood");

31

Wheel Class

32

Wheel Class
// circ, area, and rad are the circumference, area, and
// radius of bicycle

circ = bicycle.getCircumference();
area = bicycle.getArea();
rad = bicycle.getRadius();

// mat is the material of the wagon
mat = wagon.getMaterial();

// bicycle radius changed from 27.5 to 32.0
bicycle.setRadius(32.0);

33

Wheel Class
// bicycle material changed from "rubber" to
// "polyethylene"

bicycle.setMaterial("polyethylene");

// wagon radius and material changed
wagon.setRadiusAndMaterial(88.35, "aluminum");

}
}

34

Methods and Headers

A method is one or more lines of code that can be
executed for a class object by using the object name,
method name, and any arguments...

wagon.setRadiusAndMaterial(88.35, "aluminum");

The first line of every method is its "header"
return-type name (parameters) {

...
}

35

Methods and Headers

Some methods return a value (like double) and some return
nothing (void)

Some methods have no parameters
Some have one, some have two,
Java chooses the method to run that matches the arguments
when the method is called

wagon.setRadiusAndMaterial(88.35, "aluminum");

uses the setRadiusAndMaterial method that has a double and a
String argument

36

Methods and Headers
Wheel wagon = new Wheel(54.75);

uses the Constructor that has only a double argument

37

Video 2
Software Development

Software Development Lifecycle

1. Understand the problem
2. Design a solution
3. Implement the solution
4. Test the solution
5. Maintenance

39

How is Software Written?

• Programming language
– high level language (complex statements)
– assembly language (very simple instructions)
– machine language (1s and 0s)

• Compilers and interpreters
• Integrated Development Environments (IDEs)

– Allow editing of program files
– Allow compiling, executing, and debugging

programs

40

How is Software Written?
high level language
x=y+z;

assembly language
load 1,y
load 2,z
add 1,2,3
store 3,x

machine language
10110 0001 101101
10110 0010 011100

41

Program Translation

42

Tools for Abstraction
• Object-Oriented Programming (OOP) is one way
• Class

– Gives a name to the abstraction and creates a template for
objects, which are instances of the abstraction

– Examples: Wheel, Robot, Car, Chair
– Includes variables and methods that define the details of the

abstraction
• Variable

– Names and stores a quantity
– Examples: radius, name, speed, color

• Method
– Names and defines an operation on a class or object
– Examples: getArea, speak, accelerate, eject

43

Class vs. Program

• Last time…
– We saw a class Wheel

• This time…
– It has a “main” method
– Program execution starts (and often ends) here

• Using the command line
– Edit, compile, run (IntelliJ, javac, java)
– See the byte code (javap –c)

• Examples: Robot.java and Calculator.java

44

Wheel Class (simplified)
public class Wheel {

double radius;

Wheel(double radius) {
this.radius = radius;

}

double getCircumference() {
return 2 * Math.PI * radius;

}

double getArea() {
return Math.PI * radius * radius;

}

double getRadius() {
return radius;

}
}

45

Robot.java
public class Robot {

void speak(String message) {
System.out.println(message);

}

public static void main(String[] args) {
Robot r = new Robot();
r.speak("hello world");

}
}

46

Calculator.java
public class Calculator {

int add(int x, int y) {
return x + y;

}

int subtract(int x, int y) {
return x - y;

}

public static void main(String[] args) {
Calculator c = new Calculator();

System.out.println(c.add(3, 5));
System.out.println(c.subtract(3, 5));

}
}

47

Video 3
Java Basics

Java Basics

• Program structure
– Top-level class

• Name of class is name of file (with .java extension)
• Example: class Robot in Robot.java

– One or more methods
– Program execution begins at main

• Command line input and output
– Scanner class [not seen yet]
– System.out.println(…)

49

Syntax Details

• // or /* */ for comments
• White space ignored (delimits tokens)
• Semicolon (;) to end or separate statements
• Curly braces ({}) to group statements
• Some words are “reserved” and cannot be

used for variable, method, or class names
• import statement gives access to other classes

50

System Class

• Has field members (variables) that reference
the “standard input” and “standard output”
files of the running Java program

• In command-line systems (e.g., UNIX shell),
these “files” can be the keyboard and display,
or redirected from disk files or other programs

• System.in: input stream
• System.out: output stream

51

Parsing Input

• class Scanner
• To read from standard input, create a Scanner

object and use its methods:

Scanner s = new Scanner(System.in);

String name = s.nextLine();
int i = s.nextInt();
double d = s.nextDouble();

52

Calculator.java
import java.util.Scanner;

public class Calculator {
int add(int x, int y) {

return x + y;
}

int subtract(int x, int y) {
return x - y;

}

public static void main(String[] args) {
Calculator c = new Calculator();

Scanner scanner = new Scanner(System.in);
int x = scanner.nextInt();
int y = scanner.nextInt();
System.out.println(c.add(x, y));

}
}

53

Java Formatting Notes

• Naming conventions
– Variables: lowerCamelCase
– Classes: UpperCamelCase
– Symbolic constants: UPPER_CASE

• Open curly at end of line
• Use consistent indentation (e.g., 4 blanks)
• Complete documentation on course website

54

Java Formatting Notes

honestaberoofing.com
What is this business?

HonestAbeRoofing.com
Oh … this makes more sense!

55

How to Read an Assignment (1)

When the assignment says, “Create a class
Henway…”
• Create a file Henway.java that starts with this

template...

public class Henway {
}

• Note capitalization. Case matters!
• Compile—you should get no errors. If you run it,

you will get an error (why?)

56

How to Read an Assignment (2)

When the assignment says, “Write a Java program
named Henway…”
• Create a file Henway.java that starts with this

template...

public class Henway {
public static void main(String[] args) {

// Program execution begins here
}

}

• Note capitalization. Case matters!
• Compile and run—you should get no errors (and

no output!)
57

How to Read an Assignment (3)
When the assignment says, “Read from standard input…”
• At the beginning of the file (before “public class …”),

insert…

import java.util.Scanner;

• At the beginning of the main method (for example),
insert…

Scanner scanner = new Scanner(System.in);

• To read an integer and store it in variable x, use…

int x = scanner.nextInt();

58

	CS18000: Problem Solving and Object-Oriented Programming
	Video 1�Algorithms, Abstraction, and Number Systems
	Problem Solving
	Von Neumann Architecture
	Memory and Storage Sizes
	Number Systems
	Examples
	Conversions
	Example
	Video 2�Storing Integers
	Finite Precision
	Interpreting Bits
	Slide Number 13
	Sign Bit
	Example
	Useful Consequences (Summary)
	What Could Go Wrong?
	Video 3�Wheel Class
	Wheel Class
	Wheel Class
	Wheel Class
	Wheel Class
	Wheel Class
	Wheel Class
	Wheel Class
	Wheel Class
	Wheel Class
	Wheel Class
	Video 1�Making a Class a Program
	Wheel Class
	Wheel Class
	Wheel Class
	Wheel Class
	Wheel Class
	Methods and Headers
	Methods and Headers
	Methods and Headers
	Video 2�Software Development
	Software Development Lifecycle
	How is Software Written?
	How is Software Written?
	Program Translation
	Tools for Abstraction
	Class vs. Program
	Wheel Class (simplified)
	Robot.java
	Calculator.java
	Video 3�Java Basics
	Java Basics
	Syntax Details
	System Class
	Parsing Input
	Calculator.java
	Java Formatting Notes
	Java Formatting Notes
	How to Read an Assignment (1)
	How to Read an Assignment (2)
	How to Read an Assignment (3)

