
CS18000: Problem Solving and
Object-Oriented Programming

Interfaces and Inheritance

Video 1
Interface Concepts

Interfaces

Interfaces
Encapsulation

Interface Concepts

• Interface:
– A point where two systems interact
– Typically asymmetric: one system “defines” the

interface, the other system “uses” it

• Examples:
– Graphical User Interface (GUI): user -> computer
– Application Programming Interface (API):

application program -> library of related methods

4

Java Class

• A Java class provides one form of interface
• Public members (methods, mainly) define the

interface to “clients” (users) of that class
• Class interface consists of

– Public method signatures (what the method expects)
– Method return types (what the method returns)

• The Java language abstracts this idea one step
further…

5

Java Interface

• Defines a “contract” between
– A class that defines the interface, and
– A class that implements (uses) the interface

• Any class that implements the interface must
provide implementations for all the method
bodies given in the interface definition (except
default methods)

6

Interface Syntax

• A class-like declaration
– interface Doable { … }
– Exists in own file
– Includes method declarations

• But…
– No method bodies (except default methods)
– No fields (other than constants)

• An interface is like a class in which you forgot to
declare the fields and left out the method bodies

7

Default Methods
• A default method is an instance method defined in an interface whose

method header begins with the default keyword
• It also provides a code body
• Every class that implements the interface inherits the interface's default

methods but can override them

public interface Addressable
{

String getStreet();
String getCity();

default String getFullAddress()
{

return getStreet() + ", " + getCity();
}

}

8

Video 2
Implementing Interfaces

Implementing an Interface

• Classes may declare that they “implement”
an interface

• Given interface Doable a class Henway can
implement it…
public class Henway implements Doable { … }

• All the methods declared in Doable must
appear in Henway (and other methods may
appear, too)

10

Example: Doable
interface Doable {

int compute(int x);
void doit(int y);

}

class Henway implements Doable {
public int compute(int x) {

return x + 1;
}
public void doit(int y) {

System.out.println(y);
}

} 11

Fields in Interfaces

• Interfaces may include fields
• Fields are implicitly declared

– public,
– final, and
– static

• That is, fields in interfaces are constants, and
so must be declared with an initializer (=)

• Allows easy use of shared constants
• Methods are implicitly declared public

12

Example: Constants
interface Constants {

double X = 1234.56;
int Y = -1;
String Z = "hello there";

}

public class Booyah implements Constants {
public static void main(String[] args) {

System.out.println(X);
System.out.println(Y);
System.out.println(Z);

}
}

13

Implementing Multiple Interfaces

• A class can implement multiple interfaces
• The methods implemented are the union of the

methods specified in the interfaces
• Examples:

class SoapOpera implements Cryable { … }
class SitCom implements Laughable { … }
class Movie implements Laughable, Cryable { … }

14

Example: Rideable

• Rideable defines an interface to something you
ride:
void mount();
void dismount();
void move(boolean forward);
void turn(int direction);
void setSpeed(double mph);

• Implementations:
class Motorcycle implements Rideable { … }
class Horse implements Rideable, Trainable {
… }
class Bicycle implements Rideable { … }

15

Video 3
Building a Game

Example: Building a Game
• Problem: Implement a turn-based game in which players

can pick up valuable objects
• Multiple players, each with own strategy
• Rules enforced by game controller
• Use of Java interface:

– Each player class implements Player interface
– Game controller expects parameters of type Player

• Main program:
– Creates player objects from classes
– Creates game controller with player objects
– Starts game controller
– Prints results

17

Game Program Class Diagram

18

Player
(interface)

Player 1
(strategy 1)

Player 2
(strategy 2)

Main
(start up)

Game
(rules and logic)

creates

creates

implements

uses

Player Interface

interface Player {
void makeMove();
void getItems();

}

19

Dragon Class

public class Dragon implements Player {
public void makeMove() {…};
public void getItems() {…};
…other methods…
}

}

20

Butterfly Class

public class Butterfly implements Player
{

public void makeMove() {…};
public void getItems() {…};
…other methods…
}

}

21

Main Class

public class Main {
public static void main(String[] args) {

Dragon bob = new Dragon();
Butterfly ann = new Butterfly();
Game game = new Game(bob, ann);
game.play();
System.out.println("game over");

}
}

22

Game Class
public class Game {

private Player p1;
private Player p2;

Game(Player p1, Player p2) {
this.p1 = p1;
this.p2 = p2;

}

void play() {
p1.makeMove(); …
p2.makeMove(); …
p1.getItems(); …
p2.getItems(); …

}
}

23

Video 4
Fibonacci Generator

Example: Fibonacci Generator

• Write a class to generate the Fibonacci
sequence

• Each value is sum of two previous values
• 1, 1, 2, 3, 5, 8, 13, 21, …
• Constructor takes an int n that specifies the

(finite) number of values to generate
• Fibonacci object provides hasNext() and
next() methods to generate the n values

25

Two Standard Java Interfaces
(simplified)

interface Iterator {
boolean hasNext();
Object next();
void remove();

}

interface Iterable {
Iterator iterator();

}
26

Java for-each Loop

• Uses Iterable interface

for (Tree t : list) { … }

• The list must implement the Iterable
interface

• That is, it must have a method that returns an
Iterator over elements of the collection

27

Fibonacci (1)
import java.util.Iterator;
Import java.lang.Iterable;

public class Fibonacci implements Iterator, Iterable {
private int n; // how many Fibonacci numbers
private int i; // how many so far
private int f1, f2; // last two Fibonacci numbers generated

public Fibonacci(int n) {
this.n = n;
i = 0;
f1 = f2 = 1;

}

// method required by Iterable interface...
public Iterator iterator() {

return this;
}

28

Fibonacci variables
private int n; // how many Fibonacci
numbers
private int i; // how many so far
private int f1, f2; // last two Fibonacci
numbers generated

n =
i =
f1 =
f2 =
t = 29

Fibonacci (2)

// method required by Iterator interface...
public boolean hasNext() {

return i < n;
}

// method required by Iterator interface...
public Integer next() {

if (i == 0 || i == 1) {
i++;
return 1;

}
int t = f1 + f2;
f1 = f2;
f2 = t;
i++;
return t;

}
30

Fibonacci (3)

// method required by Iterator interface...
public void remove() {
}

public static void main(String[] args) {
Iterator i1 = new Fibonacci(25);
while (i1.hasNext())

System.out.printf("%d ", i1.next());
System.out.printf("\n");

Iterable i2 = new Fibonacci(30);
for (Object i : i2)

System.out.printf("%d ", (Integer) i);
System.out.printf("\n");

}
}

31

Video 1
Inheritance

Inheritance

Problem

• Sometimes classes have related or overlapping
functionality

• Consider a program for keeping track of
personnel at the university

• Need a Person class to keep information
• But also might want special classes for

– Student: to include grades or classes taken
– Professor: to include salary and rank

34

Person Class
public class Person {

private String name;
private String address;

public Person(String name, String address) {
this.name = name;
this.address = address;

}

public String getName() {
return name;

}

public String getAddress() {
return address;

}

public void setAddress(String address) {
this.address = address;

}
}

35

Student Class (1)
public class Student {

private String name;
private String address;
private String[] classes;
private String[] grades;

public Student(String name, String address) {
this.name = name;
this.address = address;

}

public String getName() {
return name;

}

public String getAddress() {
return address;

}
// continued…

36

Very redundant
with Person class

Student Class (2)
// continued…

public void setAddress(String address) {
this.address = address;

}

public String[] getClasses() {
return classes;

}

public void setClasses(String[] classes) {
this.classes = classes;

}

// and more…
}

37

Unique to
Student class

Inheritance

• Rather than duplicating members (fields and
methods) among these classes, Java allows
classes to share member definitions in a
hierarchical fashion

• One class can “extend” another “inheriting”
fields and methods from it

• Terminology: the “subclass” inherits from the
“superclass”

38

Example
• Class Person has fields name, address, as well as accessors

and mutators
• Class Student “extends” Person

– Inherits the fields and methods from Person
– Adds classes and grades (and more accessors and mutators)

• Class Professor “extends” Person
– Inherits the fields and methods from Person
– Adds rank and salary (and more accessors and mutators)

• Common fields and methods go in Person, and are
inherited by its subclasses

• Class-specific fields and methods go in their respective class

39

Student Subclass
public class Student extends Person {

private String[] classes;
private String[] grades;

public Student(String name, String address, String[] classes,
String[] grades) {

super(name, address);
this.classes = classes;
this.grades = grades;

}

public String[] getClasses() {
return classes;

}

public void setClasses(String[] classes) {
this.classes = classes;

}
}

40

Subclass only
contains the
differences

Student Subclass

41

Classes and Subclasses

42

Student s = new Student (…);
String[] classes = s.getClasses();
String name = s.getName();
double gpa = s.getGPA();

…

Student t = s;
Student t = s.clone();

Classes and Subclasses

43

Person fred = new Student (…);
String name = fred.getName();

Account ch = new Checking (…);

Object Class

• One designated class in Java—Object—is the
root of all classes

• Any class that doesn’t extend another class
implicitly extends the Object class

• A class can only extend one other class (but
can implement multiple interfaces)

• Java is a “single inheritance” system
• C++ is a “multiple inheritance” system

44

Subclass Object

• Contains its fields as well as all the fields
defined in its superclasses

45

name

address

classes

grades

Student object

Fields defined in Person

Fields defined in Student

Fields defined in Object

Object Class Methods

• The Object class has a small number of public
methods. Samples…
– clone() – makes a copy of the object
– equals(Object e) – compares for equality
– toString() – returns a String representation

• The toString() method is very handy:
– It is called by printf and similar methods when a

String is needed (e.g., for printing)
– You can override it in your classes to get

something more descriptive 46

Video 2
Constructor Chaining

Constructor Chaining

• When constructing an object of a class, it is
important that all the constructors up the
inheritance chain have an opportunity to
initialize the object under construction

• Called constructor chaining
• Java enforces constructor chaining by inserting

implicit calls to superclass constructors
• You can override this behavior by inserting

your own calls
48

Constructor Rules

• Every class must have at least
one constructor

• The first line of every
constructor must be a call to
another constructor.

49

Default Constructors

• If you don’t provide any constructors in a
class, Java provides one for you:

public ClassName() {
super();

}

• The statement “super();” calls the 0-argument
constructor in the superclass

50

Default Chaining

If you do provide a constructor…
• by default Java inserts the statement

super();

• at the beginning to enforce chaining

51

Explicit Chaining

• You can explicitly call a superclass constructor
yourself

• Useful for passing arguments “up the line” to
initialize the object using superclass
constructors

• See the Student example earlier
– Calls super(name, address)
– Invokes constructor in Person to initialize these

fields

52

Explicit Chaining
• The first step in each constructor is to either

– Call another constructor in the current class, or
– Call a superclass constructor

• To call another constructor, use this(…)
• To call a superclass constructor, use super(…)
• You can do one or the other but not both
• In either case, the argument types are matched with

the class constructors to find a match
• If no explicit this(…) or super(…) is provided in a

constructor, Java automatically calls super() (the
superclass constructor with no arguments)

53

Constructor Complications

• If the base class does not have a
parameterless constructor, the derived class
constructor must make an explicit call, with
super(…), to an available constructor in the
base class

54

super() and this()

• Recall that this(…) can be used to call another
constructor in the current class

• If you call this(…), Java does not call super()
• OK, since, the constructor you call must either

call this(…) or super(…), so super(…) will
eventually be called

• If specified explicitly, calls to super(…) or this(…)
must be the first statement in a constructor—
ensures proper initialization by superclass
constructors before subclass constructors
continue

55

Wheel Example (1)
public class Wheel {

private double radius;

public Wheel(double radius) {
this.radius = radius;

}
}

public class Tire extends Wheel {
private double width;

public Tire(double radius, double width) {
// super(radius);
this.width = width;

}
}

56

If no call to super(…), Java
inserts call to super(),
which doesn’t exist.

Result -> syntax error

Since constructor
provided, no default (0
argument) constructor
provided or available.

No “extends”, so implicitly
extends Object class

Since no call to super(…)
or this(…), Java inserts call

to super(), Object
constructor

Wheel Example (1)
public class Wheel {

private double radius;

public Wheel(double radius) {
this.radius = radius;

}
}

public class Tire extends Wheel {
private double width;

public Tire(double radius, double width) {
super(radius);
this.width = width;

}
}

57

With call to super(…),
superclass constructor
called with specified

argument

Terminology

• Student extends Person
• Student is a subclass of Person
• Person is a superclass of Student
• Person is the parent class, Student is the child

class
• Person is the base class, Student is the derived

class

• Superclass/subclass may be counterintuitive since
the subclass has more “stuff” than the superclass

• Instead, think “superset/subset”. Objects in class
Student are a subset of objects in class Person 58

Video 3
Subclass Access and Overriding

More Inheritance

Access Restrictions and Visibility
Overriding and Hiding

instanceof

Reminder: Java Access Modifiers

• Can apply to members: fields and methods
• Modifiers control access to members from

methods in other classes
• This list is from least to most restrictive:

61

Keyword Restriction

public None (any other method can access)

protected Only methods in the class, subclasses, or in classes in
the same package can access

[none] Only methods in the class or in classes in the same
package can access (called “package private”)

private Only methods in the class can access

Subclass Access

• Subclasses cannot access private fields in their
superclasses

• Two options:
– Leave as is; provide accessors and/or mutators
– Change private to protected

• Protected allows subclass access to superclass
fields (even if the subclass is in a different
package)

• General advice: use accessors and mutators
62

Overloading vs Overriding

• Overloading – In the same class, two methods
with the same name, but different signatures

• Overriding – In a superclass and subclass, two
methods with the same name, same signature

63

Overriding Methods

• A subclass method with the same signature as
a superclass method overrides the superclass
method

• The subclass method is executed instead of
the superclass method

• Useful to change the behavior of a method
when applied to a subclass object

• A method that is not overridden is inherited
by (available to) the subclass

64

Accessing Overridden Methods

• Overridden methods can also be accessed
using super: super.method(…)

65

Overriding Methods
public class Person {

public void display() {
System.out.println(name,address);

}
}

public class Student extends Person {
public void display() {

System.out.println(getName(),getAddress(),classes,grades);
}

}

public class Student extends Person {
public void display() {

super.display();
System.out.println(classes,grades);

}
} 66

The instanceof Operator

• It is possible to determine if an object is of a
particular class (or subclass)

• The expression…
(objectA instanceof ClassB)

• …evaluates true if the object referenced by
objectA is an instance of the class ClassB

• Person pers = (Person) ois.readObject();
• (pers instanceof Student) is true if pers

is an object of the subclass Student

67

Example: Object I/O (2)
class Tree implements Serializable {

long circumference;
String species;

Tree(long circumference, String species) {
this.circumference = circumference;
this.species = species;

}

public String toString() {
return String.format("%x: circumference = %d, species = %s",

hashCode(), circumference, species);
}

}

68

Exception Class Hierarchy

69

Exception

IOException

RuntimeException

NullPointerException

IndexOutOfBoundsException

YourException

FileNotFoundException

ArithmeticException

Making Your Own Exception Class
public class StudentNotFoundException extends Exception {

public StudentNotFoundException (String message) {
super (message);

}
}

public class FindStudent {
public Student search (int student) throws

StudentNotFoundException {
if (...) {

throw new StudentNotFoundException
(Integer.toString(student));

}
}

}
70

	CS18000: Problem Solving and Object-Oriented Programming
	Video 1�Interface Concepts
	�Interfaces
	Interface Concepts
	Java Class
	Java Interface
	Interface Syntax
	Default Methods
	Video 2�Implementing Interfaces
	Implementing an Interface
	Example: Doable
	Fields in Interfaces
	Example: Constants
	Implementing Multiple Interfaces
	Example: Rideable
	Video 3�Building a Game
	Example: Building a Game
	Game Program Class Diagram
	Player Interface
	Dragon Class
	Butterfly Class
	Main Class
	Game Class
	Video 4�Fibonacci Generator
	Example: Fibonacci Generator
	Two Standard Java Interfaces (simplified)
	Java for-each Loop
	Fibonacci (1)
	Fibonacci variables
	Fibonacci (2)
	Fibonacci (3)
	Video 1�Inheritance
	Inheritance
	Problem
	Person Class
	Student Class (1)
	Student Class (2)
	Inheritance
	Example
	Student Subclass
	Student Subclass
	Classes and Subclasses
	Classes and Subclasses
	Object Class
	Subclass Object
	Object Class Methods
	Video 2�Constructor Chaining
	Constructor Chaining
	Constructor Rules
	Default Constructors
	Default Chaining
	Explicit Chaining
	Explicit Chaining
	Constructor Complications
	super() and this()
	Wheel Example (1)
	Wheel Example (1)
	Terminology
	Video 3�Subclass Access and Overriding
	More Inheritance
	Reminder: Java Access Modifiers
	Subclass Access
	Overloading vs Overriding
	Overriding Methods
	Accessing Overridden Methods
	Overriding Methods
	The instanceof Operator
	Example: Object I/O (2)
	Exception Class Hierarchy
	Making Your Own Exception Class

