CS18000: Problem Solving and
Object-Oriented Programming

File I/O and Exception Handling

(revised 11/24/23)

Video 1
Basics of File I/O

External Communication

Persistence of File Storage

RAM comes and goes
— Programs crash
— Systems reboot

Files last (well ... comparatively speaking...)

Programs save data to files to
— recover from program crashes and system reboots
— provide as input to other programs

File I/O operations extend naturally to
communication between programs

Input and Output “Pipes”

O=—T =5

/]_\ :Z’V\PJ\— | Pf‘oﬂmm _ OJ‘"{’J*‘ ’(\
TR g et A
afle - afile

Files and Java

Java is (or tries to be) platform independent
Provides abstractions for files and file systems

File class
— But, file name is operating system (OS) dependent

— And, file directory conventions are OS-dependent
(e.g., path name of user home directory)

— So, there are limits to OS independence
Three layers of abstraction in Java for file I/0
Ultimately, all data stored as a stream of bytes

oo o

The Implementation of Buffering

o, S

2 -

3 i f

Al = = _
T B | Odph BoPfer

The Importance of Buffering

* Without buffering, each read or write may
generate physical disk access

* Can be extremely slow for large volumes of data
* Buffering has OS create internal array

— OS reads “more than needed” on input, keeps rest
for next call to read method

— OS doesn’t send output “right away” to disk drive,
waits a while in case another write comes along

— Important to close file (or flush buffers) when done

Generic File Operations (1)

* Open:
— Files must be opened before they can be used
— Open method indicates “for reading”, “for writing”, or “both”
— May also indicate “append” mode

— Allows operating system to establish “buffers” and other state
information about the file being read or written

 Read
— Transfers data from the file (or input stream) to the user process

— Specific method signatures indicate the type of data being
transferred (byte, int, String, Tree, etc.)

* Write
— Transfers data from the user process to the file (or output stream)

— Specific method signatures indicate the type of data being
transferred (byte, int, String, Tree, etc.)

Generic File Operations (2)

* File position
— Sets the “current input position” to a specific byte address
in the file

— Can be used to skip over data in the file; or back up to read
data again

— Can be used to “rewind” the file to start reading from the
beginning again
* Close

— Ensures that any “queued data” is “flushed” from the
operating system buffers

— Frees any operating system resources being dedicated to
managing the file

Video 2
Low-Level, High-Level, and
Object I/O

File I/O Layers in Java

* Low-Level
— “Raw” data transfer: byte-oriented
— Classes: FileOutputStream, FilelInputStream
* High-Level
— Java primitive types
— Classes: DataOutputStream, DatalnputStream
* Object1/O
— Java object types
— Classes: ObjectOutputStream, ObjectinputStream

Ultimately, all data stored as a sequence of bytes

Example: Low-Level I/0

import java.io.*;

public class LowLevelIO {
public static void main(String[] args) throws IOException {
File f = new File("lowlevel);

FileOutputStream fos = new FileOutputStream(f);
fos.write(42);
fos.close();

FileInputStream fis = new FileInputStream(f);
int i = fis.read();

System.out.printf("Read %d\n", 1);
fis.close();

Example: High-Level I/O

import java.io.*;

public class HighLevelIO {
public static void main(String[] args) throws IOException {
File f = new File("highlevel");

FileOutputStream fos
DataOutputStream dos
dos.writeInt(1000);
dos.close();

new FileOutputStream(f);
new DataOutputStream(fos);

dos builds on fos

FileInputStream fis = new FileInputStream(f);
DataInputStream dis = new DataInputStream(fis);
int i = dis.readInt();

System.out.printf("Read %d\n", 1);

dis.close();

dis builds on fis

Tricky Bits

* You must keep track of what you’re doing!

e Data values must be read in the same order in
which they were written

— write int, long, long, boolean, double, float, char
— read int, long, long, boolean, double, float, char

* |f you try to read an int, but a double is next in
the stream, you’ll get garbage

Example: (1)
import java.io.*;

public class ObjectIO {
public static void main(String[] args) throws Exception {
File f = new File("object");

FileOutputStream fos = new FileOutputStream(f);
ObjectOutputStream oos = new ObjectOutputStream(fos);

Tree treel = new Tree(42, "elm");
oos.writeObject(treel); // write the object out
oos.close();

00s builds on fos

FileInputStream fis = new FileInputStream(f); ois builds on fis

ObjectInputStream ois = new ObjectInputStream(fis);
Tree tree2 = (Tree) ois.readObject(); // read the object back
ois.close();

%s\n", treel);
%s\n", tree2);

System.out.printf("treel
System.out.printf("tree2

Example: Object I/O (2)

class Tree implements Serializable {
double circumference;
String species;

Tree(double circumference, String species) {
this.circumference = circumference;
this.species = species;

public String toString() {
return String.format("%x: circumference = %d, species = %s",
hashCode(), circumference, species);

17

Serializable

[zcjgs;n l 1%.,375 l __‘_';_..,_ 'I

Video 3
Text 1/0

File Content Types

* Can consider file contents in two categories
e Text (e.g., *.java, *.txt)

— Store human-readable, character data

— Mostly platform independent (except EOL)
* Binary (e.g., *.class, *.exe)

— Not (generally) human readable

— Store any kind of data
— Requires specific programs to “make sense” of it

Writing and Reading Text

Java handles translation from internal primitive
format to human-readable text

Writing

— Class: PrintWriter (favored, more platform independent)
— Class: PrintStream for System.out (but out of favor)
Reading

— Classes: FileReader and BufferedReader

— Also, Scanner

Note: BufferedReader is more efficient than
Scanner (only important for high volumes of 1/0)

Example: TextlO (1)

import java.io.*;
public class TextIO {

public static void main(String[] args) throws IOException {
File f = new File("textio.txt");

// open FileOutputStream in append mode (true)
FileOutputStream fos = new FileOutputStream(f, true);

// use PrintWriter--similar to PrintStream (like System.out)...
PrintWriter pw = new PrintWriter(fos);

pw.println("our old friend");

pw.close();

// continued...

22

/] ...

Example: TextlO (2)

continued

// read what we just wrote...
FileReader fr = new FileReader(f);
BufferedReader bfr = new BufferedReader(fr);
while (true) {

String s = bfr.readlLine();

if (s == null)

break;
System.out.println(s);

}
bfr.close();

23

Video 1
Introduction to Exceptions

Exceptions

try-catch

throw

Handling Error Situations

public class Summer {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int number; // number that is input
int sum = @; // sum of values
int ¢ = @; // how many values read
double average; // average value
while (in.hasNextInt()) {
number = in.nextInt();
c=c+1;
sum = sum + number;

}
if (c > 0) {

average = sum / C;

System.out.printf("%d values, sum %d, average %f", c, sum, average);
} else

System.out.printf(“no values, no sum, no average");

What to do when an error occurs?

wira ‘\—L\rS V\uwloef-?
T don™ L(nw u/L\a*‘—kaJa\

27

What to do when an error occurs?

e Old style: return an “error code”

e Caller must check on each call
— Did the method return an error?
— Requires a special value to indicate error

* Example:

— indexOf() method used to retrieve index position
at which a particular character appears in a string

— |f specified character is not found, indexOf()
returns -1

— Programmer must check for -1

Java Approach: Exceptions

* Write code without worrying about checking for
errors

* When an error is detected, an exception is
“thrown”...

— Java system stops execution of the current method

— Searches for an “exception handler” to deal with the
problem

e Search begins in the current method and
continues to
— caller -> caller’s caller -> caller’s caller’s caller ->
— ...=>main -> ...

Each method “frame” on
the “stack” contains
storage for the
parameters and local
variables of the method

The Call Stack

method4 -

method3

method?2

method1

Currently
- executing
method

Methods
waiting for
called method
to complete

30

Searching for a Handler

Each method can either
“catch” the exception or
“throw” it on to its caller

e

method4

method3

method?2

method1

Exception
occurs
here

Java searches
for an exception
handler starting
with the current
method, then
caller, caller’s
caller, etc.

31

Video 2
The Exception Class

Catching an Exception: Basic Syntax

Basic syntax of the try-catch statement...

try { é//,//”/‘Lllllllﬂllllll

statements-that-might-throw-exception;
} catch (Exception e) {
statements-to-recover-from-exception;

J \\{ -atch clause ‘

Note: “Exception” is a class name, not a
reserved word; e is an object reference.

33

Passing the Buck: Throws

A method can declare that it throws an

exception without catching it... l}i

public void doit(int x) throws Exceptioﬁ {
statements-that-might-throw-an-exception;

} \M

Note: “throws” is a keyword, “Exception” is a
class name

34

Exception Class

Exceptions are objects

The exception object is an instance of
— class Exception, or
— a subclass of Exception

Created using new (just like any object)
Two useful methods...

— e.getMessage() get the associated text message
— e.printStackTrace() prints the current call stack

Exception Class Hierarchy

Exception

|OException YourException

FileNotFoundException RuntimeException

ArithmeticException NullPointerException

IndexOutOfBoundsException

Checked vs. Unchecked Exceptions

* The RuntimeException class and its subclasses
are “unchecked” exceptions:

— Generally indicate program or JVM error (null
pointer, arithmetic, invalid array index, etc.)

— Typically: no recovery is possible; program crashes
* All other Exceptions are “checked”
— Generally indicate “user” error (e.g., file not found)

— Must check for them (try-catch or throws)
— Typically: recoverable (e.g., prompt user again)

EOF: Unchecked Exception

import java.util.Scanner;

public class EOF {
public static void main(String[] args) {
FileReader fr = new FileReader(f);
Scanner s = new Scanner(fr);

while (true) {

String word = s.next();
System.out.println(word);

¥

Throws NoSuchElementException at end of file

EOF: Catching NoSuchElement

import java.util.Scanner;
import java.util.NoSuchElementException;

public class EOF {
public static void main(String[] args) {
FileReader fr = new FileReader(f);
Scanner s = new Scanner(fr);
while (true) {
try {
String word = s.next();
System.out.println(word);
} catch (NoSuchElementException e) {

System.out.printf("NoSuchElementException:

break;

%s\n”,e.getMessage());

Scanner: Catching FileNotFound

import java.util.Scanner;
import java.io.File;
import java.io.FileNotFoundException;

public class LineCounter {
public static void main(String[] args) {
File f = new File(args[©@]);

try {
FileReader fr = new FileReader(f);

Scanner s = new Scanner(fr);
int ¢ = 9;
while (s.hasNextLine()) {
s.nextLine();
C++;

System.out.printf("read %d lines from file %s\n", c, f);
} catch (FileNotFoundException e) {
System.out.printf("Exception: %s\n", e.getMessage());

Video 3
Advanced Exception Handling

Making Your Own Exception Class

public class StudentNotFoundException extends Exception {
public StudentNotFoundException (String message) {
super (message);

public class FindStudent {
public Student search (int student) throws
StudentNotFoundException {
if (...) {
throw new StudentNotFoundException
(Integer.toString(student));

Typical Exception Handling Situation

try {

methodl(..);

} catch (StudentNotFoundException e) {
statements-to-recover;

¥

Catching Multiple Exceptions

* Itis possible to catch multiple exceptions from one try

* Catches must be ordered from lowest subclass to highest
superclass

try {
. statements-that-may-throw-exceptions;

} catch (StudentNotFoundException e) {
// code to handle student not found
} catch (NullPointerException e) {
// code to handle null pointer
} catch (Exception e) {
// code to handle all other exceptions

}

Finally Clause

* Finally, if present, a “finally” clause is executed after all other

try/catch statements
 The finally clause is guaranteed to execute, even if earlier clause

returns

try {
. statements-that-may-throw-exceptions;

} catch (StudentNotFoundException e) {
// code to handle student not found

} finally {
// code to clean things up

¥

try-with-resources statement

* |nstead of a finally block to ensure that a
resource is closed you can use a try-with-
resources statement

* Aresource is an object that must be closed
after the program is finished with it

try-with-resources statement

static String readFirstLineFromFile(String path) throws
IOException {

try (BufferedReader br =
new BufferedReader(new FileReader(path)))

return br.readlLine();

}
catch (StudentNotFoundException e) {

// code to handle other exceptions

¥

try-with-resources statement

* Resource declared in the try-with-resources
statement is a BufferedReader

 BufferedReader br must be closed after
the program is finished with it

 BufferedReader br will be closed
regardless of whether the try statement
completes normally or abruptly

	CS18000: Problem Solving and Object-Oriented Programming
	Video 1�Basics of File I/O
	�External Communication
	Persistence of File Storage
	Input and Output “Pipes”
	Files and Java
	The Implementation of Buffering
	The Importance of Buffering
	Generic File Operations (1)
	Generic File Operations (2)
	Video 2�Low-Level, High-Level, and Object I/O
	File I/O Layers in Java
	Example: Low-Level I/O
	Example: High-Level I/O
	Tricky Bits
	Example: (1)
	Example: Object I/O (2)
	Serializable
	Video 3�Text I/O
	File Content Types
	Writing and Reading Text
	Example: TextIO (1)
	Example: TextIO (2)
	Video 1�Introduction to Exceptions
	Exceptions
	Handling Error Situations
	What to do when an error occurs?
	What to do when an error occurs?
	Java Approach: Exceptions
	The Call Stack
	Searching for a Handler
	Video 2�The Exception Class
	Catching an Exception: Basic Syntax
	Passing the Buck: Throws
	Exception Class
	Exception Class Hierarchy
	Checked vs. Unchecked Exceptions
	EOF: Unchecked Exception
	EOF: Catching NoSuchElement
	Scanner: Catching FileNotFound
	Video 3�Advanced Exception Handling
	Making Your Own Exception Class
	Typical Exception Handling Situation
	Catching Multiple Exceptions
	Finally Clause
	try-with-resources statement
	try-with-resources statement
	try-with-resources statement

