
CS18000: Problem Solving and
Object-Oriented Programming

File I/O and Exception Handling

(revised 11/24/23)

Video 1
Basics of File I/O

External Communication

File I/O

Persistence of File Storage

• RAM comes and goes
– Programs crash
– Systems reboot

• Files last (well … comparatively speaking…)
• Programs save data to files to

– recover from program crashes and system reboots
– provide as input to other programs

• File I/O operations extend naturally to
communication between programs

4

Input and Output “Pipes”

5

Files and Java

• Java is (or tries to be) platform independent
• Provides abstractions for files and file systems
• File class

– But, file name is operating system (OS) dependent
– And, file directory conventions are OS-dependent

(e.g., path name of user home directory)
– So, there are limits to OS independence

• Three layers of abstraction in Java for file I/O
• Ultimately, all data stored as a stream of bytes

6or bits

The Implementation of Buffering

7

The Importance of Buffering

• Without buffering, each read or write may
generate physical disk access

• Can be extremely slow for large volumes of data
• Buffering has OS create internal array

– OS reads “more than needed” on input, keeps rest
for next call to read method

– OS doesn’t send output “right away” to disk drive,
waits a while in case another write comes along

– Important to close file (or flush buffers) when done
8

Generic File Operations (1)
• Open:

– Files must be opened before they can be used
– Open method indicates “for reading”, “for writing”, or “both”
– May also indicate “append” mode
– Allows operating system to establish “buffers” and other state

information about the file being read or written
• Read

– Transfers data from the file (or input stream) to the user process
– Specific method signatures indicate the type of data being

transferred (byte, int, String, Tree, etc.)
• Write

– Transfers data from the user process to the file (or output stream)
– Specific method signatures indicate the type of data being

transferred (byte, int, String, Tree, etc.)

9

Generic File Operations (2)
• File position

– Sets the “current input position” to a specific byte address
in the file

– Can be used to skip over data in the file; or back up to read
data again

– Can be used to “rewind” the file to start reading from the
beginning again

• Close
– Ensures that any “queued data” is “flushed” from the

operating system buffers
– Frees any operating system resources being dedicated to

managing the file

10

Video 2
Low-Level, High-Level, and

Object I/O

File I/O Layers in Java

• Low-Level
– “Raw” data transfer: byte-oriented
– Classes: FileOutputStream, FileInputStream

• High-Level
– Java primitive types
– Classes: DataOutputStream, DataInputStream

• Object I/O
– Java object types
– Classes: ObjectOutputStream, ObjectInputStream

Ultimately, all data stored as a sequence of bytes
12

Example: Low-Level I/O
import java.io.*;

public class LowLevelIO {
 public static void main(String[] args) throws IOException {
 File f = new File("lowlevel");

 FileOutputStream fos = new FileOutputStream(f);
 fos.write(42);
 fos.close();

 FileInputStream fis = new FileInputStream(f);

int i = fis.read();
System.out.printf("Read %d\n", i);

 fis.close();
}

}

13

Example: High-Level I/O
import java.io.*;

public class HighLevelIO {
 public static void main(String[] args) throws IOException {
 File f = new File("highlevel");

 FileOutputStream fos = new FileOutputStream(f);
 DataOutputStream dos = new DataOutputStream(fos);
 dos.writeInt(1000);
 dos.close();

 FileInputStream fis = new FileInputStream(f);
 DataInputStream dis = new DataInputStream(fis);
 int i = dis.readInt();
 System.out.printf("Read %d\n", i);
 dis.close();
 }
}

14

dos builds on fos

dis builds on fis

Tricky Bits

• You must keep track of what you’re doing!
• Data values must be read in the same order in

which they were written
– write int, long, long, boolean, double, float, char
– read int, long, long, boolean, double, float, char

• If you try to read an int, but a double is next in
the stream, you’ll get garbage

15

Example: (1)
import java.io.*;

public class ObjectIO {
 public static void main(String[] args) throws Exception {
 File f = new File("object");

 FileOutputStream fos = new FileOutputStream(f);
 ObjectOutputStream oos = new ObjectOutputStream(fos);

 Tree tree1 = new Tree(42, "elm");
 oos.writeObject(tree1); // write the object out
 oos.close();

 FileInputStream fis = new FileInputStream(f);
 ObjectInputStream ois = new ObjectInputStream(fis);

 Tree tree2 = (Tree) ois.readObject(); // read the object back

 ois.close();

 System.out.printf("tree1 = %s\n", tree1);
 System.out.printf("tree2 = %s\n", tree2);
 }
}

16

oos builds on fos

ois builds on fis

Example: Object I/O (2)
class Tree implements Serializable {
 double circumference;
 String species;

 Tree(double circumference, String species) {
 this.circumference = circumference;
 this.species = species;
 }

 public String toString() {
 return String.format("%x: circumference = %d, species = %s",
 hashCode(), circumference, species);
 }
}

17

Serializable

18

Video 3
Text I/O

File Content Types

• Can consider file contents in two categories
• Text (e.g., *.java, *.txt)

– Store human-readable, character data
– Mostly platform independent (except EOL)

• Binary (e.g., *.class, *.exe)
– Not (generally) human readable
– Store any kind of data
– Requires specific programs to “make sense” of it

20

Writing and Reading Text

• Java handles translation from internal primitive
format to human-readable text

• Writing
– Class: PrintWriter (favored, more platform independent)
– Class: PrintStream for System.out (but out of favor)

• Reading
– Classes: FileReader and BufferedReader
– Also, Scanner

• Note: BufferedReader is more efficient than
Scanner (only important for high volumes of I/O)

21

Example: TextIO (1)
import java.io.*;

public class TextIO {

 public static void main(String[] args) throws IOException {
 File f = new File("textio.txt");

 // open FileOutputStream in append mode (true)
 FileOutputStream fos = new FileOutputStream(f, true);

 // use PrintWriter--similar to PrintStream (like System.out)...
 PrintWriter pw = new PrintWriter(fos);
 pw.println("our old friend");
 pw.close();

// continued...

22

Example: TextIO (2)
// ... continued

 // read what we just wrote...
 FileReader fr = new FileReader(f);
 BufferedReader bfr = new BufferedReader(fr);
 while (true) {
 String s = bfr.readLine();
 if (s == null)
 break;

System.out.println(s);
}

 bfr.close();
 }
}

23

Video 1
Introduction to Exceptions

Exceptions

try-catch
throw

Handling Error Situations
public class Summer {
 public static void main(String[] args) {
 Scanner in = new Scanner(System.in);
 int number; // number that is input
 int sum = 0; // sum of values
 int c = 0; // how many values read
 double average; // average value
 while (in.hasNextInt()) {
 number = in.nextInt();
 c = c + 1;
 sum = sum + number;
 }
 if (c > 0) {
 average = sum / c;
 System.out.printf("%d values, sum %d, average %f", c, sum, average);
 } else
 System.out.printf(“no values, no sum, no average");
 }
}

26

What to do when an error occurs?

27

What to do when an error occurs?

• Old style: return an “error code”
• Caller must check on each call

– Did the method return an error?
– Requires a special value to indicate error

• Example:
– indexOf() method used to retrieve index position

at which a particular character appears in a string
– If specified character is not found, indexOf()

returns -1
– Programmer must check for -1

28

Java Approach: Exceptions

• Write code without worrying about checking for
errors

• When an error is detected, an exception is
“thrown”…
– Java system stops execution of the current method
– Searches for an “exception handler” to deal with the

problem
• Search begins in the current method and

continues to
– caller -> caller’s caller -> caller’s caller’s caller ->
– …-> main -> …

29

The Call Stack

30

main

method1

method2

method3

method4

Each method “frame” on
the “stack” contains

storage for the
parameters and local

variables of the method

Currently
executing
method

Methods
waiting for
called method
to complete

Searching for a Handler

31

main

method1

method2

method3

method4

Each method can either
“catch” the exception or

“throw” it on to its caller

Java searches
for an exception
handler starting
with the current
method, then
caller, caller’s
caller, etc.

Exception
occurs
here

Video 2
The Exception Class

Catching an Exception: Basic Syntax

Basic syntax of the try-catch statement…

try {
 statements-that-might-throw-exception;
} catch (Exception e) {
 statements-to-recover-from-exception;
}

Note: “Exception” is a class name, not a
reserved word; e is an object reference.

33

try clause

catch clause

Passing the Buck: Throws

A method can declare that it throws an
exception without catching it…

public void doit(int x) throws Exception {
 statements-that-might-throw-an-exception;
}

Note: “throws” is a keyword, “Exception” is a
class name

34

New syntax

No try-catch needed!

Exception Class

• Exceptions are objects
• The exception object is an instance of

– class Exception, or
– a subclass of Exception

• Created using new (just like any object)
• Two useful methods…

– e.getMessage() get the associated text message
– e.printStackTrace() prints the current call stack

35

Exception Class Hierarchy

36

Exception

IOException

RuntimeException

NullPointerException

IndexOutOfBoundsException

YourException

FileNotFoundException

ArithmeticException

Checked vs. Unchecked Exceptions

• The RuntimeException class and its subclasses
are “unchecked” exceptions:
– Generally indicate program or JVM error (null

pointer, arithmetic, invalid array index, etc.)
– Typically: no recovery is possible; program crashes

• All other Exceptions are “checked”
– Generally indicate “user” error (e.g., file not found)
– Must check for them (try-catch or throws)
– Typically: recoverable (e.g., prompt user again)

37

EOF: Unchecked Exception
import java.util.Scanner;

public class EOF {
 public static void main(String[] args) {
 FileReader fr = new FileReader(f);
 Scanner s = new Scanner(fr);

 while (true) {
 String word = s.next();
 System.out.println(word);
 }
 }
}

Throws NoSuchElementException at end of file 38

EOF: Catching NoSuchElement
import java.util.Scanner;
import java.util.NoSuchElementException;

public class EOF {
 public static void main(String[] args) {
 FileReader fr = new FileReader(f);
 Scanner s = new Scanner(fr);
 while (true) {
 try {
 String word = s.next();
 System.out.println(word);
 } catch (NoSuchElementException e) {
 System.out.printf("NoSuchElementException: %s\n”,e.getMessage());
 break;
 }
 }
 }
} 39

Scanner: Catching FileNotFound
import java.util.Scanner;
import java.io.File;
import java.io.FileNotFoundException;

public class LineCounter {
 public static void main(String[] args) {
 File f = new File(args[0]);

 try {
 FileReader fr = new FileReader(f);
 Scanner s = new Scanner(fr);
 int c = 0;
 while (s.hasNextLine()) {
 s.nextLine();
 c++;
 }

 System.out.printf("read %d lines from file %s\n", c, f);
 } catch (FileNotFoundException e) {
 System.out.printf("Exception: %s\n", e.getMessage());
 }
 }
} 40

Video 3
Advanced Exception Handling

Making Your Own Exception Class
public class StudentNotFoundException extends Exception {
 public StudentNotFoundException (String message) {
 super (message);
 }
}

public class FindStudent {
 public Student search (int student) throws
 StudentNotFoundException {
 if (...) {
 throw new StudentNotFoundException
 (Integer.toString(student));
 }
 }
}

42

Typical Exception Handling Situation

try {
 …
 method1(…);
 …
} catch (StudentNotFoundException e) {
 statements-to-recover;
}

43

Catching Multiple Exceptions
• It is possible to catch multiple exceptions from one try
• Catches must be ordered from lowest subclass to highest

superclass

try {
 … statements-that-may-throw-exceptions;
} catch (StudentNotFoundException e) {
 // code to handle student not found
} catch (NullPointerException e) {
 // code to handle null pointer
} catch (Exception e) {
 // code to handle all other exceptions
}

44

Finally Clause
• Finally, if present, a “finally” clause is executed after all other

try/catch statements
• The finally clause is guaranteed to execute, even if earlier clause

returns

try {
 … statements-that-may-throw-exceptions;
} catch (StudentNotFoundException e) {
 // code to handle student not found
…
} finally {
 // code to clean things up
}

45

try-with-resources statement

• Instead of a finally block to ensure that a
resource is closed you can use a try-with-
resources statement

• A resource is an object that must be closed
after the program is finished with it

46

try-with-resources statement

static String readFirstLineFromFile(String path) throws
IOException {
 try (BufferedReader br =

 new BufferedReader(new FileReader(path)))
{

 return br.readLine();
 }
 catch (StudentNotFoundException e) {
 // code to handle other exceptions
 }
}

47

try-with-resources statement

• Resource declared in the try-with-resources
statement is a BufferedReader

• BufferedReader br must be closed after
the program is finished with it

• BufferedReader br will be closed
regardless of whether the try statement
completes normally or abruptly

48

	CS18000: Problem Solving and Object-Oriented Programming
	Video 1�Basics of File I/O
	�External Communication
	Persistence of File Storage
	Input and Output “Pipes”
	Files and Java
	The Implementation of Buffering
	The Importance of Buffering
	Generic File Operations (1)
	Generic File Operations (2)
	Video 2�Low-Level, High-Level, and Object I/O
	File I/O Layers in Java
	Example: Low-Level I/O
	Example: High-Level I/O
	Tricky Bits
	Example: (1)
	Example: Object I/O (2)
	Serializable
	Video 3�Text I/O
	File Content Types
	Writing and Reading Text
	Example: TextIO (1)
	Example: TextIO (2)
	Video 1�Introduction to Exceptions
	Exceptions
	Handling Error Situations
	What to do when an error occurs?
	What to do when an error occurs?
	Java Approach: Exceptions
	The Call Stack
	Searching for a Handler
	Video 2�The Exception Class
	Catching an Exception: Basic Syntax
	Passing the Buck: Throws
	Exception Class
	Exception Class Hierarchy
	Checked vs. Unchecked Exceptions
	EOF: Unchecked Exception
	EOF: Catching NoSuchElement
	Scanner: Catching FileNotFound
	Video 3�Advanced Exception Handling
	Making Your Own Exception Class
	Typical Exception Handling Situation
	Catching Multiple Exceptions
	Finally Clause
	try-with-resources statement
	try-with-resources statement
	try-with-resources statement

