
Chapter 7 Java: an Introduction to Computer Science & Programming - Walter Savitch 1

Chapter 7

Inheritance

Inheritance Basics
Programming with Inheritance
Dynamic Binding and Polymorphism

Chapter 7 Java: an Introduction to Computer Science & Programming - Walter Savitch 2

Principles of OOP

OOP - Object-Oriented Programming
Principles discussed in previous chapters:
» Information Hiding
» Encapsulation

In this chapter
» Inheritance

Chapter 7 Java: an Introduction to Computer Science & Programming - Walter Savitch 3

Why OOP?

To try to deal with the complexity of programs
To apply principles of abstraction to simplify the tasks
of writing, testing, maintaining, and understanding
complex programs
To increase code reuse
» to reuse classes developed for one application in

other applications instead of writing new programs
from scratch ("Why reinvent the wheel?")

Inheritance is a major technique for realizing these
objectives

Chapter 7 Java: an Introduction to Computer Science & Programming - Walter Savitch 4

Inheritance Overview

Inheritance allows you to define a very general class … then later
define more specialized classes by adding new detail
» the general class is called the base or parent class (superclass)

The specialized classes inherit all the properties of the general class
» specialized classes are derived from the base class
» they are called derived or child classes (subclass)

After the general class is developed you only have to write the
"difference" or "specialization" code for each derived class

A class hierarchy: classes can be derived from derived classes (child
classes can be parent classes)
» any class higher in the hierarchy is an ancestor class
» any class lower in the hierarchy is a descendent class

Chapter 7 Java: an Introduction to Computer Science & Programming - Walter Savitch 5

An Example of Inheritance:
a Person Class

The base class: Display 7.1
Constructors:
» a default constructor
» one that initializes the name attribute (instance variable)

Mutator and Accessor methods:
» setName to change the value of the name attribute
» getName to read the value of the name attribute
» writeOutput to display the value of the name attribute

One other class method:
» sameName to compare the values of the name attributes for

objects of the class
Note: the methods are public and the name attribute private

public class Person
{
 private String name;
 public Person()
 {
 name = "No name yet.";
 }
 public Person(String initialName)
 {
 name = initialName;
 }
 public void setName(String newName)
 {
 name = newName;
 }
 public String getName()
 {
 return name;
 }
 public void writeOutput()
 {
 System.out.println("Name: " + name);
 }
 public boolean sameName(Person otherPerson)
 {
 return (this.name.equalsIgnoreCase(otherPerson.name));
 }
}

Java: an Introduction to Computer Science & Programming - Walter Savitch

A Person
Base Class
Display 7.1

6Chapter 6

Chapter 7 Java: an Introduction to Computer Science & Programming - Walter Savitch 7

Derived Classes: a Class Hierarchy
Person

Student Employee

Faculty StaffUndergraduate Graduate

MastersDegree NonDegreePhD

The base class can be used to implement specialized classes
» For example: Student, Employee, Faculty, and Staff

Classes can be derived from the classes derived from the base
class, etc., resulting in a class hierarchy

Chapter 7 Java: an Introduction to Computer Science & Programming - Walter Savitch 8

Derived Classes

The keyword extends in first line indicates inheritance.
» Creates derived class Student from base class Person

A derived class inherits the instance variables and methods of
the base class that it extends.
» The Person class has a name instance variable so the
Student class will also have a name instance variable.

» Can call the setName method with a Student object even
though setName is defined in Person and not in Student:

public class Student extends Person

Student s = new Student();
s.setName("Warren Peace");

Chapter 7 Java: an Introduction to Computer Science & Programming - Walter Savitch 9

Extending the Base Class

A derived class can add instance variables and/or methods to
those it inherits from its base class.
Note that an instance variable for the student number has been
added
» Student has this attribute in addition to name, which is

inherited from Person

Student also adds several methods that are not in Person:
» reset, getStudentNumber, setStudentNumber,
writeOutput, equals, and some constructors

Should I create a subclass or just change an existing class???

private int studentNumber;

9Chapter 6 Java: an Introduction to Computer Science & Programming - Walter Savitch

Chapter 7 Java: an Introduction to Computer Science & Programming - Walter Savitch 10

Example of Adding Constructor in a
Derived Class: Student
public class Student extends Person
{

private int studentNumber;
public Student()
{

super();
studentNumber = 0;

}
…

The first few lines of
Student class
(Display 7.3):

Two new constructors (one on next slide)
» default initializes attribute studentNumber to 0
super() must be first action in a constructor definition
» Included automatically by Java if it is not there
» super()calls the parent default constructor

10Chapter 6 Java: an Introduction to Computer Science & Programming - Walter Savitch

Chapter 7 Java: an Introduction to Computer Science & Programming - Walter Savitch 11

Example of Adding Constructor in a
Derived Class: Student

• Passes parameter newName to constructor of parent class
• Uses second parameter to initialize instance variable that is not in

parent class.

public class Student extends Person
{
...

public Student(String newName, int newStudentNumber)
{

super(newName);
studentNumber = newStudentNumber;

}
...

More lines of Student class
(Display 7.3):

11Chapter 6 Java: an Introduction to Computer Science & Programming - Walter Savitch

Chapter 7 Java: an Introduction to Computer Science & Programming - Walter Savitch 12

More about
Constructors in a Derived Class

Constructors can call other constructors
Use super to invoke a constructor in parent class
» as shown on the previous slide

Use this to invoke a constructor within the class
» shown on the next slide

Whichever is used must be the first action taken by the
constructor
Only one of them can be first, so if you want to invoke both:
» Use a call with this to call a constructor with super

Chapter 7 Java: an Introduction to Computer Science & Programming - Walter Savitch 13

Example of a constructor using this
Student class has a constructor with two parameters: String for the
name attribute and int for the studentNumber attribute
public Student(String newName, int newStudentNumber)
{

super(newName);
studentNumber = newStudentNumber;

}

Another constructor within Student takes just a String argument and
initializes the studentNumber attribute to a value of 0:
» calls the constructor with two arguments, initialName (String) and 0

(int), within the same class

public Student(String initialName)
{

this(initialName, 0);
}

Chapter 7 Java: an Introduction to Computer Science & Programming - Walter Savitch 14

Overriding Methods

When a child class has a method with the same signature as the
parent class, the method in the child class overrides the one in
the parent class.
This is overriding, not overloading.
Example:
» Both Person and Student have a writeOutput method

with no parameters (same signature).
» When writeOutput is called with a Student calling object,

the writeOutput in Student will be used, not the one in
Person.

Chapter 7 Java: an Introduction to Computer Science & Programming - Walter Savitch 15

Call to an Overridden Method

Use super to call a method in the parent class that was
overridden (redefined) in the derived class
Example: Student redefined the method writeOutput of its
parent class, Person
Could use super.writeOutput() to invoke the overridden
(parent) method
Can be called from anywhere in the method

public void writeOutput()
{

super.writeOutput();
System.out.println("Student Number : "

+ studentNumber);
}

Chapter 7 Java: an Introduction to Computer Science & Programming - Walter Savitch 16

Overriding Versus Overloading

Overriding

Same method name

Same signature
One method in
ancestor, one in
descendant

Overloading

Same method name

Different signature
Both methods can be
in same class

Chapter 7 Java: an Introduction to Computer Science & Programming - Walter Savitch 17

The final Modifier

Specifies that a method definition cannot be overridden with a
new definition in a derived class
Example:
public final void specialMethod()
{
...

Used in specification of some methods in standard libraries
Allows the compiler to generate more efficient code
Can also declare an entire class to be final, which means it
cannot be used as a base class to derive another class

Chapter 7 Java: an Introduction to Computer Science & Programming - Walter Savitch 18

private & public
Instance Variables and Methods

private instance variables from the parent class are not
available by name in derived classes
» "Information Hiding" says they should not be
» use mutator methods to change them, e.g. reset for a
Student object to change the name attribute

private methods are not inherited!
» use public to allow methods to be inherited
» only helper methods should be declared private

Chapter 7 Java: an Introduction to Computer Science & Programming - Walter Savitch 19

What is the "Type" of a Derived class?

Derived classes have more than one type
Of course they have the type of the derived class (the class they
define)
They also have the type of every ancestor class
» all the way to the top of the class hierarchy

All classes derive from the original, predefined class Object
Object is called the Eve class since it is the original class for
all other classes

Chapter 7 Java: an Introduction to Computer Science & Programming - Walter Savitch 20

Assignment Compatibility

Can assign an object of a derived class to a
variable of any ancestor type
Person josephine;
Employee boss = new Employee();
josephine = boss;

Can not assign an object of an ancestor class to a
variable of a derived class type
Person josephine = new Person();
Employee boss;

boss = josephine; Not allowed

OK

Person

Employee

Person is the
parent class of
Employee in
this example.

Chapter 7 Java: an Introduction to Computer Science & Programming - Walter Savitch 21

"Is a" and "Has a" Relationships

Inheritance is useful for "is a" relationships.
» A student "is a" person.
» Student inherits from Person.

Inheritance is usually not useful for "has a" relationships.
» A student "has a(n)" enrollment date.
» Add a Date object as an instance variable of Student

instead of having Student inherit from Date.

If it makes sense to say that an object of Class1 "is a(n)" object
of Class2, then consider using inheritance.

Chapter 7 Java: an Introduction to Computer Science & Programming - Walter Savitch 22

Character Graphics Example

Figure

Box Triangle

Instance variables:
offset
Methods:
setOffset getOffset
drawAt drawHere

Instance variables:
offset height width
Methods:
setOffset getOffset
drawAt drawHere
reset drawHorizontalLine
drawSides drawOneLineOfSides
spaces

Instance variables:
offset base
Methods:
setOffset getOffset
drawAt drawHere
reset drawBase
drawTop spaces

Inherited
Overrides
Static

Chapter 7 Java: an Introduction to Computer Science & Programming - Walter Savitch 23

Abstract Classes

Cannot create objects of an abstract class
» Example: Figure class in character graphics program
» An abstract class is used as a base for inheritance instead of

being used to create objects.
Abstract classes simplify program design by not requiring you to
supply methods that would always be overridden.
» Example: drawHere method is overridden in all classes

derived from Figure.
Specify that a method is abstract if you don't want to implement it:
public abstract void drawHere();

Any class that has an abstract method must be declared as an
abstract class:
public abstract class Figure

Chapter 7 Java: an Introduction to Computer Science & Programming - Walter Savitch 24

Interfaces

An interface is a type that specifies method headings.
Example:

You can make a method more general by using an interface as a
type for a parameter.
» An object of any class that implements the interface (see the

next slide) can be passed as the parameter.

public interface Writeable
{

public String toString();
public void writeOutput();

}

public void display(Writeable displayObj)
{

displayObj.writeOutput();
}

Chapter 7 Java: an Introduction to Computer Science & Programming - Walter Savitch 25

Implementing an Interface

A class that implements an interface must
» contain complete definitions for all of the methods specified

in the interface
» be declared as implementing the interface
implements Interface_Name

Any class that implements the Writeable interface must have
complete definitions of toString and writeOutput.
There can be many different classes that implement an
interface.

Chapter 7 Java: an Introduction to Computer Science & Programming - Walter Savitch 26

How do Programs Know
Where to Go Next?

Programs normally execute in sequence
Non-sequential execution occurs with:
» selection (if/if-else/switch) and repetition (while/do-while/for)

(depending on the test it may not go in sequence)
» method calls, which jump to the location in memory that

contains the method's instructions and returns to the calling
program when the method is finished executing

One job of the compiler is to try to figure out the memory
addresses for these jumps
The compiler cannot always know the address
» sometimes it needs to be determined at run time

Chapter 7 Java: an Introduction to Computer Science & Programming - Walter Savitch 27

Static and Dynamic Binding

Binding: determining the memory addresses for jumps
Static: done at compile time
» also called offline

Dynamic: done at run time
Compilation is done offline
» it is a separate operation done before running a

program
Binding done at compile time is, therefore, static
Binding done at run time is dynamic
» also called late binding

Chapter 7 Java: an Introduction to Computer Science & Programming - Walter Savitch 28

Example of Dynamic Binding:
General Description

Derived classes call a method in their parent class
which calls a method that is overridden (defined) in
each of the derived classes
» the parent class is compiled separately and before

the derived classes are even written
» the compiler cannot possibly know which address

to use
» therefore the address must be determined (bound)

at run time

Chapter 7 Java: an Introduction to Computer Science & Programming - Walter Savitch 29

Dynamic Binding: Specific Example

Parent class: Figure
» Defines methods: drawAt and drawHere
» drawAt calls drawHere

Derived class: Box extends Figure
» Inherits drawAt
» Redefines (overrides) drawHere
» Calls drawAt

– uses the parent's drawAt method
– which must call this, the derived class's, drawHere

method
Figure is compiled before Box is even written, so the address
of drawHere(in the derived class Box) cannot be known then
» it must be determined during run time, i.e. dynamically

Chapter 7 Java: an Introduction to Computer Science & Programming - Walter Savitch 30

Polymorphism

Using the process of dynamic binding to allow
different objects to use different method actions for
the same method name
Originally overloading was considered to be
polymorphism
Now the term usually refers to use of dynamic
binding

Chapter 7 Java: an Introduction to Computer Science & Programming - Walter Savitch 31

Summary
A derived inherits the instance variables & methods of the base
class
A derived class can create additional instance variables and
methods
The first thing a constructor in a derived class normally does is
call a constructor in the base class
If a derived class redefines a method defined in the base class,
the version in the derived class overrides that in the base class
Private instance variables and methods of a base class cannot
be accessed directly in the derived class
If A is a derived class of class B, than A is both a member of
both classes, A and B
» the type of A is both A and B

	Chapter 7
	Principles of OOP
	Why OOP?
	Inheritance Overview
	An Example of Inheritance:a Person Class
	Derived Classes: a Class Hierarchy
	Derived Classes
	Extending the Base Class
	Example of Adding Constructor in a Derived Class: Student
	Example of Adding Constructor in a Derived Class: Student
	More aboutConstructors in a Derived Class
	Example of a constructor using this
	Overriding Methods
	Call to an Overridden Method
	Overriding Versus Overloading
	The final Modifier
	private & publicInstance Variables and Methods
	What is the "Type" of a Derived class?
	Assignment Compatibility
	"Is a" and "Has a" Relationships
	Character Graphics Example
	Abstract Classes
	Interfaces
	Implementing an Interface
	How do Programs KnowWhere to Go Next?
	Static and Dynamic Binding
	Example of Dynamic Binding: General Description
	Dynamic Binding: Specific Example
	Polymorphism
	Summary

