
Chapter 3 1

Flow of Control

Chapter 3

Chapter 3 2

Flow of Control

• Flow of control is the order in which a
program performs actions.
– Up to this point, the order has been

sequential.
• A branching statement chooses between two

or more possible actions.
• A loop statement repeats an action until a

stopping condition occurs.

Chapter 3 3

The if-else Statement

• A branching statement that chooses between
two possible actions.

• syntax
if (Boolean_Expression)
Statement_1;

else
Statement_2;

Chapter 3 4

The if-else Statement,
cont.

• example
if (count < 3)

total = 0;
else

total = total + count;

Chapter 3 5

The if-else Statement,
cont.

• class BankBalance

Chapter 3 6

Compound Statements

• To include multiple statements in a branch,
enclose the statements in braces.
if (count < 3)

{
total = 0;
count = 0;

}

Chapter 3 7

Omitting the else Part

• If the else part is omitted and the expression
after the if is false, no action occurs.

• syntax
if (Boolean_Expression)

Statement

• example
if (weight > ideal)

caloriesPerDay -= 500;

Chapter 3 8

Introduction to Boolean
Expressions

• The value of a boolean expression is either
true or false.

• examples
time < limit

balance <= 0

Chapter 3 9

Java Comparison Operators

Chapter 3 10

Compound Boolean
Expressions

• Boolean expressions can be combined using
the “and” (&&) operator.

• example
if ((score > 0) && (score <= 100))
...

• not allowed
if (0 < score <= 100)

...

Chapter 3 11

Compound Boolean
Expressions, cont.

• syntax
(Sub_Expression_1) && (Sub_Expression_2)

• Parentheses often are used to enhance
readability.

• The larger expression is true only when both
of the smaller expressions are true.

Chapter 3 12

Compound Boolean
Expressions, cont.

• Boolean expressions can be combined using
the “or” (||) operator.

• example
if ((quantity > 5) || (cost < 10))
...

• syntax
(Sub_Expression_1) || (Sub_Expression_2)

Chapter 3 13

Compound Boolean
Expressions, cont.

• The larger expression is true
– when either of the smaller expressions is

true
– when both of the smaller expressions are

true.
• The Java version of “or” is the inclusive or

which allows either or both to be true.
• The exclusive or allows one or the other, but

not both to be true.

Chapter 3 14

Using ==
• == is appropriate for determining if two

integers or characters have the same value.
if (a == 3)

where a is an integer type
• == is not appropriate for determining if two

floating points values are equal. Use < and
some appropriate tolerance instead.
if (abs(b - c) < epsilon)

where b, c, and epsilon are floating point
types

Chapter 3 15

Using ==, cont.

• == is not appropriate for determining if two
objects have the same value.
– if (s1 == s2), where s1 and s2 refer to

strings, determines only if s1 and s2 refer
the a common memory location.

– If s1 and s2 refer to strings with identical
sequences of characters, but stored in
different memory locations, (s1 == s2) is
false.

Chapter 3 16

Using ==, cont.

• To test the equality of objects of class String,
use method equals.
s1.equals(s2)

or
s2.equals(s1)

• To test for equality ignoring case, use method
equalsIgnoreCase.

(“Hello”.equalsIgnoreCase(“hello”))

Chapter 3 17

equals and
equalsIgnoreCase

• syntax
String.equals(Other_String)

String.equalsIgnoreCase(Other_String)

Chapter 3 18

Testing Strings for Equality

• class StringEqualityDemo

Chapter 3 19

Lexicographic Order

• Lexicographic order is similar to alphabetical
order, but is it based on the order of the
characters in the ASCII (and Unicode)
character set.
– All the digits come before all the letters.
– All the uppercase letters come before all

the lower case letters.

Chapter 3 20

Lexicographic Order, cont.

• Strings consisting of alphabetical characters
can be compared using method compareTo and
method toUpperCase or method toLowerCase.
String s1 = “Hello”;
String lowerS1 = s1.toLowerCase();
String s2 = “hello”;
if (s1.compareTo(s2)) == 0

System.out.println(“Equal!”);

Chapter 3 21

Nested Statements
• An if-else statement can contain any sort of

statement within it.
• In particular, it can contain another if-else

statement.
– An if-else may be nested within the “if”

part.
– An if-else may be nested within the “else”

part.
– An if-else may be nested within both parts.

Chapter 3 22

Nested Statements, cont.
• syntax

if (Boolean_Expression_1)
if (Boolean_Expression_2)

Statement_1;
else

Statement_2;
else

if (Boolean_Expression_3)
Statement_3;

else
Statement_4;

Chapter 3 23

Nested Statements, cont.

• Each else is paired with the nearest
unmatched if.

• If used properly, indentation communicates
which if goes with which else.

• Braces can be used like parentheses to
group statements.

Chapter 3 24

Compound Statements

• When a list of statements is enclosed in
braces ({}), they form a single compound
statement.

• syntax
{

Statement_1;
Statement_2;

…
}

Chapter 3 25

Compound Statements, cont.

• A compound statement can be used
wherever a statement can be used.

• example
if (total > 10)
{

sum = sum + total;
total = 0;

}

Chapter 3 26

Multibranch if-else
Statements

• syntax
if (Boolean_Expression_1)

Statement_1
else if (Boolean_Expression_2)

Statement_2
else if (Boolean_Expression_3)

Statement_3
else if …
else

Default_Statement

Chapter 3 27

Multibranch if-else
Statements, cont.

• class Grader

Chapter 3 28

Multibranch if-else
Statements, cont.

• equivalent code

Chapter 3 29

The switch Statement

• The switch statement is a mutltiway branch
that makes a decision based on an integral
(integer or character) expression.

• The switch statement begins with the keyword
switch followed by an integral expression in
parentheses called the controlling expression.

Chapter 3 30

The switch Statement, cont.
• A list of cases follows, enclosed in braces.
• Each case consists of the keyword case

followed by
– a constant called the case label
– a colon
– a list of statements.

• The list of cases is searched in order for a
case label matching the controlling
expression.

Chapter 3 31

The switch Statement, cont.
• The action associated with a matching

case label is executed.
• If no match is found, the case labeled
default is executed.
– The default case is optional, but

recommended, even if it simply prints a
message.

• Repeated case labels are not allowed.

Chapter 3 32

The switch Statement, cont.
• class MultipleBirths

Chapter 3 33

The switch Statement, cont.

• The action for each case typically ends with
the word break.

• The optional break statement prevents the
consideration of other cases.

• The controlling expression can be anything
that evaluates to an integral type.

Chapter 3 34

The Conditional Operator

if (n1 > n2)

max = n1;
else

max = n2;

can be written as
max = (n1 > n2) ? n1 : n2;

• The ? and : together are call the conditional
operator or ternary operator.

Chapter 3 35

The Conditional Operator,
cont.

• The conditional operator is useful with print
and println statements.
System.out.print(“You worked “ + hours +

((hours > 1) ? “hours” : “hour”));

Chapter 3 36

the while Statement

• also called a while loop
• A while statement repeats until a controlling

boolean expression becomes false.
– If the controlling boolean expression is

false initially, the while loop is not executed.
• The loop body typically contains a statement

that ultimately causes the controlling boolean
expression to become false.

Chapter 3 37

the while Statement, cont.
• class WhileDemo

Chapter 3 38

the while Statement, cont.

• syntax
while (Boolean_Expression)

Body_Statement;
or
while (Boolean_Expression)
{

First_Statement;
Second_Statement;
…

}

Chapter 3 39

The do-while Statement

• also called a do-while loop
• similar to a while statement, except that the

loop body is executed at least once
• syntax

do
Body_Statement

while (Boolean_Expression);

– don’t forget the semicolon at the end of the
while line!

Chapter 3 40

The do-while Statement,
cont.

• class DoWhileDemo

Chapter 3 41

The do-while Statement,
cont.

• First, the loop body is executed.
• Then the boolean expression is checked.

– As long as it is true, the loop is executed
again.

– If it is false, the loop is exited.
• equivalent while statement

Statement(s)_S1
while (Boolean_Condition)

Statement(s)_S1

Chapter 3 42

Infinite Loops
• A loop which repeats without ever ending is

called an infinite loop.
• If the controlling boolean expression never

becomes false, a while loop or a do-while loop
will repeat without ending.

Chapter 3 43

The for Statement

• A for statement executes the body of a loop a
fixed number of times.

• example
for (count = 1; count < 5; count++)

System.out.println(count);

System.out.println(“Done”);

Chapter 3 44

The for Statement, cont.

• syntax
for (Initialization, Condition, Update)

Body_Statement

– Body_Statement can be either a simple
statement or a compound statement in {}.

• corresponding while statement
Initialization
while (Condition)

Body_Statement_Including_Update

Chapter 3 45

Multiple Initialization, etc.

• example
for (n = 1, p = 1; n < 10; n++)

p = p * n;

• Only one boolean expression is allowed, but
it can consist of &&s, ||s, and !s.

• Multiple update actions are allowed, too.
for (n = 1, p = 1; n < 10; n++, p = p * n)

• rarely used

Chapter 3 46

The Empty for Statement
• What is printed by

int product = 1, number;
for (number = 1; number <= 10;
number++);

product = product * number;

System.out.println(product);?
• The last semicolon in

for (number = 1; number <= 10; number++);

produces an empty for statement.

Chapter 3 47

The Empty while Statement
int product = 1, number = 1;
while (number <= 10);
{

product = product * number;
number++

}
System.out.println(product);

• The last semicolon in
while (number <= 10);

produces an empty while loop body.

Chapter 3 48

Choosing a Loop Statement

• If you know how many times the loop will be
iterated, use a for loop.

• If you don’t know how many times the loop
will be iterated, but
– it could be zero, use a while loop
– it will be at least once, use a do-while loop.

• Generally, a while loop is a safe choice.

Chapter 3 49

The break Statement in
Loops

• A break statement can be used to end a loop
immediately.

• The break statement ends only the innermost
loop or switch statement that contains the
break statement.

• break statements make loops more difficult to
understand.

• Use break statements sparingly (if ever).

Chapter 3 50

The break Statement in
Loops, cont.

• class BreakDemo

Chapter 3 51

The exit Method
• Sometimes a situation arises that makes

continuing the program pointless.
• A program can be terminated normally by

System.exit(0).

• example
if (numberOfWinners == 0)
{

System.out.println(“cannot divide by 0”);
System.exit(0);

}

Chapter 3 52

Ending a Loop, cont.
• For large input lists, a sentinel value can be

used to signal the end of the list.
– The sentinel value must be different from

all the other possible inputs.
– A negative number following a long list of

nonnegative exam scores could be
suitable.

90
0
10
-1

Chapter 3 53

Ending a Loop, cont.

• example - reading a list of scores followed by
a sentinel value
int next = keyboard.nextInt();
while (next >= 0)
{

Process_The_Score
next = keyboard.nextInt();

}

Chapter 3 54

Ending a Loop, cont.
• class ExamAverager

Chapter 3 55

Nested Loops

• The body of a loop can contain any kind of
statements, including another loop.

• In the previous example
– the average score was computed using a
while loop.

– This while loop was placed inside a do-while
loop so the process could be repeated for
other sets of exam scores.

Chapter 3 56

Loop Bugs
• common loop bugs

– unintended infinite loops
– off-by-one errors
– testing equality of floating-point numbers

• subtle infinite loops
– The loop may terminate for some input

values, but not for others.
– For example, you can’t get out of debt

when the monthly penalty exceeds the
monthly payment.

Chapter 3 57

The Type boolean

• Boolean Expressions and Variables
• Truth Tables and Precedence Rules
• Input and Output of Boolean Values

Chapter 3 58

The Type boolean, cont.

• The type boolean is a primitive type with only
two values: true and false.

• Boolean variables can make programs more
readable.
if (systemsAreOK)

instead of
if((temperature <= 100) && (thrust >= 12000)
&& (cabinPressure > 30) && …)

Chapter 3 59

Boolean Expressions and
Variables

• Variables, constants, and expressions of type
boolean all evaluate to either true or false.

• A boolean variable can be given the value of
a boolean expression by using an assignment
operator.
boolean isPositive = (number > 0);
...
if (isPositive) ...

Chapter 3 60

Naming Boolean Variables

• Choose names such as isPositive or
systemsAreOk.

• Avoid names such as numberSign or
systemStatus.

Chapter 3 61

Short-circuit Evaluation

• Sometimes only part of a boolean expression
needs to be evaluated to determine the value
of the entire expression.
– If the first operand associated with an || is
true, the expression is true.

– If the first operand associated with an && is
false, the expression is false.

• This is called short-circuit or lazy evaluation.

Chapter 3 62

Short-circuit Evaluation, cont.

• Short-circuit evaluation is not only efficient,
sometimes it is essential!

• A run-time error can result, for example, from
an attempt to divide by zero.
if ((number != 0) && (sum/number > 5))

• Complete evaluation can be achieved by
substituting & for && or | for ||.

Chapter 3 63

Input and Output of Boolean
Values

• example
boolean boo = false;
System.out.println(boo);
System.out.print(“Enter a boolean value: “);
Scanner keyboard = new Scanner (System.in);
boo = keyboard.nextBoolean();
System.out.println(boo);

Chapter 3 64

Input and Output of Boolean
Values, cont.

• dialog
false
Enter a boolean value: true
true

Chapter 3 65

Using a Boolean Variable to
End a Loop

• example
boolean numbersLeftToRead = true
while (numbersLeftToRead)
{

next = keyboard.nextInt()
if (next < 0)

numbersLeftToRead = false;
else

Process_Next_Number
}

Chapter 3 66

(optional) Graphics
Supplement: Outline

• Specifying a Drawing Color
• The drawString Method
• A JOptionPane Yes/No Window

Chapter 3 67

Specifying a Drawing Color

• When drawing a shape inside an applet’s
paint method, think of the drawing being done
with a pen that can change colors.

• The method setColor changes the color of the
“pen.”
canvas.setColor(Color.YELLOW);

• Drawings done later appear on top of
drawings done earlier.

Chapter 3 68

Specifying a Drawing Color,
cont.

Chapter 3 69

Specifying a Drawing Color,
cont.

Chapter 3 70

The drawString Method

• similar to other drawing methods, but used to
“draw” text
canvas.drawString(“Hello”,10,20);

• syntax
Graphics_Object.drawString(String, X, Y);

Chapter 3 71

A JOptionPane Yes/No
Window

• used to present the user with a yes/no
question

• The window contains
– the question text
– two buttons labeled Yes and No.

Chapter 3 72

A JOptionPane Yes/No
Window, cont.

• example
int answer =
JOptionPane.showConfirmDialog(null,
“End program?”, “Want to end?”,
JOptionPane.YES_NO_OPTION);

if (answer == JOptionPane.YES_OPTION)
System.exit(0);

else
System.out.println(“once more”);

Chapter 3 73

A JOptionPane Yes/No
Window, cont.

Chapter 3 74

A JOptionPane Yes/No
Window, cont.

• JOptionPane.showConfirmDialog returns an int

value named either YES_OPTION or NO_OPTION,

but you do not need to think of them as ints.
• The second argument (“End program?” in our

example) appears in the window.
• The third argument (“Want to end?” in our

example) is displayed as the title of the
window.

Chapter 3 75

A JOptionPane Yes/No
Window, cont.

• The last argument (JOptionPane.YES_NO_OPTION
in our example) requests a window with yes
and no buttons.

• The first argument (null in our example)
affects the placement of the window on the
screen.
– Simply use null for now.

.

	Flow of Control
	Flow of Control
	The if-else Statement
	The if-else Statement, cont.
	The if-else Statement, cont.
	Compound Statements
	Omitting the else Part
	Introduction to Boolean Expressions
	Java Comparison Operators
	Compound Boolean Expressions
	Compound Boolean Expressions, cont.
	Compound Boolean Expressions, cont.
	Compound Boolean Expressions, cont.
	Using ==
	Using ==, cont.
	Using ==, cont.
	equals and equalsIgnoreCase
	Testing Strings for Equality
	Lexicographic Order
	Lexicographic Order, cont.
	Nested Statements
	Nested Statements, cont.
	Nested Statements, cont.
	Compound Statements
	Compound Statements, cont.
	Multibranch if-else Statements
	Multibranch if-else Statements, cont.
	Multibranch if-else Statements, cont.
	The switch Statement
	The switch Statement, cont.
	The switch Statement, cont.
	The switch Statement, cont.
	The switch Statement, cont.
	The Conditional Operator
	The Conditional Operator, cont.
	the while Statement
	the while Statement, cont.
	the while Statement, cont.
	The do-while Statement
	The do-while Statement,�cont.
	The do-while Statement, cont.
	Infinite Loops
	The for Statement
	The for Statement, cont.
	Multiple Initialization, etc.
	The Empty for Statement
	The Empty while Statement
	Choosing a Loop Statement
	The break Statement in Loops
	The break Statement in Loops, cont.
	The exit Method
	Ending a Loop, cont.
	Ending a Loop, cont.
	Ending a Loop, cont.
	Nested Loops
	Loop Bugs
	The Type boolean
	The Type boolean, cont.
	Boolean Expressions and Variables
	Naming Boolean Variables
	Short-circuit Evaluation
	Short-circuit Evaluation, cont.
	Input and Output of Boolean Values
	Input and Output of Boolean Values, cont.
	Using a Boolean Variable to End a Loop
	(optional) Graphics Supplement: Outline
	Specifying a Drawing Color
	Specifying a Drawing Color, cont.
	Specifying a Drawing Color, cont.
	The drawString Method
	A JOptionPane Yes/No Window
	A JOptionPane Yes/No Window, cont.
	A JOptionPane Yes/No Window, cont.
	A JOptionPane Yes/No Window, cont.
	A JOptionPane Yes/No Window, cont.

