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Flow of Control

• Flow of control is the order in which a 
program performs actions.
– Up to this point, the order has been 

sequential.
• A branching statement chooses between two 

or more possible actions.
• A loop statement repeats an action until a 

stopping condition occurs.
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The if-else Statement

• A branching statement that chooses between 
two possible actions.

• syntax
if (Boolean_Expression)
Statement_1;

else
Statement_2;
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The if-else Statement, 
cont.

• example
if (count < 3)

total = 0;
else

total = total + count;



Chapter 3 5

The if-else Statement, 
cont.

• class BankBalance
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Compound Statements

• To include multiple statements in a branch, 
enclose the statements in braces.
if (count < 3)

{
total = 0;
count = 0;

}
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Omitting the else Part

• If the else part is omitted and the expression 
after the if is false, no action occurs.

• syntax
if (Boolean_Expression)

Statement

• example
if (weight > ideal)

caloriesPerDay -= 500;
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Introduction to Boolean 
Expressions

• The value of a boolean expression is either 
true or false.

• examples
time < limit

balance <= 0
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Java Comparison Operators
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Compound Boolean 
Expressions

• Boolean expressions can be combined using 
the “and” (&&) operator.

• example
if ((score > 0) && (score <= 100))
...

• not allowed
if (0 < score <= 100)

...



Chapter 3 11

Compound Boolean 
Expressions, cont.

• syntax
(Sub_Expression_1) && (Sub_Expression_2)

• Parentheses often are used to enhance 
readability.

• The larger expression is true only when both 
of the smaller expressions are true.
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Compound Boolean 
Expressions, cont.

• Boolean expressions can be combined using 
the “or” (||) operator.

• example
if ((quantity > 5) || (cost < 10))
...

• syntax
(Sub_Expression_1) || (Sub_Expression_2)
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Compound Boolean 
Expressions, cont.

• The larger expression is true 
– when either of the smaller expressions is 

true
– when both of the smaller expressions are 

true.
• The Java version of “or” is the inclusive or 

which allows either or both to be true.
• The exclusive or allows one or the other, but 

not both to be true.
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Using ==
• == is appropriate for determining if two 

integers or characters have the same value.
if (a == 3)

where a is an integer type
• == is not appropriate for determining if two 

floating points values are equal.   Use < and 
some appropriate tolerance instead.
if (abs(b - c) < epsilon)

where b, c, and epsilon are floating point 
types
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Using ==, cont.

• == is not appropriate for determining if two 
objects have the same value.
– if (s1 == s2), where s1 and s2 refer to 

strings, determines only if s1 and s2 refer 
the a common memory location.

– If s1 and s2 refer to strings with identical 
sequences of characters, but stored in 
different memory locations, (s1 == s2) is 
false.
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Using ==, cont.

• To test the equality of objects of class String, 
use method equals.
s1.equals(s2)

or
s2.equals(s1)

• To test for equality ignoring case, use method 
equalsIgnoreCase.

(“Hello”.equalsIgnoreCase(“hello”))
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equals and 
equalsIgnoreCase

• syntax
String.equals(Other_String)

String.equalsIgnoreCase(Other_String)
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Testing Strings for Equality

• class StringEqualityDemo
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Lexicographic Order

• Lexicographic order is similar to alphabetical 
order, but is it based on the order of the 
characters in the ASCII (and Unicode) 
character set.
– All the digits come before all the letters.
– All the uppercase letters come before all 

the lower case letters.
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Lexicographic Order, cont.

• Strings consisting of alphabetical characters 
can be compared using method compareTo and 
method toUpperCase or method toLowerCase.
String s1 = “Hello”;
String lowerS1 = s1.toLowerCase();
String s2 = “hello”;
if (s1.compareTo(s2)) == 0

System.out.println(“Equal!”);
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Nested Statements
• An if-else statement can contain any sort of 

statement within it.
• In particular, it can contain another if-else

statement.
– An if-else may be nested within the “if”

part.
– An if-else may be nested within the “else”

part.
– An if-else may be nested within both parts.
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Nested Statements, cont.
• syntax

if (Boolean_Expression_1)
if (Boolean_Expression_2)

Statement_1;
else 

Statement_2;
else

if (Boolean_Expression_3)
Statement_3;

else 
Statement_4;
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Nested Statements, cont.

• Each else is paired with the nearest 
unmatched if.

• If used properly, indentation communicates 
which if goes with which else.

• Braces can be used like parentheses to 
group statements.
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Compound Statements

• When a list of statements is enclosed in 
braces ({}), they form a single compound 
statement.

• syntax
{

Statement_1;
Statement_2;

…
}



Chapter 3 25

Compound Statements, cont.

• A compound statement can be used 
wherever a statement can be used.

• example
if (total > 10)
{

sum = sum + total;
total = 0;

}
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Multibranch if-else
Statements

• syntax
if (Boolean_Expression_1)

Statement_1
else if (Boolean_Expression_2)

Statement_2
else if (Boolean_Expression_3)

Statement_3
else if …
else

Default_Statement
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Multibranch if-else
Statements, cont.

• class Grader
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Multibranch if-else
Statements, cont.

• equivalent code
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The switch Statement

• The switch statement is a mutltiway branch 
that makes a decision based on an integral 
(integer or character) expression.

• The switch statement begins with the keyword 
switch followed by an integral expression in 
parentheses called the controlling expression.
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The switch Statement, cont.
• A list of cases follows, enclosed in braces.
• Each case consists of the keyword case

followed by
– a constant called the case label
– a colon
– a list of statements.

• The list of cases is searched in order for a 
case label matching the controlling 
expression.
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The switch Statement, cont.
• The action associated with a matching 

case label is executed.
• If no match is found, the case labeled 
default is executed.
– The default case is optional, but 

recommended, even if it simply prints a 
message.

• Repeated case labels are not allowed.
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The switch Statement, cont.
• class MultipleBirths
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The switch Statement, cont.

• The action for each case typically ends with 
the word break.

• The optional break statement prevents the 
consideration of other cases.

• The controlling expression can be anything 
that evaluates to an integral type.



Chapter 3 34

The Conditional Operator

if (n1 > n2)

max = n1;
else

max = n2;

can be written as
max = (n1 > n2) ? n1 : n2;

• The ? and : together are call the conditional 
operator or ternary operator.



Chapter 3 35

The Conditional Operator, 
cont.

• The conditional operator is useful with print 
and println statements.
System.out.print(“You worked “ + hours +

((hours > 1) ? “hours” : “hour”));
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the while Statement

• also called a while loop
• A while statement repeats until a controlling 

boolean expression becomes false.
– If the controlling boolean expression is 

false initially, the while loop is not executed.
• The loop body typically contains a statement 

that ultimately causes the controlling boolean
expression to become false.
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the while Statement, cont.
• class WhileDemo
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the while Statement, cont.

• syntax
while (Boolean_Expression)

Body_Statement;
or
while (Boolean_Expression)
{

First_Statement;
Second_Statement;
…

}
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The do-while Statement

• also called a do-while loop
• similar to a while statement, except that the 

loop body is executed at least once
• syntax

do
Body_Statement

while (Boolean_Expression);

– don’t forget the semicolon at the end of the 
while line!
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The do-while Statement,
cont.

• class DoWhileDemo
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The do-while Statement, 
cont.

• First, the loop body is executed.
• Then the boolean expression is checked.

– As long as it is true, the loop is executed 
again.

– If it is false, the loop is exited.
• equivalent while statement

Statement(s)_S1
while (Boolean_Condition)

Statement(s)_S1
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Infinite Loops
• A loop which repeats without ever ending is 

called an infinite loop.
• If the controlling boolean expression never 

becomes false, a while loop or a do-while loop 
will repeat without ending.
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The for Statement

• A for statement executes the body of a loop a 
fixed number of times.

• example
for (count = 1; count < 5; count++)

System.out.println(count);

System.out.println(“Done”);
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The for Statement, cont.

• syntax
for (Initialization, Condition, Update)

Body_Statement

– Body_Statement can be either a simple 
statement or a compound statement in {}.

• corresponding while statement
Initialization
while (Condition)

Body_Statement_Including_Update
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Multiple Initialization, etc.

• example
for (n = 1, p = 1; n < 10; n++)

p = p * n;

• Only one boolean expression is allowed, but 
it can consist of &&s, ||s, and !s.

• Multiple update actions are allowed, too.
for (n = 1, p = 1; n < 10; n++, p = p * n)

• rarely used
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The Empty for Statement
• What is printed by

int product = 1, number;
for (number = 1; number <= 10; 
number++);

product = product * number;

System.out.println(product);?
• The last semicolon in

for (number = 1; number <= 10; number++); 

produces an empty for statement.
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The Empty while Statement
int product = 1, number = 1;
while (number <= 10);
{

product = product * number;
number++

}
System.out.println(product);

• The last semicolon in
while (number <= 10);

produces an empty while loop body.
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Choosing a Loop Statement

• If you know how many times the loop will be 
iterated, use a for loop.

• If you don’t know how many times the loop 
will be iterated, but
– it could be zero, use a while loop
– it will be at least once, use a do-while loop.

• Generally, a while loop is a safe choice.
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The break Statement in 
Loops

• A break statement can be used to end a loop 
immediately.

• The break statement ends only the innermost
loop or switch statement that contains the 
break statement.

• break statements make loops more difficult to 
understand.

• Use break statements sparingly (if ever).



Chapter 3 50

The break Statement in 
Loops, cont.

• class BreakDemo
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The exit Method
• Sometimes a situation arises that makes 

continuing the program pointless.
• A program can be terminated normally by

System.exit(0).

• example
if (numberOfWinners == 0)
{

System.out.println(“cannot divide by 0”);
System.exit(0);

}
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Ending a Loop, cont.
• For large input lists, a sentinel value can be 

used to signal the end of the list.
– The sentinel value must be different from 

all the other possible inputs.
– A negative number following a long list of 

nonnegative exam scores could be 
suitable.

90
0
10
-1
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Ending a Loop, cont.

• example - reading a list of scores followed by 
a sentinel value
int next = keyboard.nextInt();
while (next  >= 0)
{

Process_The_Score
next = keyboard.nextInt();

}
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Ending a Loop, cont.
• class ExamAverager
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Nested Loops

• The body of a loop can contain any kind of 
statements, including another loop.

• In the previous example
– the average score was computed using a 
while loop.

– This while loop was placed inside a do-while
loop so the process could be repeated for 
other sets of exam scores.
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Loop Bugs
• common loop bugs

– unintended infinite loops
– off-by-one errors
– testing equality of floating-point numbers

• subtle infinite loops
– The loop may terminate for some input 

values, but not for others.
– For example, you can’t get out of debt 

when the monthly penalty exceeds the 
monthly payment.
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The Type boolean

• Boolean Expressions and Variables
• Truth Tables and Precedence Rules
• Input and Output of Boolean Values
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The Type boolean, cont.

• The type boolean is a primitive type with only 
two values: true and false.

• Boolean variables can make programs more 
readable.
if (systemsAreOK)

instead of
if((temperature <= 100) && (thrust >= 12000) 
&& (cabinPressure > 30) && …)
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Boolean Expressions and 
Variables

• Variables, constants, and expressions of type 
boolean all evaluate to either true or false.

• A boolean variable can be given the value of 
a boolean expression by using an assignment 
operator.
boolean isPositive = (number > 0);
...
if (isPositive) ...
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Naming Boolean Variables

• Choose names such as isPositive or 
systemsAreOk.

• Avoid names such as numberSign or 
systemStatus.
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Short-circuit Evaluation

• Sometimes only part of a boolean expression 
needs to be evaluated to determine the value 
of the entire expression.
– If the first operand associated with an || is 
true, the expression is true.

– If the first operand associated with an && is 
false, the expression is false.

• This is called short-circuit or lazy evaluation.
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Short-circuit Evaluation, cont.

• Short-circuit evaluation is not only efficient, 
sometimes it is essential!

• A run-time error can result, for example, from 
an attempt to divide by zero.
if ((number != 0) && (sum/number > 5))

• Complete evaluation can be achieved by 
substituting & for && or | for ||.
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Input and Output of Boolean 
Values

• example
boolean boo = false;
System.out.println(boo);
System.out.print(“Enter a boolean value: “);
Scanner keyboard = new Scanner (System.in);
boo = keyboard.nextBoolean();
System.out.println(boo);
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Input and Output of Boolean 
Values, cont.

• dialog
false
Enter a boolean value: true
true
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Using a Boolean Variable to 
End a Loop

• example
boolean numbersLeftToRead = true
while (numbersLeftToRead)
{

next = keyboard.nextInt()
if (next < 0)

numbersLeftToRead = false;
else

Process_Next_Number
}
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(optional) Graphics 
Supplement: Outline

• Specifying a Drawing Color
• The drawString Method
• A JOptionPane Yes/No Window
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Specifying a Drawing Color

• When drawing a shape inside an applet’s 
paint method, think of the drawing being done 
with a pen that can change colors.

• The method setColor changes the color of the 
“pen.”
canvas.setColor(Color.YELLOW);

• Drawings done later appear on top of 
drawings done earlier.
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Specifying a Drawing Color, 
cont.
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Specifying a Drawing Color, 
cont.
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The drawString Method

• similar to other drawing methods, but used to 
“draw” text
canvas.drawString(“Hello”,10,20);

• syntax
Graphics_Object.drawString(String, X, Y);
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A JOptionPane Yes/No 
Window

• used to present the user with a yes/no 
question

• The window contains
– the question text
– two buttons labeled Yes and No.
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A JOptionPane Yes/No 
Window, cont.

• example
int answer = 
JOptionPane.showConfirmDialog(null, 
“End program?”, “Want to end?”, 
JOptionPane.YES_NO_OPTION);

if (answer == JOptionPane.YES_OPTION)
System.exit(0);

else
System.out.println(“once more”);
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A JOptionPane Yes/No 
Window, cont.
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A JOptionPane Yes/No 
Window, cont.

• JOptionPane.showConfirmDialog returns an int

value named either YES_OPTION or NO_OPTION, 

but you do not need to think of them as ints.
• The second argument (“End program?” in our 

example) appears in the window.
• The third argument (“Want to end?” in our 

example) is displayed as the title of the 
window. 
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A JOptionPane Yes/No 
Window, cont.

• The last argument (JOptionPane.YES_NO_OPTION
in our example) requests a window with yes
and no buttons.

• The first argument (null in our example) 
affects the placement of the window on the 
screen.
– Simply use null for now.

.
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