
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

KestRel: Relational Verification Using E-Graphs for Program
Alignment

ROBERT DICKERSON, Purdue University, USA
PRASITA MUKHERJEE, Purdue University, USA
BENJAMIN DELAWARE, Purdue University, USA

Many interesting program properties involve the execution of multiple programs, including observational
equivalence, noninterference, co-termination, monotonicity, and idempotency. One popular approach to
reasoning about these sorts of relational properties is to construct and verify a product program: a program
whose correctness implies that the individual programs exhibit the desired relational property. A key challenge
in product program construction is finding a good alignment of the original programs. An alignment puts
subparts of the original programs into correspondence so that their similarities can be exploited in order to
simplify verification. We propose an approach to product program construction that uses e-graphs, equality
saturation, and algebraic realignment rules to efficiently represent and build verifiable product programs. A
key ingredient of our solution is a novel data-driven extraction technique that uses execution traces of product
programs to identify candidate solutions that are semantically well-aligned. We have implemented a relational
verification engine based on our proposed approach, called KestRel, and use it to evaluate our approach over
a suite of benchmarks taken from the relational verification literature.

1 INTRODUCTION
First proposed by Hoare [19] and Floyd [16], deductive program logics are a popular foundation for
many modern program verification tools [17, 20, 21, 27, 29, 30]. The majority of these tools consider
single executions of a program, certifying that each run of the program results in a state meeting
some postcondition. Many interesting behaviors involve the executions of multiple programs,
however. For example, say we wish to show two programs 𝑝1 and 𝑝2 are observationally equivalent;
that is, when 𝑝1 and 𝑝2 are executed in the same initial state, they arrive at the same final state.
Proving this sort of relational behavior requires jointly reasoning about the executions of both 𝑝1
and 𝑝2.
A variety of important program behaviors are relational properties, including observational

equivalence, refinement, idempotence, non-interference, and co-termination. Several verification
techniques for reasoning about relational properties have been proposed. These approaches can be
roughly grouped into two camps: those relying on bespoke relational logics [1, 5, 6, 12, 13, 23, 33, 36],
and those that reduce a relational problem to reasoning about a single execution of an equivalent
product program [3, 4]. Relational program logics operate directly over multiple programs, and
usually include rules for reasoning about parallel control flow structures from each program
simultaneously. Techniques based on product programs, in contrast, attempt to build a single
program that encodes the behaviors of multiple programs, and that is then verified using existing
single-program verification tools. As a consequence, product program-based approaches inherit any
advances in single program verification technologies, e.g. automatic invariant inference, essentially
‘for free’.

The effectiveness of both approaches hinges on finding proper alignments of the underlying
programs [24]. Alignments identify subparts of the original programs, e.g. control flow paths, whose
similarities can be exploited by the underlying verifier. In the case of relational logics, alignments
implicily drive the application of rules for simultaneous reasoning, while in the case of product
programs, alignment dictates how statements from each program are grouped in their product.
To illustrate the role proper alignment can play in relational reasoning, consider the pair of

programs shown in Fig. 1. Both programs iterate over a list of employees, scheduling bonus

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Robert Dickerson, Prasita Mukherjee, and Benjamin Delaware

int i1 = 0;

while (i1 < length(bonuses1)) {

int id1 = bonuses1.get(i1);

int sal1 = emp1.getSalary(id1);

payments1.schedule(id1, sal1 * calc_bonus(rate));

i1 += 1;

}

int i2 = 0;

int bonus2 = calc_bonus(rate);

while (i2 < length(bonuses2)) {

int id2 = bonuses2.get(i2);

int sal2 = emp2.getSalary(id2);

payments2.schedule(id2, sal2 * bonus2);

i2 += 1;

}

p1 p2

Fig. 1. Two programs for calculating employee bonuses.

payments for the identified workers via some black-box financial services API. The program on the
right does so slightly more efficiently than the one on the left, however, as it caches part of the bonus
calculation prior to entering the loop. To establish that this optimization is safe, we might wish to
verify that, starting from the same initial state, each program schedules the same set of payments.

int i1 = 0; int i2 = 0;

int bonus2 = calc_bonus(rate);

while (i1 < length(bonuses1)) {

int id1 = bonuses1.get(i1);

int id2 = bonuses2.get(i2);

int sal1 = emp1.getSalary(id1);

int sal2 = emp2.getSalary(id2);

payments1.schedule(id1, sal1 * calc_bonus(rate));

payments2.schedule(id2, sal2 * bonus2);

i1 += 1; i2 += 1; }

p1×2

Fig. 2. A product of the two programs in Fig. 1

To do so, it suffices to verify the product program
on the right, a single program that encodes the
semantics of both programs. We can see from
the product program that payments.schedule(. . .)
is indeed called with the same arguments in
each iteration of the loop. As long as the API
methods are deterministic, we can be confident
that p1 and p2 have the same effect. This prop-
erty is easily expressed in the theory of equal-
ity with uninterpreted functions (EUF), a logic
supported by all modern SMT solvers. The com-
bined loopmaintains the straightforward invari-
ant that payments1 and payments2 are equivalent
after each loop iteration; this invariant is also expressible in EUF. Contrast this with what is needed
to reason about a product program that naïvely concatenates the two program together, p1; p2. This
requires invariants that completely characterize how the individual loops mutate their respective
copies of payments in order to show their final states are equivalent; this invariant may not even be
expressible in a decidable logic [32]. Even if the loop invariant is expressible, establishing that it
holds requires specifications encoding the full functional correctness of the schedule method.

int i1 B 0;

while (i1 ≤ n) {

x1 += i1;

i1++;
}

(a)

int i2 B 1;

while (i2 ≤ n) {

x2 += i2;

i2++;
}

(b)

Fig. 3. The loop on the left should be unrolled once

when constructing a product program (from Barthe

et al. [3]).

Unfortunately, automatically finding a prod-
uct program that facilitates verification presents
several challenges. First, the number of product
programs is exponential in the size of the pro-
grams involved, making it difficult to effectively
search for good product programs. Next, finding
a good alignment can demand more than a sim-
ple syntactic grouping of statements and con-
trol flow constructs; the optimal alignment may
require transforming the original programs to
exploit semantic similarities between them. As a simple example, it is only after the loop in Fig. 3a
is unrolled by one iteration that it is fruitful to align the resulting loop with the one in Fig. 3b.
Finally, after constructing a searchable space of alignments, it remains to identify a good alignment
for use in (relational) verification. For these reasons, most relational verification techniques that
rely on product programs either punt on the question of how to algorithmically construct a product

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

KestRel: Relational Verification Using E-Graphs for Program Alignment 3

program [2–4], or are tightly coupled to a particular language and verification task, e.g., proving
observational equivalence between x86 programs [9, 31].

Equality
Saturation

Source
Programs

Alignment
Space (E-Graph)

Aligned
Term

Product
Program

Unaligned
Term Extraction

Source Language

Alignment Algebra

Embedding

Reification

Fig. 4. High-level overview of KestRel.

The present work addresses these challenges by leveraging recent advances in equality satura-
tion [38] and algebraic approaches to program alignment [2] to build product programs amenable
to verification. Fig. 4 presents a high-level overview of our proposed approach. The process begins
by naïvely embedding the input programs in CoreRel, a relational calculus equipped with algebraic
realignment rules in the spirit of Antonopoulos et al. [2]. This approach allows us to easily exploit
existing semantics-preserving transformations on individual program (e.g., loop unrolling) that
unlock better alignments. We then use these rules to build an e-graph [25, 26, 38] that compactly
represents the space of possible alignments. In order to effectively explore the space of candidate
alignments, we use a novel, data-driven approach to program extraction that examines program
traces to identify promising alignments. The most promising product program is then reified
back into the original source language and handed off to an off-the-shelf solver for verification.
In contrast to approaches that rely on specialized relational verifiers, our solution is capable of
repurposing existing verifiers for single programs, allowing users to obtain a relational verifier at
little cost. We have implemented our approach in a tool, KestRel, that features Dafny [21] and
SeaHorn [17] backends, enabling it to reason about relational properties of programs that use
API to manage abstract data types with hidden internal state, as well as array-manipulating C
programs. We have evaluated KestRel on a diverse suite of benchmarks and relational properties
taken from the literature. Our experimental results show that KestRel discovers alignments that
enable verification to succeed where simpler alignment strategies would otherwise fail.

In summary, this paper describes the following contributions:
• We show how to use e-graphs to build and compactly represent the space of possible

product programs expressed in a domain of relational alignments equipped with algebraic
realignment rules.
• We develop a hybrid extraction technique that combines a syntactic cost metric with a novel
non-local extraction technique that uses dynamic execution traces to identify alignments
amenable to automated verification.
• We present a relational verification framework, KestRel, that implements this approach, and

demonstrate its utility by evaluating it on a diverse set of challenging relational verification
benchmarks drawn from the literature.

The remainder of the paper is structured as follows. We begin with an overview of our approach.
We then formally define our core calculus for relational alignment, and formalize our approach to
relational verification using this calculus. Section 4 describes our equational approach to program
realignment, and details how we represent spaces of possible alignments using e-graphs. Section 5
then explains our data-driven technique for extracting a product program from this space. Section 6

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Robert Dickerson, Prasita Mukherjee, and Benjamin Delaware

⟨ int y1 = 0; int y2 = 0;

int z1 = 2 * x1; int z2 = x2;

while (z1 > 0) { while (z2 > 0) {

z1−−; y1 += x1 } z1−−; y1 += x1 }

y2 *= 2
⟩ ≡ ⟨ int y1 = 0;

int z1 = 2 * x1;

while (z1 > 0) {

z1−−; y1 += x1 }] •❜[int y2 = 0;

int z2 = x2;

while (z2 > 0) {

z1−−; y1 += x1 }

y2 *= 2
⟩ ≡

· · · ≡

⟨ int y1 = 0 int y2 = 0;

int z1 = 2 * x1; int z2 = x2 ⟩ •❜
⟨ while (z1 > 0) { while (z2 > 0) {

z1−−; z2−−;
y1 = y1 + x1 } y2 = y2 + x2 } ⟩ •❜

[y2 *= 2 ⟩

≡

⟨ int y1 = 0 int y2 = 0;

int z1 = 2 * x1; int z2 = x2 ⟩ •❜
whileSt 2 1 ⟨ z1 > 0 z2 > 0 ⟩

⟨ z1−−; z2−−;
y1 += x1 y2 += x2 ⟩ •❜

[y2 *= 2 ⟩

Fig. 5. Abbreviated derivation of an alignment using the rewrite rules presented in Section 4. The initial term

relates two programs, both of which set 𝑦 to 2𝑥 . The program on the left does this by counting to 2𝑥 , while
the program on the right counts to 𝑥 before multiplying by 2. The final term aligns the pre-loop initializations,

the loop executions (with two iterations of the left program’s loop for every one of the right’s), and does not

align the right-only y *= 2 with anything.

and Section 7 describe our implementation and evaluation of KestRel. Relatedwork and conclusions
are given in Sections 8 and 9.

2 OVERVIEW
We begin by illustrating the key pieces of our proposed approach to automatically constructing
product programs, using the programs labelled double1 and double2 in the figure below as examples:

int y1 = 0; int z1 = 2*x1;

while (z1 > 0)

{ z1−−; y1 += x1 }

int y2 = 0; int z2 = x2;

while (z2 > 0)

{ z2−−; y2 += x2 }

y2 *= 2;

int y1 = 0; int y2 = 0;

int z1 = 2*x1; int z2 = x2;

while (z2 > 0)

{ z1−−; y1 += x1; z1−−; y1 += x1;

z2−−; y2 += x2 }

y2 *= 2;

double1 double2 double1×2

Each program sets its version of y to 2x: double1 does so by incrementing y1 2x1 times, while double2

increments y2 x2 times and then doubles the result. To verify that both programs update their ys
to the same final value, it suffices to verify that the program labeled double1×2 always ends in a
state in which y1 = y2 when executed from a state in which x1 = x2 . Here, double1×2 is an example
of a product program. Many such product programs exist: the simplest one simply sequences
double1 and double2; another swaps the first and second lines of double1×2. While all of these product
programs are semantically equivalent, some of them are easier to verify than others. For example,
double1×2, requires a loop invariant that is a simple equality between the values of y1 = 2 ∗ y2, while
double1; double2 requires two loop invariants, each of which involve x, y, and z.

An Algebra of Alignments. Our first step in constructing double1×2 is to embed double1 and double2

into a richer domain that provides a more structured representation of product programs. We
refer to elements of this domain as alignments of (a pair of) programs. The simplest alignment has
the form ⟨p1|p2 ⟩; this alignment represents a product program which fully executes p1 and then
p2, i.e. p1; p2. Our domain also includes finer-grained alignments that group together subterms

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

KestRel: Relational Verification Using E-Graphs for Program Alignment 5

< | >

y = 0

whilez = 2x

;

; y = 0

z = x

;

;

;

... ...
while

... ...
y *= 2

< | >

y = 0

whilez = 2x

;

; y = 0

z = x

;

;

;

... ...
while

... ...
y *= 2

，
<]

[>

(a) (b)

Fig. 6. E-graphs containing representations of possible alignments between double1 and double2. The e-graph
on the left (a) contains only the initial embedding. The e-graph on the right (b) contains the initial embedding

plus an application of the rel-def given in Fig. 10. (Added nodes are depicted in red.) It is possible to extract

both the first and second terms in Fig. 5 from (b).

of the product program: the alignment ⟨s1 | t1; t2 ⟩ •❜ ⟨s2 | t3 ⟩, for example, groups together the
first statement of s1; s2 with the first two statements of t1; t2; t3 and aligns the last statements of
both programs; these subalignments are composed together with the •❜ operator. Our domain is
equipped with other relational operators for aligning different control flow operators. The most
important of these is the whileR ⟨b1|b2 ⟩ ⟨c1|c2 ⟩ operator, which encodes a product program that
executes the bodies of two loops in lockstep. The final alignment in Fig. 5 encodes double1×2 using
a variant of this operator, whileSt m n ⟨b1|b2 ⟩ ⟨c1|c2 ⟩, which executes c1 m times and c2 n times on
each iteration.
Alignments are equipped with an equivalence relation, ≡. Intuitively, equivalent alignments

represent semantically equivalent product programs. This equivalence admits several relational
realignment laws which can be used to reason about the equivalence of different alignments. The
equivalence of all of the alignments shown in Fig. 5 are justified by these laws, for example. Impor-
tantly, the alignment that encodes double1×2 can be automatically derived from ⟨double1 | double2 ⟩
via a sequence of rewriting steps.

Representing Possible Alignments with E-Graphs. While the chain of rewrites shown in Fig. 5 yields
a desirable alignment, many other equivalent alignments can be similarly derived via realignment
laws. To explore the set of equivalent alignments, we use e-graphs [25] as a compact representation
of the space of alignments. Each node in an e-graph is a member of an equivalence class, and equiv-
alence classes can be updated when the e-graph is extended with new information on equivalent
subterms. Fig. 6(a) gives a simplified representation of the ⟨double1 | double2 ⟩ as an e-graph, while
Fig. 6(b) depicts an e-graph that simultaneously encodes both the first and second alignments in
5, for example. Importantly, the set of terms an e-graph encodes can be algorithmically grown
through a process known as equality saturation [35], which repeatedly updates an e-graph with a
set of equivalences until either a fixpoint (saturation) or a bound on the number of iterations is
reached. Saturating the e-graph in Fig. 6(a) with a set of realignment rules results in an e-graph
that includes the alignment corresponding to double1×2.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Robert Dickerson, Prasita Mukherjee, and Benjamin Delaware

aF Integer Expressions
n | x | a + a | a − a | a * a

bF Boolean Expressions
true | false | a = a | a < a

| not b | b && b

cF Commands
skip | c; c | x B a | while b c

| if b then c else c

if b then c ≜ if b then c else skip

rF Aligned Commands
⟨ c | c ⟩
| r •

❜
r

| ifR ⟨ b | b ⟩ then r else r
| whileR ⟨ b | b ⟩ r

⟨s] ≜ ⟨s | skip⟩
[s⟩ ≜ ⟨skip | s⟩
whileSt n m ⟨b1 | b2 ⟩ ⟨c1 | c2 ⟩ ≜
whileR ⟨b1 | b2 ⟩ ⟨if b1 then c1

n
| if b2 then c2

m ⟩

Fig. 7. Syntax and notations for Imp and CoreRel.

Searching for Desirable Alignments. Once a fully saturated e-graph that represents the space of
possible alignments of ⟨double1 | double2 ⟩ is in hand, our next step is to extract double1×2 from the
set of product programs embedded in the e-graph. Modern e-graph libraries [38] are equipped
with a mechanism that greedily extracts terms by recursively using a cost function to select the
“best” representative of each equivalence class. This strategy is inherently syntactic, selecting nodes
based on the terms they represent. However, identifying the best alignment often involves semantic

properties of the product program it represents. Finding the alignment that produces double1×2,
for example, requires the observation that the body of the loop in double1 must be executed twice
for every execution of double2. To find alignments with this kind of semantic property, we use
a data-driven extraction technique that examines traces of states generated by from candidate
product program executions to determine alignment quality. Observing dynamic traces allows our
extraction mechanism to observe this semantic relationship. We use a Markov-Chain Monte-Carlo
(MCMC)-based [18] algorithm to sample programs from promising parts of the search space, using
the e-graph to provide neighboring extraction candidates during the search. Once a promising
candidate alignment has been found, our final step is to reify it into a product program, e.g., double1×2,
which can then be given to an off-the-shelf single program verifier like Dafny [21] or SeaHorn [17].

3 THE COREREL LANGUAGE
This section describes a core calculus for program alignment, called CoreRel, which we use to
formalize our approach to product program construction.1 The starting point for our formalization
is a completely standard core imperative programming language, Imp, whose syntax is shown
on the lefthand side of Fig. 7. The calculus is parameterized over an infinite set of identifiers for
program variables V . Program states are partial mappings from identifiers to integers, and the
semantics of an Imp program c is given by the expected big-step reduction relation from input
states 𝜎 to output states 𝜎 ′: 𝜎, c ⇓ 𝜎 ′. This language is also equipped with a completely standard
program logic that acts as our “off-the-shelf” verifier for Imp programs. Formally, this logic proves
Hoare triples of the form ⊢ {𝜙} c {𝜙}, and is parameterized over the underlying assertion language.
We write 𝜎 |= 𝜙 to denote that a state 𝜎 satisfies the assertion 𝜙 .

Equipped with these ingredients, it is straightforward to state our relational verification problem:

Definition 3.1. Given a pair of Imp programs, c1 and c2, we say that c1 and c2 are safe with respect
to the relational pre- and postconditions 𝜙 and𝜓 if every pair of final states reachable from input
states meeting 𝜙 is guaranteed to satisfy𝜓 . We denote relational safety as |=𝑅 {Φ} c1 ⊗ c2 {Ψ}:

|=𝑅 {Φ} c1 ⊗ c2 {Ψ} ≜ ∀𝜎1, 𝜎2 . 𝜎1 ⊎ 𝜎2 |= 𝜙 =⇒ ∀𝜎 ′1, 𝜎 ′2 .𝜎1, c1 ⇓ 𝜎 ′1 ∧ 𝜎2, c2 ⇓ 𝜎 ′2 =⇒ 𝜎 ′1 ⊎ 𝜎 ′2 |= 𝜓

1The anonymized supplementary material includes a complete Coq formalization of CoreRel in its metatheory.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

KestRel: Relational Verification Using E-Graphs for Program Alignment 7

(𝜎1, 𝜎2), r1 ⇚ (𝜎
′
1, 𝜎 ′2) ⊣ 𝛼1

(𝜎 ′1, 𝜎 ′2), r2 ⇚ (𝜎
′′
1 , 𝜎 ′′2) ⊣ 𝛼2

(𝜎1, 𝜎2) r1
•
❜

r2 ⇚ (𝜎
′′
1 , 𝜎 ′′2) ⊣ 𝛼1 ++ 𝛼2

E-Seq

𝜎1, s1 ⇚ 𝜎
′
1 ⊣ 𝛼1 𝜎2, s2 ⇚ 𝜎

′
2 ⊣ 𝛼2

rB⟨𝜎1, 𝜎2 ⟩ ++ 𝛼1
(𝜎1, 𝜎2), ⟨s1|s2 ⟩ ⇚ (𝜎 ′1, 𝜎 ′2) ⊣ ++ rM⟨𝜎 ′1, 𝜎2 ⟩ ++ 𝛼2

++ rE⟨𝜎 ′1, 𝜎 ′2 ⟩

E-Align

𝜎1, b1 ⇚ true 𝜎2, b2 ⇚ true
(𝜎1, 𝜎2) r ⇚ (𝜎

′
1, 𝜎 ′2) ⊣ 𝛼1

(𝜎 ′1, 𝜎 ′2), whileR ⟨b1 | b2 ⟩ r ⇚ (𝜎
′′
1 , 𝜎 ′′2) ⊣ 𝛼2

(𝜎1, 𝜎2), whileR ⟨b1 | b2 ⟩ r ⇚ (𝜎
′′
1 , 𝜎 ′′2) ⊣ wH𝑅 ⟨𝜎1, 𝜎2 ⟩ ++ 𝛼1 ++ 𝛼2

E-WhileT

𝜎𝑖, b𝑖 ⇚ false

(𝜎1, 𝜎2) whileR ⟨b1 | b2 ⟩ r ⇚ (𝜎1, 𝜎2) ⊣ wE𝑅 ⟨𝜎1, 𝜎2 ⟩
EWhileF

𝜎𝑖, b𝑖 ⇚ false (𝜎1,𝜎2), r2 ⇚ (𝜎
′
1,𝜎
′
2) ⊣ 𝛼

(𝜎1,𝜎2), ifR ⟨b1 | b2 ⟩ then r1 else r2 ⇚ (𝜎
′
1,𝜎
′
2) ⊣ 𝛼

EIfF

𝜎1, b1 ⇚ true 𝜎2, b2 ⇚ true
(𝜎1,𝜎2), r2 ⇚ (𝜎

′
1,𝜎
′
2) ⊣ 𝛼

(𝜎1,𝜎2), ifR ⟨b1 | b2 ⟩ then r1 else r2 ⇚ (𝜎
′
1,𝜎
′
2) ⊣ 𝛼

EIfT

Fig. 8. Big-step semantics of CoreRel

An essential property of this definition is that both c1 and c2 operate over disjoint state spaces
(hence the use of ⊎ to merge states)– as we shall see, this property plays a key role in the equations
we use to align programs. By convention, we use the subscripts 1 and 2 to disambiguate between
occurences of the same variable in the left- and right-hand programs [5]. Thus, the assertion x1 = x2

is satisfied by any pair of states in which 𝑥 maps to the same number.
While several specialized relational program logics have been developed for proving relational

triples directly [5, 22, 33], our goal in this work is to instead reduce a relational verification problem
to an equivalent claim that only involves a single product program and that can additionally be
proven using the program logic for Imp that we already have in hand. As discussed in Section 2,
there may be many such programs, some of which are more amenable to automated verification
than others. Our approach is to represent product programs in a richer domain which explicitly
aligns subcomponents of the original programs. This domain is equipped with relational variants
of the control flow structures of the original program; intuitively, the relational variants group
together control flow paths of the two programs. As double1×2 demonstrated, aligning similar control
flow paths (e.g., loops) with each other helps a verifier to exploit similarities between the paths in
order to simplify verification.

Syntax. Concretely, the syntax of aligned programs in CoreRel is given on the righthand side of
Fig. 7. A basic alignment, ⟨ c1 | c2 ⟩, consists of a pair of Imp programs c1 and c2 whose control flows
are completely disjoint; this is effectively the naïve embedding of c1 and c2. In contrast, the relational
control flow operators whileR, ifR, and •❜ group together the control flows of their subexpressions: the
branches of the relational conditional command ifR, for example, are themselves aligned programs.
Fig. 7 also defines some additional notations for convenience: ⟨s] and [s⟩ embed a single Imp program
into the left and right sides of a relational representation, respectively. We use whileSt to denote
‘stuttered’ versions of aligned loops, where the left and right hand loop bodies execute a different
number of times at each loop iteration: the aligned expression whileSt 2 1 ⟨b1 | b2 ⟩ ⟨c1 | c2 ⟩, for
example, represents a loop that executes c1 twice for every execution of c2.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Robert Dickerson, Prasita Mukherjee, and Benjamin Delaware

Semantics. CoreRel is equipped with its own big-step operational semantics. The evaluation
rules of the language are shown in Fig. 8. As aligned commands are meant to encode the behaviors
of two programs, the reduction relation(𝜎1, 𝜎2) r ⇚ (𝜎

′
1, 𝜎 ′2) ⊣ 𝛼 defines how an aligned command

r takes a pair of disjoint initial states to a pair of disjoint output states, and also records intermediate
states via a trace. We will use these traces to rank the quality of an alignment; they can safely be
ignored until Section 5. A pair of aligned programs produces a pair of output states by combining
the results of independently running its constituent programs (E-Align). Executing the aligned
program ⟨x1 B 2 | y2 B 3⟩, for example, results in a pair of final states where the value of x in the
first state is 2 and the value of y in the second state is 3; the values stored by all other variables in
both states remain unchanged. A relational loop, in constrast, simulates a “lockstep” execution of a
pair of loops, executing both behaviors of its aligned body in tandem (E-While𝑅T) until either of
its conditions fails (E-While𝑅F).

Any pair of Imp programs c1 and c2 can be represented as the aligned CoreRel program ⟨c1 | c2 ⟩.
Importantly, this embedding preserves the semantics of the original pair of programs:

Theorem 3.2 (Embedding is Sound). The embedding of ⟨c1 | c2 ⟩ of a pair of Imp programs, c1

and c2, has the same semantics as the original programs:

∀𝜎1 𝜎2 𝜎 ′1 𝜎 ′2 . 𝜎1, c1 ⇓ 𝜎 ′1 ∧ 𝜎2, c2 ⇓ 𝜎 ′2 =⇒ (𝜎1, 𝜎2) ⟨c1 | c2 ⟩ ⇚ (𝜎 ′1, 𝜎 ′2)

Equivalence. These semantics admit a natural notion of equivalence on aligned programs: equiv-
alent alignments take the same initial states to the same final states:

r1 ≡ r2 ≜ ∀𝜎1 𝜎2 𝜎 ′1 𝜎 ′2 . (𝜎1, 𝜎2) r1 ⇚ (𝜎
′
1, 𝜎 ′2) ⇔ (𝜎1, 𝜎2) r2 ⇚ (𝜎

′
1, 𝜎 ′2)

3.1 Reifying CoreRel into Imp
J⟨s1 | s2 ⟩K ≜ Js1KL; Js2KR
Jr1 •

❜
r2K ≜ Jr1K; [r2K

JwhileR ⟨b1 | b2 ⟩ r K ≜
while (Jb1KL && Jb2KR) JrK

JifR ⟨b1 | b2 ⟩ then r1 else r2K ≜
if (Jb1KL && Jb2KR) then Jr1K else [r2K

Fig. 9. Reification of CoreRel into Imp

Every aligned CoreRel program can be interpreted as
a semantically equivalent Imp program. This interpre-
tation is given by the reification function, J·K shown in
Fig. 9. This function constructs a product program in
Imp from an aligned program, using a pair of variable
renaming functions J·K𝐿 and J·K𝑅 to ensure that the pro-
grams operate over disjoint states. Importantly, reifica-
tion is equivalence preserving, in that reifying equivalent
aligned programs yields equivalent Imp programs:

Theorem 3.3 (Reification preserves Eqivalence). Any equivalent pair of aligned programs r1

and r2 have equivalent product programs, Jr1K and Jr2K:
r1 ≡ r2 =⇒ ∀𝜎 𝜎 ′ . 𝜎, Jr1K ⇓ 𝜎 ′ ⇔ 𝜎, Jr2K ⇓ 𝜎 ′

A direct consequence of Theorems 3.2 and 3.3 is that we can reduce the relational verification
problem to reasoning about an equivalent product program:

Corollary 3.4. Given a pair of Imp programs, c1 and c2, in order to prove that c1 and c2 are safe with

respect to a pair of relational pre- and postconditions Φ and Ψ, it suffices to prove that an equivalent

product program r is safe: ⟨c1|c2 ⟩ ≡ r ∧ ⊢ {Φ} JrK {Ψ} =⇒ |=𝑅 {Φ} c1 ⊗ c2 {Ψ}

Unfortunately, this corollary does not provide any guidance on which r to use. While equivalent
aligned programs are extensionally equal, they may be intensionally different, in the sense that one
may be more amenable to verification than the other, as we saw in Section 2. We now turn to the
problem of how to construct such an r automatically.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

KestRel: Relational Verification Using E-Graphs for Program Alignment 9

⟨c1 | c2 ⟩ ≡ ⟨c1] •❜ [c2 ⟩ rel-def
⟨c1; c2] ≡ ⟨c1] •❜ ⟨c2] hom-l
[c1; c2 ⟩ ≡ [c1 ⟩ •❜ [c2 ⟩ hom-r

⟨while b c] ≡ ⟨if b then c; while b c] unroll-l
⟨c1] •❜ [c2 ⟩ ≡ [c2 ⟩ •❜ ⟨c1] rel-comm

r1
•
❜

(r2
•
❜

r3) ≡ (r1
•
❜

r2)
•
❜

r3 rel-assoc

⟨while b1 c1 | while b2 c2 ⟩ ≡
whileSt n m ⟨b1 | b2 ⟩ ⟨c1 | c2 ⟩ •❜
⟨ while b1 c1]

•
❜
[while b2 c2 ⟩

while-align

⟨if b1 then c1 else c2

| if b2 then c3 else c4 ⟩
≡

ifR ⟨b1 | b2 ⟩ then ⟨c1 | c3 ⟩
else ifR ⟨b1 | not b2 ⟩ then ⟨c1 | c4 ⟩
else ifR ⟨not b1 | b2 ⟩ then ⟨c2 | c3 ⟩
else ⟨c2 | c4 ⟩

if-align

whileR ⟨b1 | b2 ⟩ r ≡ ifR ⟨b1 | b2 ⟩ then r else ⟨skip | skip⟩ •
❜

whileR ⟨b1 | b2 ⟩ r
unroll-both

⟨if b1 then c1 else c2 | c3 ⟩ ≡ ifR ⟨b1 | true⟩ then ⟨c1 | c3 ⟩ else ⟨c2 | c3 ⟩ cond-l
⟨c1 | if b1 then c2 else c3 ⟩ ≡ ifR ⟨true | b1 ⟩ then ⟨c1 | c2 ⟩ else ⟨c1 | c3 ⟩ cond-r

Fig. 10. Selected CoreRel realignment laws

4 RELATIONAL REALIGNMENT VIA EQUALITY SATURATION
Observing that program equivalence is a congruence relation, we frame the search for a good
product program as rewriting problem in which we attempt to realign the naïve embedding of a
pair of programs into a form more amenable for automated verification. Fig. 10 provides several
equivalences that we can use to explore the space of possible alignments. Our notion of equivalence
naturally admits any equivalences on Imp programs. It is sound to unroll one iteration of a loop on
one side of an aligned term, for example (unroll-l). More interestingly, the richer structure of
CoreRel programs also includes a set of rules that allow us to realign terms. The first three rules
(rel-def, hom-l, and hom-r) allow us to de- and re-compose subprograms into different alignments,
while the rel-assoc rule reassociates relational sequences of statements, and the rel-comm rule
leverages the fact that the left- and right-hand programs operate over distinct state spaces to
rearrange two embedded programs. Observe that the alignments on the two sides of rel-comm
reify into different product programs: J⟨c1] •❜ [c2 ⟩K B c1; c2, while [Jc2 ⟩ •❜ ⟨c1]K B c2; c1. A similar
rule over sequences of Imp commands c1; c2 ≡ c2; c1 is obviously incorrect in the general case, as
c1 and c2 may modify the same variables.
The while-align rule is particularly important, as it merge two loops together so that their

bodies execute in lockstep. Note that since whileR terminates as soon as either condition is false,
while-align must add trailing “runoff” while loops after the joint loop in order for this equivalence
to hold. In the case that the original loops always have the same number of iterations, these loops
will never execute. A similar argument justifies the shape of if-align.

4.1 E-Graphs
E-Graphs are a union find [34] data structure which efficiently represents a congruence relation
between a set of terms in some language.When the underlying language is a programming language,
e-graphs can be used to compactly represent a (potentially exponential) number of programs. An
e-graph representation of a (set of) programs lifts AST nodes to e-nodes whose children are e-classes,
i.e., a set of equivalent e-nodes. Since the members of an e-class are equivalent by construction,
different selection of elements from the child e-classes of an e-node correspond to different (but
equivalent) programs. Thus, extracting a particular program from a set of programs encoded as an

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10 Robert Dickerson, Prasita Mukherjee, and Benjamin Delaware

< | >

i := 3 while

i > 0 i--

; ;

i := 3 while

i > 0 i--

< | >

i := 3 while

i > 0 i--

; ;

i := 3 while

i > 0 i--

，< | >

<]

[>

< | >

i := 3 while

i > 0 i--

; ;

i := 3 while

i > 0 i--

，< | >

<]

[>

，

，

<] <]

[> [>

(a) (b) (c)

Fig. 11. E-graphs representing the space of alignments that result from applying the rewrite rules from Fig. 10

to the aligned term ⟨i B 3; while (i > 0) { i−−; } | j B 3; while (j > 0) { j −−; }⟩. The leftmost

e-graph (a) represents this initial alignment. The middle e-graph (b) additionally includes the alignment that

results from applying the rel-def rule. The last e-graph (c) includes additional alignments that result from

applying both the hom-l and hom-r rules. The additional nodes that result from each rule are highlighted in

red. Some e-nodes (<, B, and −−) have been combined into a single node for brevity.

e-graph amounts to recursively selecting a representative member for each of the children of its
e-nodes, starting from the root of the e-graph.
To build an e-graph which represents a space of potential rewritings of an aligned term, we

start by constructing an e-graph that contains each AST node of the original term in a separate
e-class. The structure of the e-graph mirrors the structure of the term’s AST, but with each e-
node pointing to the e-class of the node’s original children. For example, given the CoreRel term
⟨i B 3; while (i > 0) { i−−; } | j B 3; while (j > 0) { j −−; }⟩, Fig. 11(a) depicts the initial
e-graph constructed over the term’s AST. Note that there is only one term which can be constructed
from this e-graph (the original term), as each equivalence class contains only a single node.

To apply a rewrite rule to an e-graph, we first pattern match the left-hand side of the rule against
all e-nodes in the e-graph. We then add a new node to the e-class containing the matching node
corresponding to the right-hand side of the rewrite rule. The process of repeatedly applying rewrite
rules to an e-graph until a fixpoint or some finite bound is reached is called equality saturation.
In order to compactly represent a space of possible realignments of a CoreRel term, we insert its
naïve embedding into an e-graph and apply equality saturation using the CoreRel realignment
rules.

Example 4.1. As an example, the root node of Fig. 11(a) matches the left-hand side of the rel-def
rule from Fig. 10, with c1 and c2 corresponding to the root left and right e-classes, respectively.
Fig. 11(b) depicts the e-graph that results from applying this rewrite. Observe that there is a new
node in the root e-class corresponding to the right-hand side of rel-def. We now have a choice
when extracting a term from this e-graph; if we choose the ⟨ | ⟩ node in the root e-class, we
get the original term. If we instead choose the •

❜
node, we get ⟨i B 3; while (i > 0) { i−−; }]

•
❜

[j B 3; while (j > 0) { j−−; }⟩, i.e. the original term rewritten according to the rel-def rule.
Performing additional rewrites to this e-graph will grow the set of equivalent programs it

represents further. Fig. 11(c) depicts the e-graph that results from applying hom-l and hom-r.
Included in the elements of this e-graph is a fully decomposed version of the original alignment:
⟨i B 3]

•
❜
⟨while (i > 0) { i−−; }]

•
❜

[j B 3⟩ •
❜

[while (j > 0) { j−−; }⟩. Further applications of
the rel-comm, while-align, and rel-def rules eventually yield an e-graph that includes what is
likely the desired alignment, ⟨i B 3; j B 3⟩ •

❜
whileR ⟨i > 0 | j > 0⟩ ⟨i−− | j−− ⟩.

5 EXTRACTION
After we have built an e-graph representation of the space of possible alignments, we still need to
extract a desirable relational program which can be reified and handed off to a program verifier.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

KestRel: Relational Verification Using E-Graphs for Program Alignment 11

𝜎, skip ⇓ 𝜎1 ⊣ 𝜖
E-Skip

𝜎, s1 ⇓ 𝜎 ′ ⊣ 𝛼1
𝜎 ′, s2 ⇓ 𝜎 ′′ ⊣ 𝛼2

𝜎, s1; s2 ⇓ 𝜎 ′′ ⊣ 𝛼1 ++ 𝛼2
E-Seq

𝜎, b ⇓ true 𝜎, s1 ⇓ 𝜎 ′ ⊣ 𝛼
𝜎, if b then s1 else s2 ⇓ 𝜎 ′ ⊣ 𝛼

E-IfT

𝜎, b ⇓ true 𝜎, s ⇓ 𝜎 ′ ⊣ 𝛼1
𝜎 ′, while b s ⇓ 𝜎 ′′ ⊣ 𝛼2

𝜎, whileR b s ⇓ 𝜎 ′′ ⊣ wH(𝜎) ++ 𝛼1 ++ 𝛼2
E-WhileT

𝜎, b ⇓ false 𝜎, s2 ⇓ 𝜎 ′ ⊣ 𝛼
𝜎, if b then s1 else s2 ⇓ 𝜎 ′ ⊣ 𝛼

E-IfT
𝜎, b ⇓ false

𝜎, while b s ⇓ 𝜎 ⊣ wE(𝜎)
E-WhileF

Fig. 12. Big-step semantics of Imp

Before we present our approach to extraction, however, we first need to define what constitutes a
“good” alignment. The ultimate answer, of course, is that a good alignment is one that produces
a product program that can be easily verified; a bad one does not. Verification is too expensive
to use as an oracle for the quality of a candidate alignment, so we require an alternative metric.
One immediate solution is to define a cost function that uses syntactic features to identify good
alignments. While such a syntactic approach allows programs to be quickly extracted, a purely
syntactic measure fails to capture important semantic properties of an alignment. For example, if
the “runoff” loops generated by an application of while-align never execute, it suggests a semantic
simlarity between the loops, as both loop conditions became false at the same time. However, this
semantic property is not obvious from the syntactic form the alignment alone. Our solution is to
combine a syntactic extraction strategy with a data-driven approach [14, 28, 31, 39] that examines
concrete executions of a candidate alignment to approximate its semantic fitness.

5.1 Traces
The data-driven component of our extraction mechanism executes candidate alignments in order to
gather a set of traces, sequences of intermediate states that summarizes the semantic behaviors of
an alignment. The extraction then applies a cost function to each set of traces in order to compare
the relative quality of each alignment. The big-step semantics of both CoreRel and Imp (given in
Fig. 8 and Fig. 12, respectively) produce both a final state and a trace of intermediate states. Traces
include relational and individual program states tagged with one of the following identifiers:

(1) rB, rM, and rE are used to mark the states at the entry, midpoint, and end of a pair of aligned
Imp programs (⟨c1 |c2 ⟩),

(2) wH𝑅 and wE𝑅 tag states at, respectively, the start and exit of each relational loop iteration
(whileR), and

(3) wH and wE do the same for standard Imp loops (while).

Example 5.1. ⟨i1 B 3 | i2 B 2⟩ •
❜

whileR ⟨i1 > 0 | i2 > 0⟩ ⟨i1−−;| i2−−;⟩ emits the following
trace when executed with a pair of empty initial states:
rB⟨{},{} ⟩, rM⟨{i1 ↦→3},{} ⟩, rE⟨{i1 ↦→3},{i2 ↦→2} ⟩, – initial ⟨ | ⟩
wH𝑅 ⟨{i1 ↦→3},{i2 ↦→2} ⟩, rB⟨i1 ↦→3},{i2 ↦→2} ⟩, rM⟨i1 ↦→2},{i2 ↦→2} ⟩, rE⟨i1 ↦→2},{i2 ↦→1} ⟩, – first iteration of whileR
wH𝑅 ⟨{i1 ↦→2},{i2 ↦→1} ⟩, rB⟨i1 ↦→2},{i2 ↦→1} ⟩, rM⟨i1 ↦→1},{i2 ↦→1} ⟩, rE⟨i1 ↦→1},{i2 ↦→0} ⟩, – second iteration of whileR
wE𝑅 ⟨{i1 ↦→1},{i2 ↦→0} ⟩, – exiting whileR

Example 5.2. ⟨ i B 0 | j B 2; while (j > 0) { j−−; } ⟩ emits the following execution trace:
rB⟨{},{} ⟩, rM⟨{i↦→0},{} ⟩, wH({j↦→2}), wH({j↦→1}), wE({j ↦→0}), rE⟨{i↦→0},{j↦→0} ⟩

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

12 Robert Dickerson, Prasita Mukherjee, and Benjamin Delaware

⟨y1 B 0; z1 B 2 * x1 | y2 B 0; z2 B x2 ⟩ •❜
whileR ⟨z1 > 0 | ⊤⟩ ⟨z1−−; y1 B y1 + x1 | skip ⟩ •

❜
whileR ⟨⊤ | z2 > 0⟩ ⟨skip | z2−−; y1 B y1 + x1 ⟩ •❜
[y2 B 2 * y2 ⟩

⟨y1 B 0; z1 B 2 * x1 | y2 B 0; z2 B x2 ⟩ •❜
whileR ⟨z1 > 0 | z2 > 0⟩
⟨z1−−; y1 B y1 + x1 | z2−−; y1 = y1 + x1 ⟩ •❜

[y2 B 2 * y2 ⟩
(a) (b)

Fig. 13. Suboptimal alignments of double1 and double2 from Section 2.

Intuitively, semantically similar components should modify variables in similar ways. We thus
introduce a notion of a trace summary which describes how program variables change between
different program points.

Definition 5.3. Let 𝜏 be a trace containing non-relational events 𝑎⟨𝜎⟩ and 𝑏⟨𝜎 ′⟩ at indices𝑚 and
𝑛, respectively. Then a summary Δ𝑚→𝑛 is a mapping on 𝑑𝑜𝑚(𝜎 ′) such that

Δ𝑚→𝑛 (𝑥) =
{
𝜎 ′ (𝑥) − 𝜎 (𝑥) if 𝑥 ∈ 𝜎,
𝜎 ′ (𝑥) otherwise

Similarly, if 𝜏 contains relational events 𝑎⟨𝜎1, 𝜎2⟩ and 𝑏⟨𝜎 ′1, 𝜎 ′2⟩ at indices𝑚 and 𝑛, respectively,
then Δ𝑚→𝑛

1 and Δ𝑚→𝑛
2 are mappings over 𝑑𝑜𝑚(𝜎 ′1) and 𝑑𝑜𝑚(𝜎 ′2), respectively, where

Δ1 (𝑥) =
{
𝜎 ′1 (𝑥) − 𝜎1 (𝑥) if 𝑥 ∈ 𝜎1,
𝜎 ′1 (𝑥) otherwise

Δ2 (𝑥) =
{
𝜎 ′2 (𝑥) − 𝜎2 (𝑥) if 𝑥 ∈ 𝜎2,
𝜎 ′2 (𝑥) otherwise

For example, the initial relational block ⟨i B 3 | j B 2⟩ in Example 5.1 can be summarized as
Δ0→2
1 = {𝑖 ↦→ 3} and Δ0→2

2 = { 𝑗 ↦→ 2}, while the effect of the while loop in Example 5.2 can be
summarized as Δ2→4 = { 𝑗 ↦→ −2}.

5.2 Comparing Alignments
Before describing a particular cost function over traces, we first discuss what a desirable trace looks
like, using the traces that are generated by the different alignments of double1 and double2 from
Section 2. On one hand, we have the initial embedding of these programs, ⟨double1|double2 ⟩, and on
the other hand we have the target alignment corresponding to double1×2. Consider what features of
the traces generated by double1×2 indicate that it should be preferred over ⟨double1|double2 ⟩.
One immediate difference is that ⟨double1|double2 ⟩ contains the entirety of both program exe-

cutions in a single aligned term. This will manifest in traces that contain a single rB at index 0
and a single rE at the last index 𝑛. Contrast this with double1×2’s traces, whose rB and rE events
appear much more frequently and closer together. Alignments like ⟨double1|double2 ⟩ which group
many instructions together do not give us many opportunities to realign smaller subprograms.
As Example 4.1 demonstrated, it is often useful to apply the rel-def, hom-l, and hom-r rules to
decompose an alignment into smaller pieces that can be rearranged. In order to guide our extraction
mechanism towards these sorts of alignments, a cost function should favor alignments whose traces
feature smaller gaps between rB and rE tags.

Another difference is that double1×2 includes a relational loop, whileR, which manifests in its exe-
cution traces as a sequence of wH𝑅 ’s followed by a wE𝑅 : wH𝑅 ⟨𝜎1, 𝜎2⟩, wH𝑅 ⟨𝜎 ′1, 𝜎 ′2⟩, . . . , wE𝑅 ⟨𝜎 ′′1 , 𝜎 ′′2 ⟩.
Note that the pair of runoff while loops in the reified program never execute, and thus never
affect the semantic trace despite appearance in the syntax of double1×2. In contrast, the trace of
⟨double1|double2 ⟩ contains only non-relational wH’s. While this suggests a straightforward heuristic
of preferring traces with more relational loop tags, consider the (somewhat contrived) alignment

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

KestRel: Relational Verification Using E-Graphs for Program Alignment 13

given in Fig. 13(a). While this alignment features more loops, it does not allow a verifier to lever-
age the similarities between the loops of double1 and double2. This manifests in the traces of the
correct alignments, where each pair of successive wH𝑅 ’s at indices𝑚 and 𝑛 will have the property
𝑑𝑜𝑚(Δ𝑚→𝑛

1) = 𝑑𝑜𝑚(Δ𝑚→𝑛
2). In other words, the relational loop updates the same values on the left

and right side in a similar way, a property which the trace of the program in Fig. 13(a) will not
have. This suggests a improved heuristic of preferring relational loops that modify variables from
double1 and double2 in similar ways.

Finally, consider the suboptimal alignment shown in Fig. 13(b). While this is close to double1×2, it
does not properly stutter the body of the relational loop using whileSt. This manifests in a trace
that includes several of wH’s that are generated by the lefthand “runoff” loop after the relational
loop has ended (wE𝑅). This suggests another straightforward strategy of favoring traces with fewer
runoff loop executions.
While not exhaustive, the above discussion illustrates how execution traces may be used to

quantify desirable alignments. While our extraction algorithm is parameterized over the particular
cost function, so that it is possible to use functions which prefer different alignment features, the
implementation presented in Section 6 scores traces across several dimensions:

• Relational block size, preferring relational blocks which modify fewer variables.
• Relational block symmetry, preferring relational blocks which update the same variables
on both sides.
• Loop head matching, preferring loops which update the same variables on both sides.
• Loop update linearity, preferring loops which change variables by the same amount on
each iteration.
• Loop executions, preferring loops which execute fewer times. This especially favors
alignments whose “runoff” loops never execute.

5.3 Data-Driven Extraction of Product Programs

Algorithm 1: KestRel
Inputs :𝑝1 and 𝑝2: programs,

Cost: cost function over alignments,
𝜇: number of SA iterations

Output :product program 𝑝1 × 𝑝2
1 begin
2 𝐸 ← CreateEGraph()

3 Insert(𝐸, ⟨𝑝1 |𝑝2⟩)
4 EQSat(𝐸, CoreRel)

5 𝑏𝑒𝑠𝑡 ← ExtractLocal(E)

6 𝜂 ← Cost(best)

7 for 𝑘 ← 0 to 𝜇 do
8 𝜏 ← Temperature(𝑘, 𝜇)

9 𝑁 ← RandomNeighbor(𝐸, best)

10 𝜂 ← Cost(N)

11 if 𝜂 < 𝜂 ∨ Jump(𝜏 , best, 𝜂, 𝑁 , 𝜂) then
12 (𝑏𝑒𝑠𝑡, 𝜂) ← (𝑁,𝜂)

13 return Reify(best)

Our complete algorithm for constructing
aligned product programs is given in Al-
gorithm 1. The algorithm takes as input
two programs p1 and p2, a Cost function
over candidate alignments, and a parameter
𝜇 bounding the number of candidates our
data-driven extraction phase should con-
sider. Any time the algorithm needs to com-
pute the Cost of a candidate alignment, it
first collects execution traces for that can-
didate over a set of randomly generated
test inputs. (This set of test inputs does not
change between successive invocations of
Cost.) Traces are collected and scored as
described in Section 5.
Lines 1 — 3 create a new e-graph from

the initial embedding of the input programs,
⟨𝑝1 |𝑝2⟩, and then uses equality saturation
(Line 4) with a collection of realignment
rules to build the set of candidate alignment.
The algorithm then uses a standard local

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

14 Robert Dickerson, Prasita Mukherjee, and Benjamin Delaware

J⟨s1 | s2 ⟩KI ≜ log(relBegin); Js1KIL; log(relMid); Js2KIR; log(relEnd)

Jr1 •
❜

r2KI ≜ Jr1KI; [r2KI

JwhileR ⟨b1 | b2 ⟩ r KI ≜ log(whileBegin); while (Jb1KIL && Jb2KIR) { log(loopHead); JrKI}; log(whileEnd)

JifR ⟨b1 | b2 ⟩ then r1 else r2KI ≜ if (Jb1KIL && Jb2KIR) then Jr1KI else [r2KI

Fig. 14. Instrumented reification of CoreRel into Imp

cost function, ExtractLocal, that minimizes the number of loops in each e-class to extract an
initial candidate program (Line 5), and then computes its Cost (Line 6). The algorithm then proceeds
to the data-driven extraction phase, which is implemented as a simulated annealing loop (Lines
7–12) that leverages the e-graph to provide candidate alignments by perturbing an alignment’s
selection of e-class representative nodes. On each iteration, we calculate the temperature, use the
e-graph to select a neighbor of the current candidate, 𝑏𝑒𝑠𝑡 , and calculate the cost of that neighbor.
The Temperature function may implement any cooling schedule; our implementation uses a linear
schedule. If the neighbor’s Cost is lower than the current candidate alignment, we adopt it as our
new candidate alignment. The algorithm will also accept a neighbor with a higher Cost with some
probability that decreases as the temperature lowers. After this loop finishes, the algorithm returns
the current candidate alignment.

6 IMPLEMENTATION
We have implemented a relational verification engine based on Algorithm 1, called KestRel.
KestRel is written in Rust and uses the Egg library [38] to represent spaces of candidate alignments
as e-graphs. Internally, KestRel operates over a superset of CoreRel, but it is equipped with a
frontend that accepts a subset of C (it does not support for loops or structs, for example) and
backends for outputting product programs in Dafny and C (the latter is used to target SeaHorn).
To improve performance, our implementation of KestRel hands off the initial alignment found
by syntactic extraction (Line 5) to a verifier; if this program successfully verifies, KestRel halts
and reports its success. Otherwise, it proceeds to its data-driven extraction phase, and the result of
verifying the product program produced by this phase is reported to the user.

Equality Saturation Optimizations. To ensure KestRel can efficiently saturate its e-graph, it
optimizes its representation of the space of alignments in several ways. Firstly, basic blocks whose
internal realignment cannot impact the verifiability of the product program are encoded using
a distinguished basic-block structure to which the hom-l and hom-r rules do not apply. This
avoids unnecessarily polluting the search space with useless permutations of realigned straightline
code. Secondly, we limit the number of duplicate loop bodies in product programs by capping
the arguments to whileSt to 2. This limit can be relaxed or eliminated at the cost of increasing the
number of candidate alignments.

log(relBegin);
y1 B 0; z1 B 2 * x1;
log(whileBegin); while (z1 > 0) {

log(loopHead); z1−−; y1 += x1;
} log(whileEnd);
log(relMid);
y2 B 0; z2 B x2;
log(whileBegin); while (z2 > 0) {

log(loopHead); z2−−; y2 += x2;
} log(whileEnd);
y2 B 2 * y2;
log(relEnd);

Fig. 15. Output of J⟨double1|double2 ⟩KI.

Instrumentation. In order to generate traces dur-
ing its data-driven extraction phase, KestRel pro-
duces instrumented product programs that are aug-
mented with log commands which record the in-
termediate states used in traces. The instrumented
variant of J·K, shown in Fig. 14, adds appropriate
logging commands to the beginnings, middles, and
ends of relations; the beginning and ends of loops;
and entry points of loop heads. Fig. 15 shows the
instrumented variant of ⟨double1|double2 ⟩ produced

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

KestRel: Relational Verification Using E-Graphs for Program Alignment 15

by this function. To generate traces from an instru-
mented program, KestRel randomly generates a set
of starting states which meet the verification prob-
lem’s relational precondition using test input generators in the style of property based testing
frameworks [10].

Reification. While the work of finding alignments is carried out in the language of CoreRel,
KestRel is equipped with backends which translate CoreRel alignments into product programs
annotated with assume and assert statements. These product programs can be given directly to
off-the-shelf verifiers. Currently KestRel has backends for C (targeting the SeaHorn verifier) and
Dafny.

Invariant Inference. After constructing a candidate product program, the Dafny backend of
KestRel uses Daikon [14] along with Houdini-style[15] iterative refinement to automatically infer
basic loop invariants. For cases where this invariant inference is insufficient, KestRel allows users
to provide additional hints about possible relational loop invariants.

7 EVALUATION
Our expermintal evaluation investigates four key questions regarding our approach to relational
verification:

RQ1 Is our approach effective, i.e., does KestRel enable existing verification tools to be used for
relational reasoning?

RQ2 Is our approach expressive enough to verify a diverse set of programs and relational proper-
ties?

RQ3 Is our approach efficient? Is KestRel able to find useful product programswithin a reasonable
time frame?

RQ4 Is our approach general? Can KestRel build product programs suitable for multiple backend
verifiers?

To answer these questions, we evaluate KestRel on a diverse corpus of benchmarks2 that
includes programs drawn from the relational verification literature, and incorporates examples
from both product program- and relational logic-based approaches [2, 3, 33, 36]. Our benchmark
suite includes clients of a variety of abstract data types (ADTs), including key value stores, lists,
binary search trees, and 2-3 trees (RQ2). Our evaluation considers several categories of relational
properties (RQ2), including:

• Equivalence: Two programs exhibit equivalent behaviors, for example always returning
the same value given the same inputs.
• Anticommutativity: Swapping the arguments of a function inverts its result: compare(a, b) =

!compare(b, a), for example.
• Monotonicity: Under certain conditions, one program always yield a result greater than
(or less than) another.
• Noninterference: An information security property that requires observable (“low”) out-
puts of multiple executions to independent of any secret (“high”) inputs.

All benchmarks were run on ArchLinux with an 8 core Intel i7-6700K 4GHz CPU and 16 GB
RAM.

2All the benchmarks and results from our evaluation are provided in the supplementary material.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16 Robert Dickerson, Prasita Mukherjee, and Benjamin Delaware

Table 1. Comparing naïve alignments with the alignments produced by KestRel. The top and bottom tables

present the results for programs with only basic types and ADTs, respectively. Benchmark names are annotated

with their source: Antonopoulos et al. [2] (
†
), Barthe et al. [3] (

★
), Sousa and Dillig [33](

◦
), Shemer et al. [32]

(
⋄
), and Cormen et al. [11] (

□
). For benchmarks with basic types, the Loops column indicates the presence of

a loop in the benchmark. For clients of ADTs, the ADTs column lists the ADTs used. The Property column

gives the relational property of interest. The Unaligned and Aligned columns indicate verification times in

seconds for, respectively, the naïve product program and the program produced by KestRel. A red ✖ indicates

verification failure and a green ✔ indicates success. The simulated annealing phase of program extraction is

capped at 12000 iterations. The Inv column contains the number of loop invariant hints given to KestRel.

Benchmark Loops Property Unaligned Aligned Inv
commute ✔ commutativity ✖ 6.47 ✔ 4.68
data-alignment† ✔ monotonicity ✖ 5.98 ✖ 18.36
half-square⋄ ✔ noninterference ✖ 12.01 ✔ 12.38 2
payments ✔ equivalence ✖ 8.59 ✔ 6.71
simple† ✔ equivalence ✖ 4.16 ✔ 2.48 1
strength-reduction★ ✔ equivalence ✖ 7.76 ✔ 5.88 1
square-sum⋄ ✔ equivalence ✖ 10.98 ✔ 4.27
unroll★ ✔ equivalence ✖ 5.95 ✔ 23.57
col-item◦ ✖ anticommutativity ✔ 2.40 ✔ 2.38
container◦ ✖ anticommutativity ✔ 2.49 ✔ 2.44
file-item◦ ✖ anticommutativity ✔ 2.34 ✔ 2.35
match◦ ✖ anticommutativity ✔ 2.38 ✔ 2.38
node◦ ✖ anticommutativity ✔ 2.35 ✔ 2.37

Benchmark ADTs Property Unaligned Aligned Inv
array-insert† kvstore equivalence ✖ 12.64 ✔ 15.00
array-int◦ kvstore anticommutativity ✖ 13.52 ✔ 15.92
bst-min-search□ bst monotonicity ✖ 6.17 ✔ 4.36
bst-sum□ bst monotonicity ✖ 6.49 ✔ 6.51
bubble-sort★ kvstore robustness ✖ 21.67 ✔ 17.48 4
chromosome◦ kvstore anticommutativity ✖ 13.29 ✔ 13.46
code-sinking★ kvstore equivalence ✖ 10.80 ✔ 9.02 17
linked-list-ni list noninterference ✖ 10.10 ✔ 26.90 4
list-array-sum□ kvstore, list equivalence ✖ 6.70 ✔ 4.83
list-length□ list equivalence ✖ 3.74 ✔ 3.14
loop-alignment★ kvstore equivalence ✖ 10.78 ✔ 34.66 3
loop-pipelining★ kvstore equivalence ✖ 9.94 ✔ 35.12 7
loop-tiling† kvstore equivalence ✖ 12.42 ✖ 40.20
loop-unswitching★ kvstore equivalence ✖ 7.51 ✔ 5.42 3
static-caching★ kvstore equivalence ✖ 19.51 ✖ 77.42

7.1 Enabling Relational Verification
Our first set of experiments explores whether KestRel is able to identify alignments that enable
verifiers to exploit semantic similarities between programs RQ1. Recall from Section 2 that a
straightforward way to construct a product program is to simply concatenate multiple programs
together, after 𝛼-renaming variables to ensure distinct namespaces. Our experiments use these
unaligned programs as the baseline, as this naïve alignment strategy does not perform any loop
fusion, unrolling, or other transformations that expose similarities between programs to the verifier.
We verified both naïve and aligned product programs using our Dafny backend, as its module
system natively supports reasoning about clients of ADTs with algebraic specifications.

The results of these experiments are presented in Table 1. The experiments are grouped into two
tables: the first is comprised of benchmarks that only require basic datatypes, while the second

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

KestRel: Relational Verification Using E-Graphs for Program Alignment 17

0 5 10 15 20 25 30 35

square-sum
file-item

node
match

col-item
container

simple
list-length

bst-min-search
commute

list-array-sum
loop-unswitching
strength-reduction

bst-sum
payments

code-sinking
half-square

chromosome
array-insert

array-int
bubblesort

unroll
linked-list-ni

loop-alignment
loop-pipelining

Time (s)

DaikonSyn
HoudiniSyn
Alignment
DaikonSem
HoudiniSem

Fig. 16. Breakdown of KestRel runtimes by subtask. “DaikonSyn” refers to generating initial invariant

candidates for syntactic extraction, “HoudiniSyn” refers to elimination of invalid invariant candidates for

syntactic extractions, and “Alignment” refers to semantic extraction of a product program from the e-graph.

“DaikonSem” and “HoudiniSem” refer to the analagous invariant inference tasks over semantic extractions.

Subtasks which take negligable amounts of time (for example, extracting an initial syntactic product from

the e-graph) are not depicted.

consists of benchmarks that use ADTs. The first set is further subdivided into benchmarks with and
without loops (all of our ADT benchmarks contain loops). As the set of paths through loop-free
programs is finite, we expect alignment to be unnecessary for verification in these cases. Indeed,
Dafny is able to verify the unaligned versions of all five loop-free benchmarks. Nevertheless these
benchmarks show that the alignments computed by KestRel do not adversely affect verifiability in
cases where alignments are not strictly necessary.
Dafny failed to verify the unaligned versions of the remaining 23 benchmarks, suggesting that

a better alignment could be beneficial. Indeed, for all but three of these benchmarks, Dafny was
able to verify the aligned product programs produced by KestRel (RQ1). Our pipeline was able to
verify over half of these benchmarks (16) fully automatically; the remaining 9 required us to provide
hints about additional predicates that needed inclusion in the set of candidate loop invariants. In
addition, verification was relatively efficient, finishing in under 30 seconds in most cases (RQ3).
For most of these benchmarks, invariant inference dominates the total runtime; Fig. 16 presents
per-subtask timings for the individual componets of the KestRel pipeline.

Two of the five benchmarks that our pipeline fails to verify require the insertion of sophisticated
guards inside the loops of the aligned program, transformations that are not currently supported
by KestRel. The data-alignment benchmark must skip executing certain loop interations (for

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

18 Robert Dickerson, Prasita Mukherjee, and Benjamin Delaware

example, when the loop index mod 3 is zero), and loop-tiling requires the creation of new inner
loops which subdivide iterations at certain tile sizes. The remaining failure case, static-caching,
requires complex loop invariants; a stronger invariant inference engine could enable the alignments
produced by KestRel to be automatically verified.

7.2 Impact of the Extraction Method
As discussed in Sections 5 and 6, KestRel uses a two-phase approach to extract a product program
from the space of alignments. The first phase uses a local, syntactic cost function to quickly identify
promising alignments, while the second uses a slower non-local cost function that uses data-driven
simulated annealing to examine semantic properties of potential product alignments. KestRel uses
the former technique to quickly arrive at a reasonable starting alignment, and the latter to refine
that starting point into an alignment with desirable semantic behavior.

Benchmark Syntactic Semantic Combined
array-insert ✔ 13.64 ✔ 25.67 ✔ 15.00
array-int ✔ 20.03 ✖ 25.04 ✔ 15.92
bst-min-search ✔ 4.33 ✖ 7.98 ✔ 4.36
bst-sum ✔ 6.55 ✔ 9.79 ✔ 6.51
bubble-sort ✔ 17.86 ✖ 15.40 ✔ 17.48
chromosome ✔ 15.04 ✖ 4.54 ✔ 13.46
code-sinking ✔ 9.06 ✖ 32.31 ✔ 14.02
col-item ✔ 2.64 ✖∞ ✔ 2.38
commute ✔ 4.78 ✔ 7.61 ✔ 4.68
container ✔ 2.81 ✖∞ ✔ 2.44
file-item ✔ 2.45 ✔ 29.51 ✔ 2.35
half-square ✔ 12.38 ✔ 10.57 ✔ 12.38
linked-list-ni ✔ 27.52 ✖ 17.65 ✔ 26.90
list-array-sum ✔ 4.70 ✔ 6.70 ✔ 4.83
list-length ✔ 3.17 ✖∞ ✔ 3.14
loop-alignment ✖ 16.61 ✖ 26.25 ✔ 34.66
loop-pipelining ✖ 19.88 ✔ 18.68 ✔ 35.12
loop-unswitching ✔ 7.31 ✖ 36.63 ✔ 5.42
match ✔ 2.43 ✔ 49.39 ✔ 2.38
node ✔ 2.43 ✔ 5.93 ✔ 2.37
payments ✔ 6.71 ✖ 18.51 ✔ 6.71
simple ✔ 2.49 ✔ 3.84 ✔ 2.48
strength-reduction ✔ 6.77 ✖ 41.42 ✔ 5.88
square-sum ✔ 4.33 ✔ 5.26 ✔ 4.27
unroll ✖ 21.28 ✔ 4.80 ✔ 23.57

Fig. 17. Results of an ablation study over benchmarks with

successful KestRel verifications. The “Syntactic” column

lists verification results for programs obtained using just

local extraction. The “Semantic” gives results for programs

constructed via data-driven simulated annealing extractions

starting from a random (instead of minloops-extracted) and

using a maximum 12000 iterations. The “Combined” column

contains verification results for the default KestRel work-

flow. All times are shown in seconds.

To demonstrate the utility of our com-
bined approach to extraction, we perform
an ablation study which uses each extrac-
tion method individually to construct an
aligned product program. This experiment
uses the benchmarks in Table 1 that con-
tain loops and which KestRel can auto-
matically verify. We gave each of these
benchmarks to two modified versions of
KestRel. The first performs only local ex-
traction (“Syntactic”), while the second
performs only simulated annealing, start-
ing from a random point in the alignment
space (“Semantic”). Fig. 17 presents the re-
sults of this experiment.
In most cases, our syntactic extraction

technique, which minimizes the total num-
ber of loops (fewer loops likely means
more fused loops) was sufficient for veri-
fication. In some cases (e.g., array-int,
loop-unswitching), this approach suc-
ceeded where data-driven simulated an-
nealing failed; the likely cause is a bad
random start in a large alignment space. In
several cases (e.g. file-item, match), the
programs produced by both approaches
were able to verify, but simulated anneal-
ing took much longer than the syntac-
tic approach. Taken together, these points
indicate that using a local minloops ex-
traction is an effective starting point for
KestRel’s simulated annealing approach.
In three benchmarks, minloops alone was insufficient to produce a verifiable alignment. These

represent cases where data-driven alignment is necessary to discover the semantic transformations
that enable automatic verification. One of these benchmarks, loop-alignment, did not arrive at

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

KestRel: Relational Verification Using E-Graphs for Program Alignment 19

Benchmark Verification Time (s)
Unaligned Syntactic Combined

double-square ✖ 0.16 ✖ 0.19 ✔ 1.81
shemer ✖ 0.19 ✔ 0.18 ✔ 2.05
simple ✖∞ ✔ 0.28 ✔ 1.68
unroll ✖∞ ✖∞ ✔ 1.58
array-insert ✔ 3.52 ✔ 14.32 ✔ 19.56
array-int ✔ 0.17 ✔ 0.18 ✔ 5.35
bubble-sort ✔ 0.14 ✔ 0.22 ✔ 16.26
chromosome ✔ 0.15 ✔ 0.16 ✔ 3.57
col-item ✔ 0.13 ✔ 0.19 ✔ 2.51
container ✔ 0.16 ✔ 0.15 ✔ 3.94
file-item ✔ 0.13 ✔ 0.18 ✔ 21.63
half-square ✔ 0.15 ✔ 0.19 ✔ 3.98
loop-alignment ✔ 0.13 ✔ 0.15 ✔ 6.12
loop-unswitching ✔ 1.19 ✔ 1.23 ✔ 6.25
match ✔ 0.14 ✔ 0.16 ✔ 40.01
node ✔ 0.12 ✔ 0.14 ✔ 2.09
code-sinking ✖ 0.67 ✖ 0.29 ✖ 19.21
data-alignment ✖∞ ✖∞ ✖ 33.84
loop-pipelining ✖ 5.32 ✖ 15.82 ✖ 15.83
loop-tiling ✖∞ ✖∞ ✖∞
strength-reduction ✖∞ ✖ 0.20 ✖ 2.74
square-sum ✖ 0.17 ✖ 0.23 ✖ 1.22

Fig. 18. Results from using KestRel’s SeaHorn backend to verify a suite of array benchmarks to a suite of

array benchmarks and. All times reported in seconds. A ∞ indicates the process did not finish within 10

minutes. A ✖ indicates SeaHorn was unable to verify, either due to timeout, inability to find a loop invariant,

or inability to decide verification conditions. A ✔ indicates successful verification.

a working alignment when performing either local minloops extraction or simulating annealing
from a random starting point, showcasing the benefits of KestRel’s combined approach.

7.3 Relational Verification with SeaHorn
To demonstrate that KestRel’s utiltiy is not restricted to a particular verifier (RQ4), we used
KestRel to produce product programs for verification using SeaHorn [17], a popular tool for
automatically verifying safety properties of C programs. We translated a subset of the benchmarks
from Table 1 to C programs which use arrays. Currently, SeaHorn only supports reasoning about
arrays up to a statically-known size, as opposed to, e.g., arbitrary key-value stores. The results
of this evaluation are presented in Fig. 18. Combined with the results from our Dafny backend,
these verification times suggest that the KestRel produces programs that can be efficiently verified
(RQ2).

Fig. 18 reports verification times for unaligned programs, alignments produced by just the
local cost function (“Syntactic”), and the alignments produced by KestRel’s default workflow
(“Combined”). Our results are grouped into three categories, shown at the the top, middle, and
bottom of Fig. 18. The top and middle groups comprise benchmarks where SeaHorn was able to
verify the product programs produced by KestRel, and the top group includes the cases where
SeaHorn was not able to verify the naïve product program. For two of these benchmarks, schemer
and simple, SeaHorn failed to verify the product program found by syntactic methods, while our
data-driven approach was able to find product programs that successfully verified. Taken together,
these results provide evidence that our approach can support multiple verification backends (RQ4).
Analagous to the previous experiment, the middle group of benchmarks SeaHorn was able to

verify using only the naïve product program includes the loop-free programs at the bottom of
Table 1. However, it additionally contains several other benchmarks whose naïve alignment Dafny

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

20 Robert Dickerson, Prasita Mukherjee, and Benjamin Delaware

was not able to verify. We conjecture that this is due to SeaHorn’s requirement that programs
use arrays with static sizes, affording it the opportunity to use bounded verification techniques
not possible in the presence of datatypes of arbitrary size. As before, while not unlocking new
verifications, these benchmarks provide evidence that KestRel “does no harm”; programs that verify
before alignment continue to verify after, in a comparable amount of time (minus the overhead of
finding an alignment).
The last group of benchmarks represents the six cases where SeaHorn was unable to verify

KestRel alignments. As before, data-alignment and loop-tiling require synthesizing loop
conditions currently beyond KestRel’s scope. In the remaining cases, the complexity of the required
loop invariants appears to put verification out of reach for SeaHorn.3 To verify these alignments are
nevertheless valid, we manually verified each of these aligned product programs using VST [7]. For
the cases verified with VST, invariants did not require specification of full functional correctness.

8 RELATEDWORK
Relational Program Logics. Much recent work on relational verification has focused on custom

relational program logics [5, 8, 13, 33, 36]. Relational alignment in these logics arise (often implicitly)
from how the deductive rules are applied during verification. Cartesian Hoare Logic (CHL) [33], for
example, provides a special set of rules for reasoning over loop executions in lock step, but in order
to take advantage of these rules the verifier must step over program statements from different
executions in a way that aligns related loops. The CHL verification algorithm uses lightweight
syntactic heuristics to attempt to maximize opportunities for loop alignment, while our approach
which uses a data-driven technique based on execution traces to find alignments. Chen et al.
[8] use reinforcement learning to identify proof strategies that are likely to lead to a successful
verification using their relational logic. While their approach uses machine learning to identify
promising applications of relational proof rules for different classes of programs, e.g., programming
assignments, our approach instead examines execution traces of individual programs on to identify
alignments amenable to verification with existing tools. Unno et al. [36] make alignment constraints,
which they call a “schedule”, explicit in templated verification conditions, which are expressed in
an extension to constrained Horn clauses (CHCs). Finding alignment then becomes a concern of a
CEGIS-based verifier for this extended class of CHCs.

Aligned Product Programs. Barthe et al. [3, 4] present systems for soundly combining multiple
programs into a single product program, although does not propose generic algorithms for con-
structing products with good alignments. Indeed, efficiently searching the large space of possible
product programs for desirable alignments is one of the primary hurdles of the product program
approach. Sharma et al. [31] perform data-driven equivalence checking of x86 loops by examining
instrumented execution traces to find cutpoints where the loop bodies are likely to be related by
simple invariants. Churchill et al. [9] describe a data-driven approach for proving equivalence
between x86 programs by inferring predicates which relate trace elements, then lifting those predi-
cates back to the source code level to construct a product program. Similar to our approach, both
works use instrumented execution traces to identify promising alignments in x86 code, although
their techniques are specialized to proving equivalence and use specialized equivalence verifier.
Rather than identifying predicates over state traces and lifting them to an equivalence proof, our
approach scores traces according to a cost function that is used to search a space of alignments
encoded in an e-graph, and targets off-the-shelf verifiers as its backend.

3We did not adapt KestRel’s loop invariant inference pipeline for SeaHorn output, and rely solely on SeaHorn for invariant
inference.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

KestRel: Relational Verification Using E-Graphs for Program Alignment 21

E-Graph Extraction. Extracting a desirable term with a heuristic cost function is a core piece of
optimization by equality saturation [35]. Using local cost functions to greedily select subterms is a
common strategy, and forms the default extraction mechanism of the popular Egg library [38]. Wang
et al. [37] propose an alternative non-local approach based on mixed-integer linear programming
(MILP). Although this approach requires assigning a single, static cost for each e-graph node. In
contrast, alignment problems are most naturally expressed using variable node costs that depend on,
e.g., sibling extractions. Although it is possible to set up MILP encodings for alignment problems,
our initial experiments using this technique did not scale to the majority of the benchmarks in our
evaluation.

9 CONCLUSION
Many interesting properties, such as observational equivalence and noninterference, are relational.
That is, they are properties which relate multiple program executions. Reasoning about these
properties requires finding alignments between programs so that verifiers are able to exploit
their similarities. Without proper alignments, relational verification is often intractable. However,
finding good alignments involves overcoming several challenges. The space of possible alignments
is combinatorial in the size of the related programs, and many properties of desirable alignments
require examining the semantic behavior of the aligned programs.

In this paper, we presented KestRel, a tool for constructing product programs by finding desirable
alignments. To do this, KestRel compactly represents a space of possible alignments by embedding
terms in an alignment algebra, expressing the embedding in an e-graph, and running equality
saturation over rewrite rules from the algebra. It then uses a novel data-driven extraction technique
to identify promising alignments from instrumented execution traces. Once a desirable alignment
is found, KestRel reifies the algebraic term into a product program which can be verified by
off-the-shelf single program verifiers. We have evaluated KestRel on a diverse suite of benchmarks
and relational properties taken from the literature, using two off-the-shelf verifiers, Dafny and
SeaHorn, to verify the product programs KestRel produces. Our experiments show that KestRel
discovers alignments that enable verification to succeed where a naïve alignment strategy would
otherwise fail.

REFERENCES
[1] Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-Yves Strub. 2017. A Relational Logic for

Higher-order Programs. Proc. ACM Program. Lang. 1, ICFP, Article 21 (Aug. 2017), 29 pages.
[2] Timos Antonopoulos, Eric Koskinen, Ton Chanh Le, Ramana Nagasamudram, David A Naumann, and Minh Ngo. 2023.

An Algebra of Alignment for Relational Verification. Proceedings of the ACM on Programming Languages 7, POPL
(2023), 573–603.

[3] Gilles Barthe, Juan Manuel Crespo, and César Kunz. 2011. Relational verification using product programs. In FM 2011:

Formal Methods: 17th International Symposium on Formal Methods, Limerick, Ireland, June 20-24, 2011. Proceedings 17.
Springer, 200–214.

[4] Gilles Barthe, Juan Manuel Crespo, and César Kunz. 2013. Beyond 2-safety: Asymmetric product programs for
relational program verification. In Logical Foundations of Computer Science: International Symposium, LFCS 2013, San

Diego, CA, USA, January 6-8, 2013. Proceedings. Springer, 29–43.
[5] Nick Benton. 2004. Simple Relational Correctness Proofs for Static Analyses and Program Transformations. In

Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Venice, Italy)
(POPL ’04). ACM, New York, NY, USA, 14–25.

[6] Raven Beutner and Bernd Finkbeiner. 2022. Software Verification of Hyperproperties Beyond k-Safety. In Computer

Aided Verification, Sharon Shoham and Yakir Vizel (Eds.). Springer International Publishing, Cham, 341–362.
[7] Qinxiang Cao, Lennart Beringer, Samuel Gruetter, Josiah Dodds, and AndrewW. Appel. 2018. VST-Floyd: A Separation

Logic Tool to Verify Correctness of C Programs. J. Autom. Reason. 61, 1-4 (2018), 367–422. https://doi.org/10.1007/
S10817-018-9457-5

https://doi.org/10.1007/S10817-018-9457-5
https://doi.org/10.1007/S10817-018-9457-5

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

22 Robert Dickerson, Prasita Mukherjee, and Benjamin Delaware

[8] Jia Chen, Jiayi Wei, Yu Feng, Osbert Bastani, and Isil Dillig. 2019. Relational verification using reinforcement learning.
Proceedings of the ACM on Programming Languages 3, OOPSLA (2019), 1–30.

[9] Berkeley Churchill, Oded Padon, Rahul Sharma, and Alex Aiken. 2019. Semantic program alignment for equivalence
checking. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation.
1027–1040.

[10] Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight Tool for Random Testing of Haskell Programs. In
Proceedings of the Fifth ACM SIGPLAN International Conference on Functional Programming (ICFP ’00). Association for
Computing Machinery, New York, NY, USA, 268–279. https://doi.org/10.1145/351240.351266

[11] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. Introduction to Algorithms, Third

Edition (3rd ed.). The MIT Press.
[12] Thibault Dardinier and Peter Müller. 2023. Hyper Hoare Logic: (Dis-)Proving Program Hyperproperties (extended

version). arXiv:2301.10037 [cs.LO]
[13] Robert Dickerson, Qianchuan Ye, Michael K Zhang, and Benjamin Delaware. 2022. RHLE: Modular Deductive

Verification of Relational ∀∃ Properties. In Programming Languages and Systems: 20th Asian Symposium, APLAS 2022,

Auckland, New Zealand, December 5, 2022, Proceedings. Springer, 67–87.
[14] Michael D Ernst, Jeff H Perkins, Philip J Guo, Stephen McCamant, Carlos Pacheco, Matthew S Tschantz, and Chen

Xiao. 2007. The Daikon system for dynamic detection of likely invariants. Science of computer programming 69, 1-3
(2007), 35–45.

[15] Cormac Flanagan and K Rustan M Leino. 2001. Houdini, an annotation assistant for ESC/Java. In International

Symposium of Formal Methods Europe. Springer, 500–517.
[16] Robert W. Floyd. 1993. Assigning Meanings to Programs. Springer Netherlands, Dordrecht, 65–81. https://doi.org/10.

1007/978-94-011-1793-7_4
[17] Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A Navas. 2015. The SeaHorn verification framework.

In Computer Aided Verification: 27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,

Proceedings, Part I. Springer, 343–361.
[18] W Keith Hastings. 1970. Monte Carlo Sampling Methods using Markov Chains and their Applications. (1970).
[19] C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun. ACM 12, 10 (Oct. 1969), 576–580.
[20] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2017. RustBelt: Securing the Foundations of

the Rust Programming Language. Proc. ACM Program. Lang. 2, POPL, Article 66 (dec 2017), 34 pages.
[21] K. Rustan M. Leino. 2010. Dafny: an automatic program verifier for functional correctness. In Proceedings of the 16th

International Conference on Logic for Programming, Artificial Intelligence, and Reasoning (Dakar, Senegal) (LPAR’10).
Springer-Verlag, Berlin, Heidelberg, 348–370.

[22] Kenji Maillard, Cătălin Hriţcu, Exequiel Rivas, and Antoine Van Muylder. 2019. The next 700 Relational Program
Logics. Proc. ACM Program. Lang. 4, POPL, Article 4 (dec 2019), 33 pages. https://doi.org/10.1145/3371072

[23] Ramana Nagasamudram, Anindya Banerjee, and David A. Naumann. 2023. Alignment complete relational Hoare
logics for some and all. arXiv:2307.10045 [cs.LO]

[24] Ramana Nagasamudram and David A. Naumann. 2021. Alignment Completeness for Relational Hoare Logics. In 2021

36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). 1–13. https://doi.org/10.1109/LICS52264.2021.
9470690

[25] CG Nelson. 1980. Techniques for program verification [Ph. D. Thesis]. Stanford University, CA, USA.
[26] Robert Nieuwenhuis and Albert Oliveras. 2005. Proof-producing congruence closure. In International Conference on

Rewriting Techniques and Applications. Springer, 453–468.
[27] Peter W. O’Hearn. 2007. Resources, concurrency, and local reasoning. Theoretical Computer Science 375, 1 (2007),

271–307. Festschrift for John C. Reynolds’s 70th birthday.
[28] Saswat Padhi, Rahul Sharma, and Todd Millstein. 2016. Data-Driven Precondition Inference with Learned Features.

In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation (Santa
Barbara, CA, USA) (PLDI ’16). Association for Computing Machinery, New York, NY, USA, 42–56. https://doi.org/10.
1145/2908080.2908099

[29] Peter Poetzsch-Heffter, Arndand Müller. 1999. A Programming Logic for Sequential Java. In Programming Languages

and Systems, S. Doaitse Swierstra (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 162–176.
[30] J.C. Reynolds. 2002. Separation logic: a logic for shared mutable data structures. In Proceedings 17th Annual IEEE

Symposium on Logic in Computer Science. 55–74.
[31] Rahul Sharma, Eric Schkufza, Berkeley Churchill, and Alex Aiken. 2013. Data-Driven Equivalence Checking. In

Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages

and Applications (Indianapolis, Indiana, USA) (OOPSLA ’13). Association for Computing Machinery, New York, NY,
USA, 391–406. https://doi.org/10.1145/2509136.2509509

https://doi.org/10.1145/351240.351266
https://arxiv.org/abs/2301.10037
https://doi.org/10.1007/978-94-011-1793-7_4
https://doi.org/10.1007/978-94-011-1793-7_4
https://doi.org/10.1145/3371072
https://arxiv.org/abs/2307.10045
https://doi.org/10.1109/LICS52264.2021.9470690
https://doi.org/10.1109/LICS52264.2021.9470690
https://doi.org/10.1145/2908080.2908099
https://doi.org/10.1145/2908080.2908099
https://doi.org/10.1145/2509136.2509509

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

KestRel: Relational Verification Using E-Graphs for Program Alignment 23

[32] Ron Shemer, Arie Gurfinkel, Sharon Shoham, and Yakir Vizel. 2019. Property directed self composition. In Computer

Aided Verification: 31st International Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019, Proceedings, Part I

31. Springer, 161–179.
[33] Marcelo Sousa and Isil Dillig. 2016. Cartesian hoare logic for verifying k-safety properties. In Proceedings of the 37th

ACM SIGPLAN Conference on Programming Language Design and Implementation. 57–69.
[34] Robert Endre Tarjan. 1975. Efficiency of a good but not linear set union algorithm. Journal of the ACM (JACM) 22, 2

(1975), 215–225.
[35] Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. 2009. Equality saturation: a new approach to optimization.

In Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages. 264–276.
[36] Hiroshi Unno, Tachio Terauchi, and Eric Koskinen. 2021. Constraint-based relational verification. In Computer Aided

Verification: 33rd International Conference, CAV 2021, Virtual Event, July 20–23, 2021, Proceedings, Part I. Springer,
742–766.

[37] Yisu Remy Wang, Shana Hutchison, Jonathan Leang, Bill Howe, and Dan Suciu. 2020. SPORES: sum-product optimiza-
tion via relational equality saturation for large scale linear algebra. arXiv preprint arXiv:2002.07951 (2020).

[38] Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha. 2021. egg:
Fast and extensible equality saturation. Proceedings of the ACM on Programming Languages 5, POPL (2021).

[39] He Zhu, Gustavo Petri, and Suresh Jagannathan. 2016. Automatically Learning Shape Specifications. In Proceedings of the
37th ACM SIGPLAN Conference on Programming Language Design and Implementation (Santa Barbara, CA, USA) (PLDI
’16). Association for Computing Machinery, New York, NY, USA, 491–507. https://doi.org/10.1145/2908080.2908125

https://doi.org/10.1145/2908080.2908125

	Abstract
	1 Introduction
	2 Overview
	3 The CoreRel Language
	3.1 Reifying CoreRel into Imp

	4 Relational Realignment via Equality Saturation
	4.1 E-Graphs

	5 Extraction
	5.1 Traces
	5.2 Comparing Alignments
	5.3 Data-Driven Extraction of Product Programs

	6 Implementation
	7 Evaluation
	7.1 Enabling Relational Verification
	7.2 Impact of the Extraction Method
	7.3 Relational Verification with SeaHorn

	8 Related Work
	9 Conclusion
	References

