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Secure multiparty computation (MPC) techniques enable multiple parties to compute joint functions over
their private data without sharing that data with other parties, typically by employing powerful cryptographic
protocols to protect individual’s data. One challenge when writing such functions is that most MPC languages
force users to intermix programmatic and privacy concerns in a single application, making it difficult to
change or audit a program’s underlying privacy policy. Prior policy-agnostic MPC languages relied on
dynamic enforcement to decouple privacy requirements from program logic. Unfortunately, the resulting
overhead makes it difficult to scale MPC applications that manipulate structured data. This work proposes to
eliminate this overhead by instead transforming programs into semantically equivalent versions that statically
enforce user-provided privacy policies. We have implemented this approach in a new MPC language, called
TayPsI; our experimental evaluation demonstrates that the resulting system features considerable performance
improvements on a variety of MPC applications involving structured data and complex privacy policies.
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1 INTRODUCTION

Secure multiparty computation (MPC) techniques allow multiple parties to jointly compute a function
over their private data while keeping that data secure. A variety of privacy-focused applications
can be formulated as MPC problems, including secure auctions, voting, and privacy-preserving
machine learning [Evans et al. 2018; Hastings et al. 2019; Laud and Kamm 2015]. MPC solutions
typically depend on powerful cryptographic techniques, e.g., Yao’s Garbled Circuits [Yao 1982] or
secret sharing [Beimel 2011], to provide strong privacy guarantees. These cryptographic techniques
can be difficult for non-experts to use, leading to the creation of several high-level languages that
help programmers write MPC applications [Acay et al. 2021; Darais et al. 2020; Hastings et al. 2019;
Liu et al. 2015; Malkhi et al. 2004; Rastogi et al. 2014, 2019; Sweet et al. 2023; Ye and Delaware 2022;
Zahur and Evans 2015; Zhang et al. 2013]. While raising the level of abstraction, almost all of these
languages intermix privacy and programmatic concerns, requiring the programmers to explicitly
enforce the high-level privacy policies within the logic of the application itself, using the secure
operations provided by the language. As a consequence, the entire application must be examined

Authors’ addresses: Qianchuan Ye, Purdue University, West Lafayette, USA, ye202@purdue.edu; Benjamin Delaware, Purdue
University, West Lafayette, USA, bendy@purdue.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/4-ART144

https://doi.org/10.1145/3649861

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 144. Publication date: April 2024.


HTTPS://ORCID.ORG/0000-0002-5977-5236
HTTPS://ORCID.ORG/0000-0002-1016-6261
https://doi.org/10.1145/3649861
https://orcid.org/0000-0002-5977-5236
https://orcid.org/0000-0002-1016-6261
https://doi.org/10.1145/3649861

144:2 Qianchuan Ye and Benjamin Delaware

in order to audit its privacy policy, and an application must be rewritten in order to change its
privacy guarantees. This intermixing of policy enforcement and application logic thus makes it
difficult to read, write, and reason about MPC applications.

This is particularly true for applications with the sorts of complex requirements that can occur in
practice. Within the United States, for example, the Health Insurance Portability and Accountability
Act (HIPAA) governs how patient data may be used. HIPAA allows either the personally identifiable
information (PII) or medical data to be shared, but not both. Notably, this policy does not simply
specify whether some particular field of a patient’s medical record is private or public; rather
it is a relation that dictates how a program can access and manipulate different parts of every
individual record. To conform to this policy, an MPC application must either pay the (considerable)
cryptographic overhead of conservatively securing all accesses to the fields of a record, or adopt a
more sophisticated strategy for monitoring how data is accessed. These challenges become more
acute when dealing with structured data, e.g., lists or trees, whose policies are necessarily more
complex. Consider a classifier that takes as input a decision tree and a medical record, each of which
is owned by a different party: if the owner of the tree stipulates that its depth may be disclosed,
the classification function must use secure operations to ensure that no other information about
the tree is leaked, e.g., its spine or the attributes it uses. If the owner of this tree is willing to share
such information, however, this function must either be rewritten to take advantage of the new,
more permissive policy, or continue to pay the cost of providing stricter privacy guarantees. Thus,
most existing MPC languages require users to write different implementations of essentially the
same program for each distinct privacy policy.

A notable exception is TAYPE [Ye and Delaware 2023], a recently proposed language that decouples
privacy policies from programmatic concerns, allowing users to write applications over structured
data that are agnostic to any particular privacy policy. To do so, TaYpPE implements a novel form of
the tape semantics proposed by Ye and Delaware [2022]. This semantics allows insecure operations
whose evaluation could violate a policy to appear in a program, as long as the results of these
operations are eventually protected. Under tape semantics, such operations are lazily deferred
until it is safe to execute them, effectively dynamically “repairing” potential leaks at runtime. Using
TaYPE, programmers can thus build a privacy-preserving version of a standard functional program
by composing it with a policy, specified as a dependent type equipped with security labels, relying
on tape semantics to enforce the policy during execution. Unfortunately, while this enforcement
strategy disentangles privacy concerns from program logic, it also introduces considerable overhead
for applications that construct or manipulate structured data with complex privacy requirements.
Thus, this strategy does not scale to the sorts of complex applications that could greatly benefit
from this separation of concerns.

This work presents TAYPsI, a policy-agnostic language for writing MPC applications that elimi-
nates this overhead by instead transforming a non-secure function into a version that statically
enforces a user-provided privacy policy. TAyps1 extends TAYPE with a form of dependent sums,
which we call W-types, that package together the public and private components of an algebraic
data type (ADT). Each W-type is equipped with a set of W-structures which play an important role
in our translation, enabling it to, e.g., efficiently combine subcomputations that produce ADTs
with different privacy policies. Our experimental evaluation demonstrates that this strategy yields
considerable performance improvements over the enforcement strategy used by TAYPE, yielding
exponential improvements on the most complex benchmarks in our evaluation suite.

To summarize, the contributions of this paper are as follows:

e We present TAYPs, a version of TaYpE extended with W-types, a form of dependent sums
that enables modular translation of non-secure programs into efficient, secure versions. This
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language is equipped with a security type system that offers the same guarantees as TAYPE:
after jointly computing a well-typed function, neither party can learn more about the other’s
private data than what can be gleaned from their own data and the output of the function.

e We develop an algorithm that combines a program written in the non-secure fragment of
Tayps1 with a privacy policy to produce a secure private version that statically enforces the
desired policy. We prove that this algorithm generates well-typed (and hence secure) target
programs that are additionally guaranteed to preserve the semantics of the source programs.

e We evaluate our approach on a range of case studies and microbenchmarks. Our experimental
results demonstrate exponential performance improvements over the previous state-of-the-art
(TaYPE) on several complicated benchmarks, while simultaneously showing no performance
regression on the remaining benchmarks.

2 OVERVIEW

Before presenting the full details of our approach, data 1ist = Nil | Cons Z 1list
we begin with an overview of TAYPsI’s strategy for
building privacy-preserving applications. Consider the fn filter : list - Z — list = Axs y =
simple filter function in Figure 1, which drops all the ~ match xs with Nil = Nil
elements in a list above a certain bound.! Suppose Alice | Cons x xs" =
owns some integers, and wants to know which of those if x <y then Cons x (filter xs” y)
integers are less than some threshold integer belonging
to Bob, but neither party wants to share their data with
the other. MPC protocols allow Alice and Bob to encrypt Fig. 1. Filtering a list
their data and then jointly compute filter using secure
operations, without leaking information about the encrypted data beyond what they can infer from
the final disclosed output. One (insecure) implementation strategy is to simply encrypt everyone’s
integers and use a secure version of the < operation to compute the resulting list. Under a standard
semi-honest threat model,” however, this naive strategy can reveal private information, via the
shape of the input and the intermediate program states.

As an example, assume Alice’s input list is Cons [2] (Cons [7] (Cons [3] Nil)), and Bob’s input is
[51, where square brackets denote secure (encrypted) numbers, i.e., only the owner of the integer
can observe its value. By observing that Alice’s private data is built from three conss, Bob can already
tell Alice owns exactly 3 integers, information that Alice may want to keep secret. In addition,
both parties can learn information from the control flow of the execution of filter: by observing
which branch of if is executed, for example, Bob can infer that the second element of Alice’s list is
greater than 5. Thus, even if the integers are secure, both parties can still glean information about
the other’s private data.

The particular policy that a secure application enforces can greatly impact the performance of
that application, since the control flow of an application cannot depend on private data. In the
case of our example, this means that the number of recursive calls to filter depends on the public
information Alice is willing to share. If Alice only wants to share the maximum length of her list,
for example, its encrypted version must be padded with dummy encrypted values, and a secure
version of filter must recurse over these dummy elements, in order to avoid leaking information
to Bob through its control flow. On the other hand, if Alice does not mind sharing the exact number
of integers she owns, the joint computation will not have to go over these values, allowing a secure
version of filter to be computed more efficiently.

else filter xs’ y

ITavps1 supports higher-order functions, but our overview will use this specialized version for presentation purposes.
%In this threat model, all parties can see the execution traces produced by a small-step semantics [Ye and Delaware 2022].
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2.1 Encoding Private Data and Policies

Taypst allows Alice and Bob to use types to describe what p1iy Tist. (k : 1) =
public information can be shared about their private data (i.e., the if k=0 then 1
policy governing that data), and its type system guarantees that  else 1 ¥ Z x list- (k-1)
these policies are not violated when jointly computing a function
over that data. At a high-level, a privacy policy for a structured
(i.e., algebraic) datatype specifies which of its components are pri-
vate and which can be freely shared. We call this publicly shared
information a public view, reflecting that it is some projection of Fig 2. Oblivious lists with maxi-
the full data. Formally, policies in Tayps are encoded as oblivious mum and exact length public views
algebraic data types (OADTs) [Ye and Delaware 2022], dependent
types that take a public view as a parameter. The body of an OADT is the type of the private
components of a data type, which are built using oblivious (i.e., secure) type formers, e.g., oblivious
fixed-width integer (Z) and oblivious sum (3).> An oblivious sum is similar to a standard sum, but
both its tag and “payload” (i.e., component) are obfuscated, so that an attacker cannot distinguish
between a left and right injection. Essentially, an OADT is a type-level function that maps the
public view of a value to its private representation, i.e., the shape of its private component.

Figure 2 shows two OADTSs for the type list: Tist-, whose public view is the maximum length of
a list, and Tist-, whose public view is the exact length. A public view can be any public data type.
We say list is the public type or public counterpart of the OADTs list. and list_. The key invariant
of OADTs is that private values with the same public view are indistinguishable to an attacker, as
their private representation is completely determined by the public view. For example, all private
lists of type Tist- 2 have the same private representation, regardless of the actual length of the list:
Tist< 2=1 F Z x (1 ¥ Z x 1). Thus, an attacker cannot learn anything about the structure of an
OADT, outside of what is entailed by its public view: an empty list, singleton list, or a list with two
elements of type list< 2 all appear the same to an attacker.

Conceptually, OADTs generalize the notion of secure
fixed-width integers to secure structured data, as illus-
trated in Figure 3. Every fixed-width integer (of type 7) -, F#s  Tist v
can be sent to its secure value in Z by “encryption”, and a
secure integer can be converted back to Z by “decryption”.

In TAyps1, these conversion functions are called section

(e.g., Z#s) and retraction (e.g., Z#r). The names reflect their Fi
expected semantics: applying retraction to the section

of a value should produce the same value. Importantly, while the oblivious integer type Z does
not appear to have much structure, it nonetheless has an implicit policy: the public view of an
integer is its bit width. If we use 32-bit integers, for example, Z is the set of all integers whose bit
width is 32, and Z is the set of their “encrypted” values, related by a pair of conversion functions.
Similarly, Tist- k consists of the secure encodings of lists that have at most k elements. Like Z, Tist
is equipped with a section function, Tist.#s, and a retraction function, Tist.#r, which convert public
values of list to their oblivious counterparts and back. Crucially, just as the oblivious integers in Z
are indistinguishable, the elements of Tist. k are also indistinguishable.

In the implementation of TaypsI, oblivious values are represented using arrays of secure values.
To ensure that attackers cannot learn anything from the “memory layout” of an OADT value, the
size of this array is the same for all values of a particular OADT. As an example, the encoding of the
list Cons 10 (Cons 20 Nil) as an oblivious list of type Tist 21isinr ([10], inr ([20], ())), where inr

obliv Tist- (k : N) =
if k =0 then 1
else Z x list- (k—1)

N

{1l:1list|length 1 <k}

Z Tist- k

g. 3. Public and oblivious types

3By convention, we use "to denote the oblivious version of something.
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(in1) is the oblivious counterpart of standard sum injection inr (in1). “Under the hood” this oblivious
value is represented as an array holding four secure values; in the remainder of this section, we
will informally write this value as [Cons, 10,Cons, 201, where [Cons] is a synonym of the tag [inr] for
readability. As another example, the empty list Nil is encoded as inl (); it is also represented using
an array with four elements, [Nil,-,-, -1, where the last three elements are dummy encrypted
values (denoted by -). Our compiler uses the type of inl to automatically pad this array with these
values, in order to ensure that it is indistinguishable from other private values of Tist. 2.

2.2 Enforcing Policies

Although using OADTs ensures that the representation of private information does not leak
anything, both parties can still learn information by observing the control flow of a program. In
order to protect private data from control flow channels, Tayps1 provides oblivious operations
to manipulate private data safely. One such operation is the atomic conditional mux,* a version
of if that fully evaluates both branches before producing its final result. To understand why this
evaluation strategy is necessary, consider the following example of what would happen if we were
to evaluate mux like a standard if expression:

mux [true] ([2] ¥ [3]) [4] — [2] ¥ [3] — [5]

Even when all the private data (i.e., the integers in square brackets) is hidden, an attacker can
infer that the private condition is true by observing that mux evaluates to the expression in its then
branch.
With the secure semantics of mux, however, the following execution trace does not reveal any
private information:
mux ([01 < [11) ([2] F [31) ([4] # [51) — mux [truel ([2] # [3]) ([4]1 % [5]) —
mux [truel [5] ([4]1 + [5]1) — mux [truel [5] [9] — [5]
Since both branches are evaluated regardless of the private condition, an attacker cannot infer that
condition from this execution trace (again, all secure values are indistinguishable to an attacker).
Thus, falsifying the condition produces an equivalent trace, modulo the encrypted data:
mux ([6] < [11) ([2] F [3]) ([4] # [5]) — mux [false] ([2] F [3]) ([4] * [5]) —
mux [false] [5] ([4] + [5]) — mux [false] [5] [9] — [9]
The security-type system of TAYPSI ensures all operations on private data are done in a way that
does not reveal any private information, outside the public information specified by the policies.

2.3 Automatically Enforcing Policies

Users can directly implement privacy-preserving applications in Tayps1 using OADTs and secure
operations, but this requires manually instrumenting programs so that their control flow only
depends on public information. Under this discipline, the implementation of a secure function
intertwines program logic and privacy policies: the secure version of filter requires a different
implementation depending on whether Alice is willing to share the exact length of her list, or an
upper bound on that length. TaypE [Ye and Delaware 2023] decouples these concerns by allowing
programs to include unsafe computations and repairing unsafe computations at runtime, using a
novel form of semantics called tape semantics. As an example of this approach, in TAYPE, a secure
implementation of filter that allows Alice to only share an upper bound on the size of her list can
be written as:

fn Filter< : (k : N) — Iiste k — 7 — liste k =

Ak X5 5 = list-#s k (filter (List#r k x35) (Z#r 7))

4The oblivious version of if in TaypsI is called mux, not F, in order to be consistent with the MPC literature.
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The type signature of filter< specifies the policy it must follow. Intuitively, its implementation
first “decrypts” the private inputs, applying the standard filter function to those values, and then
“re-encrypts” the filtered list. In this example, the retractions of the private inputs xs and y are unsafe
computations that would violate the desired policy if they were computed naively. Fortunately,
using the tape semantics prevents this from occurring by deferring these computations until it is
safe to do so. Less fortunately, the runtime overhead of dynamic policy enforcement makes it hard
to scale private applications manipulating structured data. As one data point, the secure version of
filter produced by TAYPE takes more than 5 seconds to run with an oblivious list Tist. with sixteen
elements, and its performance grows exponentially worse as the number of elements increases.
To understand the source of this slowdown, consider a computation that filters a private list
containing 10 and 20 with integer 15: filter< 2 [Cons,10,Cons,20] [15]. The first step in evaluating
this function is to compute Iist-#r 2 [Cons,10,Cons,20]. Completely reducing this expression leaks
information, so tape semantics instead stops evaluation after producing the following computation:®

mux [false] Nil (Cons (/@#r [10]) (mux [false] Nil (Cons (f"’.#r [20]) Nil)))

The two [falsels are the results of securely checking if the two constructors in the input list are
Nil. Observe that evaluating either mux or Z#r would reveal private information, so the evaluation
of these operations is deferred. This delayed computation can be thought of as an “if-tree” whose
internal nodes are the private conditions needed to compute the final results, and whose leaves
hold the result of the computation along each corresponding control flow path. To make progress,
tape semantics distributes the context surrounding a delayed computation, filter and then Tist.#s
in this example, into each of its leaves; having done so, those leaves can be further evaluated.
Importantly, in our example, the leaves of this if-tree are eventually re-encrypted using Tist.#s.
The tape semantics does so in a secure way, so that Z#r [10] becomes [10] again, and each result
list is converted to a secure value of the expected OADT. Once the branches of a mux node have
been reduced to oblivious values of the same type, the node itself can be securely reduced using
the secure semantics of mux. Unfortunately, the if-tree produced by the tape semantics can grow
exponentially large before its mux nodes can be reduced. For example, after applying filter to the
if-tree produced by Tist.#r, the resulting if-tree has a leaf corresponding to every possible list that
filter could produce; the number of these leaves is exponential in the maximum length of the input
list. As any surrounding computation, i.e., Tist-#s in our example, can be distributed to each of
these leaves, an exponential number of computations may need to be performed before the if-tree
can be collapsed.

To remedy these limitations, this paper proposes to instead compile an insecure program into
a secure version that statically enforces a specified policy. To do so, we extend TAYPE, the secure
language of Ye and Delaware [2023] with W-types, a form of dependent sums (or dependent pairs)
that packs public views and the oblivious data into a uniform representation. For example, YTist-
is the oblivious list Tist. with its public view: (2, inr ([101, inr ([20], ()))) and (2, inl ()) are
elements of type Y1ist., corresponding to the examples in the previous section. The first component
of this pair-like syntax is a public view and the second component is an OADT whose public view
is exactly the first component. This allows users to again derive a private filter function from its
type signature:

fn Filter< : Wlist. — 7 — Wlist. = %lift filter

Users no longer need to explicitly provide the public views for either the output or any intermediate
subroutines: both are automatically inferred. As a result, the policy specification of filter< more
directly corresponds to the type signature of filter. In addition, specifying policies using ¥-types

SWe refer interested readers to Ye and Delaware [2022, 2023] for a complete accounting of tape semantics.
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avoids mistakes in the supplied public views: using TAYPE, if the programmer mistakenly specifies
the return type Tist. (k-1) for a secure version of filter, for example, the resulting implementation
may truncate the last element of the result list. A keyword %1ift is used to translate the standard
non-secure function filter to a private version that respects the policy specification.

To understand how this translation works, consider a naive approach where each algebraic data
type (ADT) is thought of as an abstract interface, whose operations correspond to the introduction
and elimination forms of the algebraic data type®. An ADT, e.g., list, as well as any corresponding
Y-type, e.g., V1ist. and Wlist., are implementations or instances of this interface. For example, an
interface for list operations is:

ListLiket:{Nilzﬂ—)t;Cons:f"ﬁxt—>t;match:t—>(1]—>oc)—>(@><t—>oc)—>oc}

As long as Wlist. and Wlist. implement this interface, we could straightforwardly translate
filter to a secure version:

fnmgz‘yﬁ_s\’cg—»iﬁ‘yﬁ_s\tgzlxsyﬁ Fn?i’lt?::‘{/l/is\t:ﬁie‘yl/is\tzzlxsyﬁ

Tist-#match xs (A_ = list-#Nil ()) Tist_#match xs (A_ = list_#Nil ())
(A(x, xs') = (A(x, xs') =
mux (x < y) (l/iﬁg#(:ons X (mg xs’ y)) mux (x < y) (list_#Cons x (E@: xs’ y))
(Filter< xs’ y)) (Filter— xs’ y))

This strategy does not rely on unsafe retractions like Tist#r, as private data always remains
in its secure form, eliminating the need to defer unsafe computations, which is the source of
exponential slowdowns in TaypE. Unfortunately, there are several obstacles to directly implementing
this strategy. First, an ADT and an OADT may not agree on the type signatures of the abstract
interface. ListLike fixes the argument types of operations like Cons and match, meaning that 1ist
is not an instance of this abstract interface, despite list being a very reasonable (albeit very
permissive) policy! In general, different OADTs may only be able to implement operations with
specific signatures. Second, a private function may involve a mixture of oblivious types. Thus, some
functions may need to coerce from one type to a “more” secure version. For example, if the policy
of Filter. is Wlist — Z — Wlist., its second argument y will need to be converted to Z in order to
evaluate x < y. A secure list that discloses its exact length may similarly need to be converted to one
disclosing its maximum length. Third, this naive translation results in ill-typed programs, because
the branches of a mux may have mismatched public views. In Filter., for example, the branches of
mux may evaluate to (2, [Cons,10,Cons,20]) and (1, [Cons,201), respectively. Thus, TAYPSI’s secure
type system will (rightly) reject Filter< as leaky. Lastly, the signatures that should be ascribed to
any subsidiary function calls may not be obvious. Consider the following client of filter:

fn filter5 : list — list = Axs = filter xs 5

If filters is given a signature Wlist. — Wlist., we would like to use a secure version of the filter
function with the type Wlist. — Z — Wlist., as the threshold argument is publicly known. In
general, a function may have many private versions, and we should infer which version to use at
each callsite: a recursive function may even recursively call a different “version” of itself.

To solve these challenges, we generalize the abstract interface described above into a set of
more flexible structures, which we collectively refer to as W-structures (Section 4). Intuitively, each
category of W-structures solves one of the challenges described above. Our translation algorithm
(Section 5) generates a set of typing constraints for the intermediate expressions in a program. These
constraints are then solved using the set of available W-structures, resulting in multiple private
versions of the necessary functions and ruling out the infeasible ones, e.g., filter-.

®As TavpsI already supports general recursion, we use pattern matching instead of recursion schemes as our elimination
forms.
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OADT-STRUCTURE

fn list#s : (k : N) — list — list. k = unsafe fn list-#r : (k : N) — list- k — list =
Ak xs = Ak =
if k = @ then () if k = @ then A_ = Nil
else match xs with Nil = inl O else Axs =
| Cons x xs’ = match xs with inl _ = Nil
inr (Z#s x, list<#ts (k—=1) xs’) | inr (x, xs') =

N . Ti ot _ ’
fn Tist<#view : list — N = length Cons (Z#r x) (list<#r (k-1) xs’)

INTRO/ELIM-STRUCTURE
fn ﬁs\tS#Nil 1 - ng =A_= (0, O) fn mg#match :

‘l’l/izg—>(ﬂ—>o¢)—>(zx‘l’ﬁ—s\t§—>o¢)—>(x=

fn list#Cons : Z x Wlist. — Wlist. = Mk, xs) f1 f2 =
Alx, (k, xs)) = (if k =0 then A_ = f1
(k+1, inr (x, Xs)) else Axs =

match xs with inl _ = f1 O
| inr (x, xs’) = f2 (x, (k=1, xs’))

:I/is\tgk—>cx)xs

JOIN-STRUCTURE

fn ﬁs\tg#join : N > N - N = max

fn Tist-#reshape : (k : M) — (k' : N) — list. k — list- k' = 1k k' =
if K =0 then A_ = ()
else if k = @ then A_ = inl ()
else Axs = match xs with inl _ = inl O
| inr (x, xs’) = inr (x, list-#reshape (k—=1) (K'=1) xs’)

Fig. 4. W-structures of Tist

Figure 4 presents the methods of each category of W-structures of list.. The first two methods,
Tist-#s and Tist-#r, are its section and retraction functions, belonging to the OADT-structure
category. Unlike TAYPE, these two functions are not directly used to derive secure implementations
of functions. In fact, our type system guarantees that retraction functions are never used in a secure
computation, because TaYPsI does not rely on tape semantics to repair unsafe computation (the
unsafe fn keyword tells our type checker that Tist_#r is potentially leaky). Our implementation of
TayPpsI exposes section and retraction functions as part of the API of the secure library it generates,
however, so that client programs can conceal their private input and reveal the output of secure
computations. This structure also includes a view method, which our translation uses to select the
public view needed to safely convert a list into a Wlist.. Figure 4 does not show coercion methods,
but the programmers can define a coercion from ¥list_ to Wlist., for example.

The next set of methods belong to the intro-structure and elim-structure category. These intro-
duction (Tist-#Nil and Tist-#Cons) and elimination (1ist-#match) methods construct and destruct
private list, respectively. As we construct and manipulate data, these methods build the private
version, calculate its public view, and record that view in W-types. Their type signatures are specified
by the programmers, as long as the signatures are compatible with 7 x 1list (Section 4).

The join and reshape methods in the join-structure category enable translated programs to
include private conditionals whose branches return OADT values with different public views. As
an example, consider the following private conditional whose branches have W-types:

mux [true] (2, [Cons,10@,Cons,20]) (1, [Cons,20])
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To build a version of this program that does not reveal [truel, TAYPsI uses join to calculate a common
public view that “covers” both branches. In this example, Iist-#join chooses a public view of 2, as a
list with at most one element also has at most two elements. Our translation then uses the reshape
method to convert both branches to use this common public view. In our example, [Cons, 201, an
oblivious list of maximum length 1, is converted into the list [Cons, 20,Nil, -1, which has maximum
length 2. Since both branches in the resulting program have the same public view, it is safe to
evaluate mux: the resulting list is equivalent to (2, mux [truel [Cons,16,Cons,20] [Cons,20,Nil,~1). As
we will see later, not all OADTs admit join structures, e.g., Tist-, but our translation generates
constraints that take advantage of any that are available, failing when these constraints cannot
be resolved in a way that guarantees security. Note that these two methods are key to avoiding
the slowdown exhibited by TAYPE’s enforcement strategy: they allow functions that may return
different private representations to be eagerly evaluated, instead of being lazily deferred in a way
that requires an exponential number of subcomputations to resolve.

In summary, to develop a secure application in TAYPsI, programmers first implement its desired
functionality, e.g., filter, in the public fragment of Taypsi, independently of any particular privacy
policy. Policies are separately defined as oblivious algebraic data types, e.g., list., and their Y-
structures. Users can then automatically derive a secure version of their application by providing
the desired policy in the form of a type signature involving W-types, relying on Tayps1’s compiler to
produce a privacy-preserving implementation. The type system of Tayps, like TAYPE’s, provides a
strong security guarantee in the form of an obliviousness theorem (Theorem 3.1). This obliviousness
theorem is a variant of noninterference [Goguen and Meseguer 1982], and ensures that well-typed
programs in TAYPSI are secure by construction: no private information can be inferred even by an
attacker capable of observing every state of a program’s execution. Our compilation algorithm is
further guaranteed to generate a secure implementation that preserves the behavior of the original
program (Theorem 4.8).

The following three sections formally develop the language Taypsi, the W-structures, and our
translation algorithm.

3 TAYPSI, FORMALLY

This section presents Aoapry, the core calculus for secure computation that we will use to explain
our translation. This calculus extends the existing Aoapr [Ye and Delaware 2022] calculus with
Y-types, and uses ML-style ADTs in lieu of explicit fold and unfold operations.®

3.1 Syntax

Figure 5 presents the syntax of Agapry. Types and expressions are in the same syntax class, as AgapTy
is dependently typed, but we use e for expressions and t for types when possible. A Agapry program
consists of a set of global definitions of data types, functions and oblivious types. Definitions in each
of these classes are allowed to refer to themselves, permitting recursive types and general recursion
in both function and oblivious type definitions. We use x for variable names, ¢ for constructor
names, T for type names, and T for oblivious type names. Each constructor of an ADT definition
takes exactly one argument, but this does not harm expressivity: this argument is 1 for constructors
that take no arguments, e.g., Nil, and a tuple of types for constructors that have more than one
argument, e.g., Cons takes an argument of type Z x list.

"Taypsr’s formal guarantees (Section 4.7) do not cover equi-termination of the source and target programs: when the public
view lacks sufficient information to bound the computation of the original program, the secure version will not terminate,
in order to avoid leaking information through its termination behavior.

8For simplicity, Adgapry does not include public sums and oblivious integers, which are straightforward to add.
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e,T = EXPRESSIONS
| 1|B|B |1t | ¥t public & oblivious types | yT W-type
| TIx:T,T | Ax:T=e dependent function | (e,e) | (e,e) pair & W-pair
| O Ib|x]|T literals & variables |7 e|my e product and Y-type projection
| let x = e in e let binding |i/rﬁ<~r> e inr<t> e oblivious sum injection
leelCe|Te applications | match e with x=e|x=e oblivious sum elimination
| if e then e else e conditional | match e with C x=e ADT elimination
| mux e e e oblivious conditional |]§#s e boolean section
D= GLoBAL DEFINITIONS @ =1 | B | XD | BFD OBLIv. TYPE VALUES
| data T=Cr algebraic data type vi=0 | bl E,V) OBLIV. VALUES
| fn x:T =€ (recursive) function | [inl<@> V]| [inr<@> V]

| obliv T (x:T) = T (recursive) obliv. type  vi=V|b|(v,v) |(v,v) | Ax:Tt=e|C v VALUES

Fig. 5. AdgapTy syntax with extensions to Agapt highlighted

In addition to standard types and dependent function types (1), Aoapry includes oblivious booleans
(B) and oblivious sum types (). The elimination forms of these types are oblivious conditionals mux
and oblivious case analysis match, respectively. The branches of both expressions must be private and
each branch has to be fully evaluated before the expression can take an atomic step to a final result.
Boolean section E#s is a primitive operation that “encrypts” a boolean expression to an oblivious
version. Oblivious injection inl and inr are the oblivious counterparts of the standard constructors
for sums. Other terms are mostly standard, although let bindings (1et), conditionals (if) and pattern
matching (match) are allowed to return a type, as Aoapry supports type-level computation.

The key addition over Aoapr is the W-type, YT. It is constructed from a pair expression (-, -) that
packs the public view and the oblivious data together, and has the same eliminators m; and 7, as
normal products. As an example, (3, Tist-#s 3 (Cons 1 Nil)) creates a W-pair of type ¥1ist. with
public view 3, using the section function from Figure 4. Projecting out the second component of
a pair using 7, produces a value of type Tist- 3. A W-type is essentially a dependent sum type
(®x:7,T x), with the restriction that v is the public view of T, and that T x is an oblivious type.

Since Aogppry has type-level computation, oblivious types have normal forms; oblivious type
values (@) are essentially polynomials formed by primitive oblivious types. We also have the
oblivious values of oblivious boolean and sum type. Note that these “boxed” values only appear at
runtime, our semantics use these to model encrypted booleans and tagged sums.

3.2 Semantics

Figure 6 shows a selection of the small-step semantics rules of Aoapry (the full rules are included in
the appendix), with judgment = + e — e’. The global context = is a map from names to a global
definition, which is elided for brevity as it is fixed in these rules. The semantics of Apapry is similar
to Aoapt, with the addition of S-PsiProj; (and S-PsiPRroj;) to handle the projection of dependent
pairs, which is simply the same as normal projection. S-Ctx reduces subterms according to the
evaluation contexts defined in Figure 6. The first few contexts take care of the type-level reduction
of product and oblivious sum type. The type annotation of oblivious injection inl and inr is reduced
to a type value first, before reducing the payload. The evaluation contexts for mux capture the
intuition that all components of a private conditional have to be normalized to values first to avoid
leaking the private condition through control flow channels.

S-OMartcHL (and S-OMATcHR) evaluates a pattern matching expression for oblivious sums.
Similar to mux, oblivious pattern matching needs to ensure the reduction does not reveal private
information about the discriminee, e.g., whether it is the left injection or right injection. To do
so, we reduce a match to an oblivious conditional that uses the private tag. The pattern variable in
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e—e

S-Ctx S-Fun S-OADT SA

—— fnx:t=eeX obliv T (x:1) =T €3 ~APP

Ele] — &E[e’] X — e T v — [v/x17 (Ax:t=e) v — [v/x]e
S-IFTRUE S-MuxTRUE S-MATcH
if true then e else e; — e mux [truel] vi vy — vy match C; v with C x=e — [v/x]e;

S-Proj; S-SEC S-OINL S-PsiProjy;

m; (Vi,V2) — Vi B#ts b —> [b] inl<®> vV —> [inl<®> V1 M (v1,V2) — Vi

S-OMATcHL
Vg = (T)z

match [inl<@®;F@7> V1 with x=e;|x=e; — mux [truel ([V/xJe;) ([Va/xlez)

& EvaLuaTiON CONTEXT

OxtT|®xoO|oft | ®Fojeo|ov|Cco|T olif O then e else e
mux O ee|mux vOe|mux vvDO

(o,e) | (v,0) | (O,e) | {v,O) | 7y O|match O with C x = e

inl<o> e | inl<®> O | match O with x=e|x=e | B#s O ...

Fig. 6. Selected small-step semantics rules of AgapTy

the “correct” branch is of course instantiated by the payload in the discriminee, while the pattern
variable in the “wrong” branch is an arbitrary value of the corresponding type, synthesized from
the judgment Vv = @&, whose definition is in appendix. When evaluating a match statement whose
discriminee is [in1<BFExE> [truell, the pattern variable in the second branch can be substituted by
([truel, [truel), ([falsel,[truel), or any other pair of oblivious booleans.

3.3 Type System

Similar to Aoapt, types in Agapry are classified by kinds which specify how protected a type is, in
addition to ensuring the types are well-formed. For example, an oblivious type, e.g., B, kinded by
«0, can be used as branches of an oblivious conditional, but not as a public view, which can only
be kinded by +. A mixed kind " is used to classify function types and types that consist of both
public and oblivious components, e.g., BxE. A type with a mixed kind cannot be used as a public
view or in private context.

The type system of Adgppry is defined by a pair of typing and kinding judgments, 3;T + e : T and
3T+ T = k, with global context = (which is again elided for brevity) and the standard typing context
I. Figure 7 presents a subset of our typing and kinding rules; the full rules are in appendix.

The security type system [Sabelfeld and Myers 2003] of Agapty enforces a few key invariants.
First, oblivious types can only be constructed from oblivious types, which is enforced by the kinding
rules, such as K-OSum. Otherwise, the attacker could infer the private tag of an oblivious sum, e.g.,
B31, by observing its public payload. Second, oblivious operations, e.g., mux, require their subterms
to be oblivious, to avoid leaking private information via control flow channels. T-Mux, for example,
requires both branches to be typed by an oblivious type, otherwise an attacker may infer the private
condition by observing the result, as in mux [truel true false. Third, type-level computation is only
defined for oblivious types and cannot depend on private information. Thus, K-IF requires both
branches to have oblivious kinds, and the condition to be a public boolean. The type mux [truel 1 B
is ill-typed, since the “shape” of the data reveals the private condition.
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T-Conv T-ABs T-Arr
T're:tT =7 ) T x:1,Tre:T, TFT o T'Fey:Ix:T1,T2 T'rer:m
F're:T Tk Ax:t1=e : [Ix:T1,Ts Ttrep ep:[er/xITy
TIr T-Mux T-Ps1PAIR
T'rey:B T'rey:B ks obliv T (x:1) =1 €2
T'keq:[true/ylT T'+ey:[false/ylT Tre:T T'rtey: T Tre:T T'rtey:T ey
T+if ey then ey else ey : [ep/ylT Trmux eg €1 €2:T T+ (er,ez) SWT
T-Ps1Projy T-Ps1Proj,
obliv T (x:1) =17 €3 Tre:VT obliv T (x:1) =17 €3 Tre:VT
F'rm e:t Trm e:?(m e)
K-Sus K—OADZ K-P1
TrT=k KLC K obliv T (x:1) =1 €3 I'te:T | T SR X1, T Ty
Trroak TrT exx0 FI—HX:Tl,Tzﬁ*M
K-OSum K-Ps1 K-Ir
FFTlt:*O FFTZZI*O obliv T (x:1) =1 €2 I'rey:B FFTI::*O FFTZ::*O
I'FTiFT = +0 Tr T s M T'rif ey then 11 else Ty = 40
Fig. 7. Selected typing and kinding rules of Agapty
X+D
DT-Fun DT-ADT DT-OADT
CRT ‘bFe:T Vi.+’ri::*P Ty x:Tr u 0
Skfn x:T =e StdataT=Cr Skobliv T (x:1) =

Fig. 8. AoapTw global definitions typing

The typing rules for W-types are defined similarly to the rules of standard dependent sums.
T-Ps1PAIR introduces a dependent pair, where the type of the second component depends on the
first component. In contrast to standard dependent sum type, W-type has the restriction that the
first component must be public, and the second component must be oblivious. This condition
is implicitly enforced by the side condition that T is an OADT with public view type . Figure 8
shows the typing rules for global definitions; DT-OADT prescribes exactly this restriction. The
rules for the first and second projection of W-type, T-PsiProj; and T-PSIProj,, are very similar
to the corresponding rules for standard dependent sum types. Observe that a W-type always has
mixed kind, as in K-PsI, because it consists of both public and oblivious components.

T-Conv allows conversion between equivalent types, such as if true then E else 1 and B. The
equivalence judgment t = v is defined by a set of parallel reduction rules, which we elide here. The
converted type is nonetheless required to be well-kinded.

Note that these rules cannot be used to type check retraction functions, e.g., Tist.#r from Figure 4,
and for good reason: these functions reveal private information. Nevertheless, we still want to
check that these sorts of “leaky” functions have standard type safety properties, i.e., progress and
preservation. To do so, we use a version of these rules that simply omit some security-related
side-conditions about oblivious kinding: removing T + 7 = «0 from T-Mux allows the branches of a
mux to disclose the private condition, for example. The implementation of TaYpsI’s type checker
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uses a “mode” flag to indicate whether security-related side-conditions should be checked. Our
implementation ensures that secure functions never use any leaky functions.

3.4 Metatheory

With our addition of W-types, AoapTy enjoys the standard type safety properties (i.e., progress and
preservation), and, more importantly, the same security guarantees as Aoapr:

THEOREM 3.1 (OBLIVIOUSNESS). If e; ~e; and -+ e, : 1, and -+ e; : T2, then
(1) ey —" ¢ if and only if e; —" e}, for some e;,.
(2) lf e —" €] and e, —n e, then el ~ e,

Here, e ~ ¢’ means the two expressions are indistinguishable, i.e., they only differ in their unob-
servable oblivious values, and e —" ¢’ means e reduces to e’ in exactly n steps. This obliviousness
theorem provides a strong security guarantee: well-typed programs that are indistinguishable
produce traces that are pairwise indistinguishable. In other words, an attacker cannot infer any
private information even by observing the execution trace of a program. All these results are
mechanized in the Coq theorem prover, including the formalization of the core calculus and the
proofs of soundness and obliviousness theorems.

4 Y-STRUCTURES AND DECLARATIVE LIFTING

While our secure language makes it possible to encode structured data and privacy policies, and use
them in a secure way, it does not quite achieve our main goal yet, i.e., to decouple privacy policies
and programmatic concerns. To do so, we allow the programmers to implement the functionality
of their secure application in a conventional way, that is using only the public, nondependent
fragment of Tayps1. We make this fragment explicit by requiring such programs to have simple types,
denoted by n, defined in Figure 9. For example, filter has simple type list —» Z — list. Programs
of simple types are the source programs to our lifting process that translates them to a private
version against a policy, which stipulates the public information allowed to disclose in the program
input and output. This policy on private functionality is specified by a specification type, denoted
by 6, defined also in Figure 9. For example, filter< has specification type ¥list. — Z — Wlist-.
Note that dependent types are not directly allowed in specifications, they are instead encapsulated
in W-types. Simple types and specification types are additionally required to be well-kinded under
empty local context, i.e., all ADTs and OADTs appear in them are defined.

However, not all specification types are valid with respect to a simple type. It is nonsensical to
give Filter the specification type Z — E, for example. The specification types should still correspond
to the simple types in some way: the specification type corresponding to list should at least be
“list-like”. This correspondence is formally captured in the erasure function in Figure 9, which
maps a specification type to the “underlying” simple type. For example, WTist. is erased to list.
This function clearly induces an equivalence relation: the erasure |0] is the representative of
the equivalence class. We call this equivalence class a compatibility class, and say two types are
compatible if they belong to the same compatibility class. For example, list, Wlist. and Wlist-
are in the same compatibility class [1ist]. This erasure operation is straightforwardly extended to
typing contexts, |T'], by erasing every specification type in I and leaving other types untouched.

Our translation transforms source programs with simple types into target programs with the
desired (compatible) specification types. As mentioned in Section 2, this lifting process depends on
a set of /-structures which explain how to translate certain operations associated with an OADT.

4.1 OADT Structures
Every global OADT definition T must be equipped with an OADT-structure, defined below.
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S 6]
IMPLE TYPES N
n = 1|B]|T|nxn|n-n [1]=1 |B]=|B]=B |[T] =T whereT isan ADT

SPECIFICATION TYPES

=5 ~ YT| =T whereTi ADT for T
0 = 1|B|E|T|VT|0x6|0—0 LT where Tis an OADT for

[6x0] =10]x]0] [6—0]=06]—-0]

Fig. 9. Simple types, specification types and erasure

Definition 4.1 (OADT-structure). An OADT-structure of an OADT T, with public view type r,
consists of the following (TaypsI) type and functions:

e A public type T = +P, which is the public counterpart of T. We say T is an OADT for T.

e A section function s : Ilk:t,T—T k, which converts a public type to its oblivious counterpart.

e A retraction function r : Ilk:1,T k—T, which converts an oblivious type to its public version.

e A public view function v : T—, which creates a valid view of the public type.

e A binary relation < over values of types T and 7; v < k reads as v has public view k, or k is a
valid public view of v.

These operations are required to satisfy the following axioms:

® (A-Oy) s and r are a valid section and retraction, i.e., r is a left-inverse for s, given a valid
public view: for any valuesv:T,k:tand vV:T k,if v<kands k v—*7, thenr k ¥ —*v.

e (A-O,) the result of r always has valid public view: r k v —* v implies v < k for all values
k:T,v:T kand v:T.

e (A-O3) v produces a valid public view: v v —* k implies v < k, given any values v:T and k : T.

For example, Tist- is equipped with the OADT-structure with the public type 1ist, section
function Tist-#s, retraction function list-#r and view function Tist-#view, all of which are shown
in Figure 4. TaypsI users do not need to explicitly give the public type of an OADT-structure, as it
can be inferred from the types of the other functions. The binary relation < is only used in the proof
of correctness of our translation, so TAYPSI users can also elide it. In the case of Tist., < simply
states the length of the list is no larger than the public view.

4.2 Join Structures

In order for W-types to be flexibly used in the branches of secure control flow structures, our
translation must be able to find a common public view for both branches, and to convert an OADT
to use this view. To do so, an OADT can optionally be equipped with a join-structure.

Definition 4.2 (join-structure). A join-structure of an OADT T for T, with public view type T,
consists of the following operations:
e A binary relation C on 7, used to compare two public views.
e A join function U : t—t—t, which computes an upper bound of two public views’.
e A reshape function ] : Ilk: 7,11k’ : 7,T k—T k’, which converts an OADT to one with a different
public view.
such that:
e (A-R;) C is a partial order on 7.
e (A-R) the join function produces an upper bound: given values ki, k, and k of type , if
kiLlky —* k, then k; c k and k; C k.

°It is a bit misleading to call the operation LI “join”, as it only computes an upper bound, not necessarily the lowest one.
However, it should compute a supremum for performance reasons: intuitively, larger public view means more padding.
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0e{1,B)} A0 >ite; A0 >itey
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Fig. 10. Mergeability

o (A-R3) the validity of public views is monotone with respect to the binary relation c: for any
valuesv:T,k:tand k' : 7, if v<kand k C k’, then v < K.

o (A-Ry) the reshape function produces equivalent value, as long as the new public view is valid:
for any valuesv:T,k: 1,k :7,V:T kand V' : T K, ifr k V—*vandv<k and] k k' v —*V,
thenr kK vV —* v.

Figure 4 defines the join and reshape functions Tist-#join and Tist#reshape. The partial order for
this join structure is simply the total order on integers, and the join is simply the maximum of the
two numbers. Not all OADTs have a sensible join-structure: oblivious lists using their exact length
as a public view cannot be combined if they have different lengths. If such lists are the branches of
an oblivious conditional, lifting will either fail or coerce both to an OADT with a join-structure.

Join structures induce a mergeability relation, defined in Figure 10, that can be used to decide if
a specification type can be used in oblivious conditionals. We say 6 is mergeable if A0 > ite, with
witness ite of type B—8—6—0. We will write A6 when we do not care about the witness. This
witness can be thought of as a generalized, drop-in replacement of mux: we simply translate mux to
the derived ite if the result type is mergeable. The case of W-type captures this intuition: we first
join the public views, and reshape all branches to this common public view, before we select the
correct one privately using mux. This rule looks up the necessary methods from the context of join
structures S,,. Other cases are straightforward: we simply fall back to mux for primitive types, and
the derivation for product and function types are done congruently.

4.3 Introduction and Elimination Structures

An ADT is manipulated by its introduction and elimination forms. To successfully lift a public
program using ADTs, we need structures to explain how the primitive operations of its ADTs
are handled in their OADT counterparts. Thus, an OADT T can optionally be equipped with an
introduction-structure (intro-structure) and an elimination-structure (elim-structure), defined below.
These structures are optional because some programs only consume ADTs, without constructing
any new ADT values (and vice versa): a function that checks membership in a list only requires
an elim-structure on lists, for example. Intuitively, the axioms of these structures require the
introduction and elimination methods of an OADT to behave like those of the corresponding ADT.
This is formalized using a pair of logical refinement relations on values (V,[-]) and expressions
(&n[]); these relations are formally defined in Section 4.6.

Definition 4.3 (intro-structure). An intro-structure of an OADT T for ADT T, with global definition
data T = C n, consists of a set of functions C;, each corresponding to a constructor ¢;. The type of C;
is 8;—WT, where |8;] = n; (note that DT-ADT guarantees that n; is a simple type). The particular o;
an intro-structure uses is determined by the author of that structure. Each C; is required to logically

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 144. Publication date: April 2024.



144:16 Qianchuan Ye and Benjamin Delaware

(T.T,srv<) € Se 1:WT-UT € St
0 0> Ax=x B B> Ax=B#s x T YT Ax=(v x,5 (v x) Xx) YT > VT & 1
81>—>6;|>T1 62H9;>T2 9;)—)81[>T1 82>—>6;|>T2
81x02 »> 071%x05 > Ax=(T1 (711 x),T2(72 X)) 01—0; = 01505 > Ax=Ay=T2(x (T1y))

Fig. 11. Coercion

refine the corresponding constructor (A-I;): given any values v : |8] and v’ : , if (v,v') € V,[0], then
(Ci v,C; V') € E,[VT].

Definition 4.4 (elim-structure). An elim-structure of an OADT T for ADT T, with global definition
data T = C n, consists of a family of functions match, indexed by the possible return types. The type
of matchy is WT—(6—) —a, where |0, =n; for each 6; in the function arguments corresponding to
alternatives. Each match, is required to logically refine the pattern matching expression, specialized
with ADT T and return type «. The sole axiom of this structure (A-E;) only considers return type
« being a specification type: given values v; : n;, (k,V) : T k, Ax=e; : [0;]—|a] and Ax=e) : 0;—a, if
rk V—*¢; v; and (Ax=e;, Ax=e)) € V,[0;—a] then (Lvi/xle;,match (k,¥) (Ix=¢")) € Enla].

The types of the oblivious introduction and elimination forms in these structures are only
required to be compatible with the public counterparts. The programmers can choose which
specific OADTs to use according to their desired privacy policy. Figure 4 shows the constructors
and pattern matching functions for Tist-.

The elim-structure of an OADT consists of a family of destructors, whose return type o does not
necessarily range over all types. For example, matchy of Tist., list.#match in Figure 4, requires o
to be a mergeable type, due to the use of match, which imposes a restriction similarly to mux. Such
constraints on « are automatically inferred and enforced.

4.4 Coercion Structures

As discussed in Section 2, we may need to convert an oblivious type to another, either due to a
mismatch from input to output, or due to its lack of certain structures. For example, Tist- does not
have join structure, so if the branches of an oblivious conditional has type W1ist_, they should be
coerced to Y1ist., when such a coercion is available.

Two compatible OADTs may form a coercion-structure, shown below.

Definition 4.5 (coercion-structure). A coercion-structure of a pair of compatible OADTs T and 7/
for 7, with public view type t and 7’ respectively, consists of a coercion function 1 of type WT—WT’.
The coercion should produce an equivalent value (A-C;): given values v : T, (k,V) : WT and (k’, V') : WT/,
if r k v —*vand 1(k,V) —* (k’,¥), thenr k’ ¥ —*v.

This structure only defines the coercion between two W-types. Figure 11 generalizes the coercion
relation to any (compatible) specification types. We say 6 is coercible to 6 if 6 »» ¢’ > 1, with witness 1
of type 6—0’. We may write 0 — 0’ when we do not care about the witness. The rules of this relation
are straightforward. The context of coercion structures S; and the context of OADT structures
S are used to look up the necessary methods in the corresponding rules. The rule for coercing
a function type is contravariant. Note that we can always coerce a public type to an OADT by
running the section function, and the public view can be selected by the view function in the OADT
structure.
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L-Var L-Fun L-ABs
L-Lrr x:0€eT x:0>%€ L x:0,Tre: 0,6
Trb:B>b Trx:0p>x Trx:0p>x T'FAx:[01]=e:0;—0, > Ax:0,=¢
L-App L-LET
Fl—ez:61—>62>é2 Fl—e1:91|>é1 Fl—e1:61>é1 x:Gl,Fl—ez:szég
Trey, e1:0,>85 &1 Trlet x = e; in ey: 0> let x = &1 in é,
L-Ir, L-Ir;
Trey:B>ég F'rey:Bréy AO>ite
Tre :0>é T'rey:0> 8y Tre:0>é Tre,:0> 8
T+ if ey then e; else ey : 0> if &y then & else é&; Trif ey then e; else ez:91>ilt\e &y €1 &
L-CToR; L-CtoR; L-MaTcH;
dataT=Cnex C;:0;-YT e Sr dataT=Cnex
T're:m;>é I're:0;>¢é Trey:Tré Viix:n,Tre;:0 >é;
THC; e:T>C; é THC e: VTG & T'+match ey with C x=e: 0’ >match & with C x=¢
L-MATCH, L-COERCE
match : YT—(0—0") =0’ € Sg Trey: YT é Vi.x:0;Tre;:0 >é; Tre:0>¢é 00 >17
T+ match ey with C x=e : 0’ >match & (Ax:0=8) IF're:0' >1Té

Fig. 12. Selected declarative lifting rules

4.5 Declarative Lifting

With these W-structures, we define a declarative lifting relation, which describes what the lifting
procedure is allowed to derive at a high level. This lifting relation is given by the judgment
S; L;%;T+e:0>¢ Itisread as the expression e of type | 0] is lifted to the expression ¢ of target type 0,
under various contexts. The W-structure context S consists of the set of OADT-structures (S,,), join-
structures (Syu), intro-structures (Sy), elim-structures (Sg) and coercion-structures (S;), respectively.
The global definition context = is the same as the one used in the typing relation. The local context
T is also similar to the one in the typing relation, but it keeps track of the target types of local
variables instead of source types. Finally, the lifting context £ consists of entries of the form x : 8> x,
which associates the global function x of type | 0] with a generated function % of the target type 6. A
single global function may have multiple target types, i.e., multiple private versions, either specified
by the users or by the callsites. For example, £ may contain filter : Wlist. — Z — Wlist. > filter;
and filter: Vlist. — 7 — ‘{’I/is\tg > f’imz.

Figure 12 shows a selection of rules of the declarative lifting relation (the full rules are in
appendix). We elide most contexts as they are fixed, and simply write T'+ e : 0 > ¢ for brevity. Most
rules are simply congruences and similar to typing rules. L-FuN outsources the lifting of a function
call to the lifting context. L-IF; handles the case when the condition is lifted to an oblivious boolean
by delegating the translation to the mergeability relation. Similarly, L-CToR; and L-MATCH; query
the contexts of the intro-structures and elim-structures, and use the corresponding instances as the
drop-in replacement, when we are constructing or destructing W-types. Lastly, L-COERCE coerces
an expression nondeterministically using the coercion relation.

This lifting relation in Figure 12 only considers one expression. In practice, the users specify a set
of functions and their target types to lift. The result of our lifting procedure is a lifting context £
which maps these functions and target types to the corresponding generated functions, as well as
any other functions and the inferred target types that these functions depend on. The global context
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Vul[1] = Va[Bl = Vu[Tl={ (V) |0<n = v=V'} (Vn[[f]] ={(b,[b'])|0<n = b=b"}
Va[WT] = { (v, (k,¥)) |0<n = r k V—"v}
Val01%02] = { ((v1,v2),(V),v))) | (v1,V}) € Val01] A (va, V) € Vu[02] }

Vu[0:—02] = { (Ux: |01 |=e, Ax:01=¢”) | Vi < .V (v,v') € Vi[0:].(Lv/x]e, [v'/x]e’) € &;[62] }

Enl0] ={(e,e’) |Vi<nVv.e —iv = Fv.e —"vA(V,V) € V,;[0] }

Fig. 13. A logical relation for refinement

> is also extended with the definitions of the generated functions. To make this more clear, we say
a lifting context is derivable, denoted by + £, if and only if, for any x: 0> x € £, fn x:|0] = e e = and
fn %:0 = ¢ € = for some e and ¢, such that S; £;%;- + e: 0> é. In other words, any definitions of the
lifted functions in £ can be derived from the lifting relation in Figure 12. Note that the derivation
of a function definition is under a lifting context with possibly an entry of this function itself. This
is similar to the role of global context in type checking, as TAYps1 supports mutually recursive
functions. The goal of our algorithm (Section 5) is then to find such a derivable lifting context that
includes the user-specified liftings.

4.6 Logical Refinement

The correctness of the lifting procedure is framed as a logical refinement between expressions
of specification types and those of simple types; this relationship is defined as a step-indexed
logical relation [Ahmed 2006]. As is common, this relation is defined via a pair of set-valued
type denotations: a value interpretation ,[6] and an expression interpretation &,[0]. We say an
expression e’ of type 0 refines e of type | 8] (within n steps) if (e,e’) € &,[0]. In other words, e’
preserves the behavior of e, in that if e’ terminates at a value, e must terminate at an equivalent
value. The equivalence between values is dictated by V,,[0].

Figure 13 shows the complete definition of the logical relation. All pairs in the relations must be
closed and well-typed, i.e., their interpretations have the forms:

Val®] ={ (v,V) |- Fv:[B]A-FV:OA...}
Enl0]={(e,e) | -Fe:|0]A-+e:0A...}

For brevity, we leave this requirement implicit in Figure 13.

The definitions are mostly standard. The most interesting case is the value interpretation of
W-type: we say the pair of a public view and an oblivious value of an OADT is equivalent to a
public value of the corresponding ADT when the oblivious value can be retracted to the public
value. Intuitively, an encrypted value is equivalent to the value it decrypts to. The base cases of
the value interpretation are also guarded by the condition that we still have steps left, i.e., greater
than 0. This requirement maintains the pleasant property that the interpretations 1,[0] and &,[0]
are total relations on closed values and expressions, respectively, of type 6. The proof also uses a
straightforward interpretation of typing context, G,[I'], whose definition is in appendix.

This relation also gives rise to a semantic characterization of the lifting context. We say a lifting
context is n-valid, denoted by ¢, £, if and only if, for any x: 0> % € £, (x,%) € &,[0]. If &, £ for any
n, we say £ is valid, denoted by ¢ £. The validity is essentially a semantic correctness of L.
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4.7 Metatheory of Lifting

The first key property of the lifting relation is well-typedness, which guarantees the security of
translated programs, thanks to Theorem 3.1.

THEOREM 4.6 (REGULARITY OF DECLARATIVE LIFTING). Suppose L is well-typed and S; £L;3;T r e
0>¢é. We haves;|T]re:|0] and ;T +é:0.

Our lifting relation ensures that lifted expressions refine source expressions in fewer than n
steps, as long as every lifted program in £ is also semantically correct in fewer than n steps. As is
common in logical relation proofs, this proof requires a more general theorem about open terms.

THEOREM 4.7 (CORRECTNESS OF DECLARATIVE LIFTING OF CLOSED TERMS). Suppose S; £;3;- + e : O¢é
and &, L. We have (e,é) € &,[6].

Finally, Theorem 4.8 provides a strong result of the correctness of our translation. Any lifting
context that is derived using the rules of Figure 12 is semantically correct. In other words, if every
pair of source program and lifted program in £ are in our lifting relation, they also satisfy our
refinement criteria.

THEOREM 4.8 (CORRECTNESS OF DECLARATIVE LIFTING). + £ impliesk £.

Our notion of logical refinement only provides partial correctness guarantees, as can be seen in
the definition of &,[-]. As a result, the lifting relation does not guarantee equi-termination: it is
possible that a lifted program will diverge when the source program terminates. This can occur
when an if is replaced by a mux: since the latter fully executes both branches, this effectively changes
the semantics of a conditional from a lazy evaluation strategy to an eager strategy. Using a public
value to bound the recursion depth in order to guarantee termination is a common practice in
data-oblivious computation, for the reasons discussed in Section 2. While the public view of an
OADT naturally serves as a measure in many cases, including all of the case studies and benchmarks
in our evaluation, in theory it is possible for a user to provide a policy to a function that results in
a nonterminating lifted version. In this situation, users must either specify a different policy, or
rewrite the functions to recurse on a different argument, e.g., a fuel value.

5 ALGORITHMIC LIFTING

Figure 14 presents the overall workflow of our lifting algorithm. This algorithm starts with a set of
goals, i.e., pairs of source functions tagged with the %1ift keywords and their desired specification
types. We then run our lifting algorithm on all the functions in these goals, as well as any functions
they depend on, transforming each of these functions to an oblivious version parameterized by
typed macros and type variables, along with a set of constraints over these type variables. After
solving the constraints, we obtain a set of type assignments for each function. Note that a single
function may have multiple type assignments, one for each occurence in a goal and callsite. For
example, filter may have the type assignment for the goal ¥list. — Z — Wlist. generated by
%1ift, and the assignment for Wlist. — Z — Wlist. generated by the call in filter5 from Section 2.
Finally, we generate the private versions of all the lifted functions by instantiating their type
variables and expanding away any macros. The lifting context from the last section is simply these
lifted functions and their generated private versions.

The lifting algorithm is defined using the judgment 3;T'+e:n ~ x> ¢ | C. It reads as the source
expression e of type n is lifted to the target expression ¢ whose type is a type variable x as a
placeholder for the specification type, and generates constraints C. The source expression e is
required to be in administrative normal form (ANF) [Flanagan et al. 1993], which is guaranteed by
our type checker. In particular, type annotations are added to let-bindings, and the body of every
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let is either another let or a variable. Importantly, this means the last expression of a sequence of
let must be a variable. The output of this algorithm is an expression ¢ containing macros (which
will be discussed shortly), and the constraints C. Unlike the declarative rules, this algorithm keeps
track of the source type n, which is used to restrict the range of the type variables. Consequently,
every entry of the typing context I has the form x : 1 ~ X, meaning that local variable x has type n
in the source program and type X in the target program. For example, after the lifting algorithm
has processed the function arguments of filter in Figure 1, the typing context contains entries
xs: list ~ X; and y : Z ~ X,, with freshly generated type variables x; and X..
The typed macros, defined in Figure 15, are an essential -

part of the output of the lifting algorithm, and permit a form —
of ad-hoc polymorphism, that allows the algorithm to cleanly dependency analysis
separate constraint solving from program generation. These
macros take types as parameters and elaborate to expres- .

. . .. lifting
sions, under the contexts S, £ and = implicitly. These macros / \1
are effectively thin “wrappers” of their corresponding lan- |lifted functions with | | constraints over
guage constructs and the previously defined relations. The L7127 & type var. type var

T
conditional macro %ite, for example, corresponds to the if constraint solving

expression, but the condition may be oblivious. The construc-

tor macro %c is a “smart” constructor that may construct a

functions to lift

W-type. The pattern matching macro %match is similar to %c mStf,ntlat? i

but for eliminating a type compatible with an ADT. Lastly, lifted functions

%1 and %x is simply a direct wrapper of the mergeable relation with oS

and the lifting context £, respectively. Note that the deriva- elaboration

tion of these macro are completely determined by the type well—type:{ % correct

parameters. lifted functions
Figure 16 defines the constraints used in the algorithm,

where 0" is the specification types extended with type vari- Fig. 14. Translation pipeline

ables. The constraint X € [n] means type variable x belongs to

the compatibility class of . In other words, |X] =n. Each macro is accompanied by a constraint on
its type parameters. These constraints mean that the corresponding macros are resolvable. More
formally, this means they can elaborate to some expressions according to the rules in Figure 15
for any expression arguments. As a result, after solving all constraints and concretizing the type
variables, all macros in the lifted expression ¢ can be fully elaborated away.

Figure 17 shows a selection of lifting algorithm rules. Coercions only happen when we lift
variables, as in A-VAR. This works because the source program is in ANF, so each expression is
bound to a variable which has the opportunity to get coerced. For example, the argument to a
function or constructor, in A-App and A-CTOR, is always a variable in ANF, and recursively lifting it
allows the application of A-VAR. On the other hand, the top-level program is always in let-binding
form, whose last expression is always a variable too, allowing coercion of the whole program.
However, not all variables are subject to coercions: the function x, in A-App, the condition x, in
A-IF and the discriminee x, in A-MATCH are kept as they are, for example. Coercing these variables
would be unnecessary and undesirable. For example, coercing the condition in a conditional only
makes the generated program more expensive: there is no reason to coerce from B to &, and use mux
instead of if. Another key invariant we enforce in our algorithmic rules is that every fresh variable
is “guarded” by a compatibility class constraint. For example, in A-ABs, the freshly generated
variables x; and x, belong to the classes n; and n,, respectively. This constraint ensures that every
type variable can be finitely enumerated, as every compatibility class is a finite set, bounded by the
number of available OADTs. As a result, constraint solving in our context is decidable. Finally, if an
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%ite(Bo,B;eg,el,eg) Dé‘

A0 > ite
%ite(B,0;e9,e1,e2) >if ey then e else ey %ite(ﬁ,e;eo,el,ez) >ite ey e1 e
data T=Cnex Ci:0,0YT € St
%C;(M;,T;e) > C; e %C;(0;,YT;e) >C; e

%match(0y, 0,0 ;e0,8) > é ‘

dataT=Cnex match : YT—(0—0") »0’ € Sg
%match(T,7,0 ;e0,€) >match ey with C x=e %match(WT, 0,0 ;e,8) >match ey (Ax:0=e)
00 >17 x:0>%x€ L
%1(0,0";e) > Te %x(0) > X

Fig. 15. Typed macros

CONSTRAINTS o
c = Xe[n]|ot=0%|%ite(0%,0%) | %C(0T,0%) | %match(0t,0%,0%) | %7(0F,0%) | %x(6%)

Fig. 16. Constraints

expression is translated to a macro, a corresponding constraint is added to ensure this macro is
resolvable.

We use the judgment S; £;3;0 ¢ C to mean the assignment o satisfies a set of constraints ¢, under
the context of W-structure, lifting context and global definition context. The constraints generated
by our lifting algorithm use type variables x as placeholders for the target type of the function
being lifted. To solve a goal with a particular target type 0, we add a constraint to C that equates
the placeholder with the stipulated type, i.e., X = 6. Our constraint solver then attempts to find type
assignments that satisfy the constraints in C; the resulting assignment is used to generate private
versions of all the functions in the set of goals, as well as the accompanying lifting context.

At a high level,'” our solver reduces all constraints, except for function call constraints (%x), to
quantifier-free formulas in a finite domain theory, which can be efficiently solved using an off-the-
shelf solver. Function call constraints are recursively solved once their type arguments have been
concretized by discharging the other constraints. When a function call constraint is unsatisfiable,
we add a new refutation constraint and invoke the solver again to find a new instantiation of type
parameters. As an example of this process, in order to ascribe filter the type Wlist- — Z — Wlist.,
we first add the constraint x = Wlist. — Z — Wlist- to the constraints generated by the lifting
algorithm - + ... : list » Z — list ~X>é | C. Solving the other constraints may concretize the
type variable of function call constraint %filter(X), i.e., the type of the recursive call to filter,
to %filter(Wlist- — Z — Wlist.). Recursively solving this subgoal assuming the original goal is
solved, i.e., extending the lifting context with the original goal, results in immediate success, as
the subgoal is simply in the lifting context. On the other hand, if the type of the recursive call is
instantiated as %filter(Wlist. — Z — WIist.), the same constraints generated by lifting filter are
solved, with an additional constraint x = W1ist. — 7 — Wlist.. However, this set of constraints
is unsatisfiable, as Tist- has no join structure, so we add a refutation constraint to the context

19The full details of our constraint solver are given in the appendix.
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Tre:m~X>eé|C

A-VAR A-Fun
x:m~XeT fn xm =eeX

T'rb:B~X>b|X=B Trx:n~X %X 5x) | %T X, X)) TEx:m~X>%x(X) | %x(X)

A-LiT

A-ABs
X1, Xz fresh Xx:mg~X,Tre:ma~Xeg>e|C

TrHAximi=e o2 ~X>Ax:X;=€ | X1 € [N1], X2 € [N2],X = X1—Xs, C

A-App
X1 fresh Xp:M—oN2 ~X €T TExp:m~Xi>é | C
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A-LET
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Trlet x:my = e; in ey:mn2 ~Xg > let x:X; = &1 in &3 | X1 € [M1], C1, C2

A-Tr
Xo:B~Xy €T Fl—el:n~X|>é1|C1 Fl—ez:n~X|>é2|C2

T+if xo then e; else ey:n ~X>%ite(Xo,X;Xo,81,€2) | %ite(Xo,X), C1, C2

A-CrorR
data T=Cnex X; fresh Tex:mi~X;>é|C

I'rC; XZT~X[>%Ci(Xi,X;é) |Xi (S [T]iJ,%Ci(Xi,X),C

A-Marcn _
data T=Cnex X fresh Xo:T~Xg €T Viix:n;~X,Tre;:n ~X' >é&; | G

T rmatch xo with C x=e : 1’ ~ X' >%match(Xo,X,X ;%o,&) | X € [n],%match(Xe,X,X"),C
Fig. 17. Selected algorithmic lifting rules

that forces the solver to not generate this assignment again. In general, the type of the recursive
call to filter may be concretized to any types compatible with 1ist — Z — 1list. The number of
such compatible types is bounded, as the number of arguments of this function and the number of
OADTs: are themselves bounded. The function filter has 32X 3 = 18 possible type assignments. In
the worst case scenario, the algorithm eventually terminates after exhausting all 18 combinations.

The lifting algorithm enjoys a soundness theorem with respect to the declarative lifting relation.
As a result, our algorithm inherits the well-typedness and correctness properties of the declara-
tive version. The statement of this theorem follows how the algorithm is used: if the generated
constraints, equating the function type variable with the specification type, are satisfiable by the
type assignment o, instantiating the lifted expression with o and elaborating the macros results in
a target expression that is valid under the declarative lifting relation:

THEOREM 5.1 (SOUNDNESS OF ALGORITHMIC LIFTING). Suppose =;- + e :n ~ X>é | C. Given
a specification type 0, if S;L;%;0 £ X = 6,C, then o(¢) elaborates to an expression ¢, such that
S; L3 re:0>¢€.

The proof of this theorem is available in the appendix.

6 IMPLEMENTATION AND EVALUATION

Our compilation pipeline takes as input a source program, including any OADTSs, W-structures,
and macros (e.g., %1ift), in the public fragment of Tayps1 and privacy policies (i.e., security-type
signatures) for all target functions. After typing the source program using a bidirectional type
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checker, our lifting pass generates secure versions of the specified functions and their dependencies,
using Z3 [de Moura and Bjerner 2008] as its constraint solver. The resulting Tayps1 functions are
translated into O1L [Ye and Delaware 2023], an ML-style functional language equipped with oblivious
arrays and secure array operations: OADTs are converted to serialized versions which are stored in
secure arrays, and all oblivious operations are translated into secure array operations. After applying
some optimizations, our pipeline outputs an OCaml library providing secure implementations of all
the specified functions, including section and retraction functions for encrypting private data and
decrypting the results of a joint computation. After linking this library to a driver that provides the
necessary cryptographic primitives (i.e., secure integer arithmetic), programmers can build secure
MPC applications on top of this API. The following evaluation uses a driver implemented using the
popular open-source EMP toolkit [Wang et al. 2016].

Optimizations. Our implementation of TAaypsI implements three optimizations which further im-
prove the performance of the programs it generates.'! The reshape guard optimization instruments
reshape instances to first check if the public views of two private values are identical, omitting the
reshape operation if so. The memoization optimization caches the sizes of the private representation
of data in order to avoid recalculating this information, which is needed to create and slice oblivious
arrays. The final, smart array optimization supports zero-cost array slicing and concatenation,
and eliminates redundant operations over the serialized representation of oblivious data. One
observation underlying this optimization is that evaluating a mux whose branches are encrypted
versions of publicly-known values is unnecessary: mux [b] (B#s true) (B#s false) is equivalent to
[bl, for example. This situation frequently occurs in map-like functions, where the constructor
used in each branch of a function is publicly known. Under the hood, the serialized encoding of the
result of map uses a boolean tag to indicate which constructor was used to build it, i.e., Nil or Cons;
this boolean is determined by the tag of the input list, e.g., mux [tag] [true] [falsel. Of course, the
tag used in each branch is publicly known: map always returns Nil if the input list is empty, and
returns a Cons otherwise. Thus, we can safely reuse the [tag] of the input list to label the result
of map, for similar reasons as the previous example. The smart array optimization exploits this
observation by marking when section functions are applied to public values instead of, for example,
immediately evaluating B#s true to the encrypted value [truel. Then, when performing a mux, the
smart array first checks if both branches are “fake” private values, safely reducing the mux to its
private condition if so, without actually performing any cryptographic operations.

Our evaluation considers the following research questions:

RQ1 How does the performance of Taypsr’s transformation-based approach compare to the dy-
namic enforcement strategy of TAYPE?
RQ2 What is the compilation overhead of Taypsr’s translation strategy?

6.1 Microbenchmark Performance

To answer RQ1, we have evaluated the performance of a set of microbenchmarks compiled with
both Tayps1 and TaypE. Both approaches are equipped with optimizations that are unique to their
enforcement strategies: TAYPsI's reshape guard optimization is not applicable to TAYPE, and TAYPE
features an early tape optimization that does not make sense for Taypst.!? Our evaluation also
includes a version of TaYPE that implements Tayps1’s smart array optimization (TAYPE-SA), in order
to provide a comparison of the two approaches at their full potential.

1Qur appendix describes each of these optimizations in more detail.
12TavpE also implements a tupling optimization, but this is analogous to TAYPSI’s memoization optimization.
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Benchmark TayPE (ms) TAYPE-SA (ms) TAyvpsI (ms)

elem_1000" 8.15 8.11 8.02  (98.47%, 98.89%)
hamming_1 000" 15.09 15.21 14.46 (95.79%, 95.04%)
euclidean_1000" 67.43 67.55 67.32 (99.84%, 99.66%)
dot_prod_1 000" 66.12 66.19 66.41 (100.43%, 100.33%)
nth_1000" 11.98 12.05 12.04  (100.54%, 99.93%)
map_1000 2139.55 5.07 5.14 (0.24%, 101.44%)
filter_200 failed failed 86.86 (N/A, N/A)
insert_200 5796.69 88.92 88.07 (1.52%, 99.04%)
insert_list_100 failed failed 4667.66 (N/A, N/A)
append_100 4274.7 45.09 44.18 (1.03%, 97.99%)
take_200 169.07 3.05 3.09 (1.83%, 101.15%)
flat_map_200 failed failed 7.3 (N/A, N/A)
span_200 13529.34 124.79 91.22 (0.67%, 73.09%)
partition_200 failed failed 176.49 (N/A, N/A)
elem_1 6f 446.81 459.1 404.9 (90.62%, 88.19%)
prob_1 6" 13082.52 12761.7 12735.16 (97.34%, 99.79%)
map_16 4414.69 262.14 21567  (4.89%, 82.27%)
filter_16 8644.14 452.04 433.7 (5.02%, 95.94%)
swap_16 failed failed 4251.36 (N/A, N/A)
path_16 failed 6657.07 894.88  (N/A, 13.44%)
insert_16 83135.81 8093.81 1438.87  (1.73%, 17.78%)
bind_8 21885.65 494.98 532.86 (2.43%, 107.65%)
collect_8 failed failed 143.38 (N/A, N/A)

Fig. 18. Running times for each benchmark in milliseconds. The Tavpsi column also reports the percentage of
running time relative to TAYPE and TAavPE-SA. A failed entry indicates the benchmark either timed out after
5 minutes or exceeded the memory bound of 8 GB. List and tree benchmarks appear above and below the
double line, respectively.

Our benchmarks are a superset of the benchmarks from Ye and Delaware [2023]. Figure 18
presents the experimental results.’* These experiments fix the public views of private lists and trees
to be their maximum length and maximum depth, respectively; the suffix of each benchmark name
indicates the public view used. The benchmarks annotated with { simply traverse the data type in
order to produce a primitive value, e.g., an integer; these include membership (elem), hamming
distance (hamming), minimum euclidean distance (euclidean), dot product (dot_prod), secure
index look up (nth) and computing the probability of an event given a probability tree diagram
(prob). The programs generated by TAYPE, TAYPE-SA and Taypst all exhibit similar performance
on these benchmarks. The remaining benchmarks all construct structured data values, i.e., the
sort of application on which TaypsI is expected to shine. In addition to standard list operations,
the list benchmarks include insertion into a sorted list (insert) and insertion of a list of elements
into a sorted list (insert_list) (both lists have public view 100). The tree examples include a
filter function that removes all nodes (including any subtrees) greater than a given private integer
(filter), swapping subtrees if the node matches a private integer (swap), computing a subtree
reached following a list of “going left” and “going right” directions (path), insertion into a binary
search tree (insert), replacing the leaves of a tree with a given tree (bind), and collecting all nodes
smaller than a private integer into a list (collect).

I3All results are averaged across 5 runs, on an M1 MacBook Pro with 16 GB memory. All parties run on the same host with
local network communication.
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Benchmark No Smart Array (ms) No Reshape Guard (ms) No Memoization (ms)
elem_1000 18.37 (2.29x)  8.06 (1.0x) 17.76 (2.21x)
hamming_1000 51.73 (3.58%) 14.53 (1.01x) 355 (2.46%)
euclidean_1000  79.07 (1.17x)  67.31 (1.0x)  76.36 (1.13x)
dot_prod_1000 87.77 (1.32x)  66.15 (1.0x) 7733 (1.16x)
nth_1000 22.69 (1.88x) 12.18 (1.01x)  20.53 (1.7x)
map_1000 2106.43  (409.89x) 139.91 (27.23x) 37.71 (7.34x)
filter_200 5757.28 (66.29x)  93.93 (1.08x) 1147 (1.32x)
insert_200 255.43 (2.9x) 94.61 (1.07x)  89.32 (1.01x)
insert_list_100 22806.87 (4.89x) 5186.07 (1.11x)  4771.28 (1.02x)
append_100 4226.32 (95.66%)  50.79 (1.15%)  61.77 (1.4x)
take_200 169.45 (54.91x) 12.92 (4.19x) 4.68 (1.52x)
flat_map_200 5762.63  (789.08x) 16.99 (2.33x)  60.03 (8.22x)
span_200 5924.1 (64.95x)  99.83 (1.09x)  120.09 (1.32x)
partition_200 11528.0 (65.32x) 185.16 (1.05x)  231.06 (1.31x)
elem_16 433.73 (1.07%)  404.05 (1.0x)  402.15 (0.99%)
prob_16 13019.56 (1.02x)  12746.24 (1.0x)  12731.89 (1.0x)
map_16 4410.84 (20.45%)  635.18 (2.95%)  213.96 (0.99%)
filter_16 8674.71 (20.0x)  1131.02 (2.61x)  440.16 (1.01x)
swap_16 8671.52 (2.04x) 5471.4 (1.29%)  4246.39 (1.0%)
path_16 9108.54 (10.18x)  1083.21 (1.21x) 888.95 (0.99x)
insert_16 1910136 (13.28x) 2151.83 (1.5%)  1432.92 (1.0%)
bind_8 19647.83  (36.87x) 870.93 (1.63x) 5343 (1.0x)
collect_8 11830.6 (82.51x)  152.29 (1.06x)  186.92 (1.3%)

Fig. 19. Impact of turning off the smart array (No Smart Array), reshape guard (No Reshape Guard), and
public view memoization (No Memoization) optimizations. Each column presents running time in milliseconds
and the slowdown relative to that of the fully optimized version reported in Figure 18.

Dynamic policy enforcement either fails to finish within 5 minutes or exceeds an 8 GB memory
bound on almost half of the last set of benchmarks, due to the exponential blowup discussed in
Section 2. For those benchmarks that do finish, Tayps1’s enforcement strategy results in a fraction of
the total execution time compared to TAYPE. Compared to the version of TAYPE using smart arrays,
Taypst still performs comparably or better, although the gap is somewhat narrowed: functions like
map do not suffer from exponential blowup, so these benchmarks benefit mostly from the smart array
optimization. In summary, these results demonstrate that a static enforcement strategy performs
considerably better than a dynamic one on many benchmarks, and works roughly as well on the
remainder.

6.2 Impact of Optimization

To evaluate the performance impact of Tayps1’s three optimizations, we conducted an ablation
study on their effect. The results, shown in Figure 19, indicate that our smart array optimization is
the most important, providing up to almost 800x speedup in the best case. As suggested by Figure 18,
this optimization also helps significantly with the performance of TaypE, although not enough to
outweigh the exponential blowup innate in its dynamic approach. The other optimizations also
improve performance, albeit not as significantly. As our memoization pass caches public views of
arbitrary type, we have also conducted an ablation study for these list and tree examples using
ADT public views instead, e.g., using Peano number to encode the maximum length of a list. In
this study, we observe up to 9 times speed up in list examples, with minimal regression in tree
examples. The full results of this study are included in the appendix.
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6.3 Compilation Overhead

To measure the overhead of TAYPsI’s use of an external solver to resolve constraints, we have
profiled the compilation of a set of larger programs drawn from TAYPE’s benchmark suite, plus an
additional secure dating application.!* The first two benchmark suites (List and Tree) in Figure 20
include all the microbenchmarks from previous section. The next benchmark, List (stress), consists
of the same microbenchmarks as List with 5 additional list OADTs. The purpose of this synthetic
suite is to examine the impact of the number of OADTs on the search space. The remaining
benchmarks represent larger, more realistic applications which demonstrate the expressivity and
usability of TaypsI.

The last three columns of Figure 20

> Suite ‘ #Fn  #Ty #At ‘ #Qu Tot(s) Slv(s)

report the results of these experiments: :
total compilation time (Tot), time spent -t 207 701 84 047 0081
. Ivi Sl dth Tree 14 9 44 31 0.47 0.024
on constraint so leg (Slv) and the num- [, (stress) 20 12 70 | 295 345 298
ber of solver queries (#Qu). The group  Dating 4 13 16| 10 058  0.019
of columns in the middle of the table  MedicalRecords | 20 19 58 | 51 048  0.072
describes features that can impact the  Secure Calculator | 2 9 6 5 134 0013
. Decision Tree 2 13 6| 16 028 0016

performance of our constraint-based ap-

h: th b £ . K-means 16 11 68 86 1.62 0.95
proach: the number of functions (#fn)  \giccellaneous 117 42| 47 026 0065

being translated, the number of atomic

types (#Ty), and the total number of Fig. 20. Impact of constraint solving on compilation.
atomic types used in function types (#At).

For example, the List benchmark features

7 atomic types: public and oblivious booleans, integers and lists, as well as an unsigned integer type
(i.e. natural numbers). The number of atomic types in the function filter : list — Z — listis 3.
In the worst case scenario, our constraint solving algorithm will explore every combination of types
that are compatible with this signature, resulting in the constraints associated with filter being
solved 2 * 2 x 2 = 8 times. Exactly how many compatible types the constraint solving algorithm
explores depends on many factors: the user-specified policies, the complexity of the functions,
the calls to other functions and so on. We chose these 3 metrics as a coarse approximation of the
solution space. Our results show that the solver overhead is quite minimal for most benchmarks,
and in general solving time per query is low thanks to our encoding of constraints in an efficiently
decidable logic.

7 RELATED WORK

The problem of secure computation was first formally introduced by Yao [1982], who simultane-
ously proposed garbled circuits as a solution. Subsequently, a number of other solutions have been
proposed [Evans et al. 2018; Hazay and Lindell 2010]. Solutions categorized as multiparty computa-
tion are usually based on cryptographic protocols, e.g., secret-sharing [Beimel 2011; Goldreich et al.
1987; Maurer 2006]. Outsourced computation is another type of secure computation that includes
both cryptographic solutions, e.g., fully homomorphic encryption [Acar et al. 2018; Gentry 2009],
and solutions based on virtualization [Barthe et al. 2014, 2019] or secure processors [Hoekstra
2015].

Tayps1 features a security-type system [Sabelfeld and Myers 2003; Zdancewic 2002] based on
the type system of Agppr. While most security-type systems tag types with labels classifying the
sensitivity of data, our dependent type system tags kinds instead. The obliviousness guarantee
provided by Theorem 3.1 is a form of noninterference [Goguen and Meseguer 1982] that generalizes

4The full details of the additional case study can be found in the appendix.
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memory trace obliviousness (MTO) [Liu et al. 2013]. MTO considers traces of memory accesses, while
the traces in Theorem 3.1 include every intermediate program state under a small-step operational
semantics. This reflects MPC’s stronger threat model, in which all parties can observe the complete
execution of a program, including each instruction executed. As a consequence, our type system
also protects against timing channels, similar to other constant-time languages [Cauligi et al. 2019].

Numerous high-level programming languages for writing secure multiparty computation ap-
plications have been proposed [Hastings et al. 2019]. Most prior languages either do not support
structured data, or require all structural information to be public, e.g., Obliv-C [Zahur and Evans
2015] and ObliVM [Liu et al. 2015]. To the best of our knowledge TAYPE is the only existing language
for MPC applications that natively supports decoupling privacy policies from program logic. On
the other hand, there are many aspects of MPC tackled by prior languages that we do not consider
here. Wysteria and Wys* [Rastogi et al. 2014, 2019], for example, focus on mixed-mode computation
which allows certain computation to be executed locally. Symphony [Sweet et al. 2023], a successor
of Wysteria, supports first-class shares and first-class party sets for coordinating many parties,
enabling more reactive applications. Darais et al. [2020] developed Aopliv, @ probabilistic functional
language for oblivious computations that can be used to safely implement a variety of cryptography
algorithms, including Oblivious RAM.

Several prior works have considered how to compile secure programs into more efficient secure
versions. Viaduct [Acay et al. 2024, 2021] is a compiler that transforms high-level programs into
secure distributed versions by intelligently selecting an efficient combination of protocols for
subcomputations. The HyCC toolchain [Buischer et al. 2018] similarly transforms a C program
into a version that combines different MPC protocols to optimize performance. The HACCLE
toolchain [Bao et al. 2021] uses staging to generate efficient garbled circuits from a high-level
language. Compiler techniques, e.g., vectorization, have been studied for optimizing fully homo-
morphic encryption (FHE) applications [Cowan et al. 2021; Dathathri et al. 2020; Malik et al. 2023,
2021; Viand et al. 2023].

Jeeves [Yang et al. 2012] and Taypst have a shared goal of decoupling security policies from
program logic. While they both employ a similar high-level strategy of relying on the language
to automatically enforce policies, their different settings result in very different solutions. In
Jeeves’ programming model, each piece of data is equipped with a pair of high- and low-level
views: a username, for example, may have a high confidentiality view of “Alice”, but a low view
of “Anonymous”. The language then uses the view stipulated by the privacy policy and current
execution context, ensuring that information is only visible to observers with the proper authority.
In the MPC setting, however, no party is allowed to observe the private data of other parties. Thus,
no party can view all the data necessary for the computation, making it impossible to compute a
correct result by simply replacing data with some predetermined value, like “Anonymous”.

8 CONCLUSION

Secure multiparty computation allows joint computation over private data from multiple parties,
while keeping that data secure. Previous work has considered how to make languages for MPC
more accessible by allowing privacy requirements to be decoupled from functionality, relying on
dynamic enforcement of polices. Unfortunately, the resulting overhead of this strategy made it
difficult to scale applications manipulating structured data. This work presents TayPpsi, a policy-
agnostic language for oblivious computation that transforms programs to instead statically enforce
a user-provided privacy policy. The resulting programs are guaranteed to be both well-typed, and
hence secure, and equivalent to the source program. Our experimental results show this strategy
yields considerable performance improvements over prior approaches, while maintaining a clean
separation between privacy and programmatic concerns.
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appendix is included in the auxiliary material.
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